当前位置:文档之家› 拉曼光谱技术检验黑色签字笔添改字迹研究

拉曼光谱技术检验黑色签字笔添改字迹研究

拉曼光谱技术检验黑色签字笔添改字迹研究
拉曼光谱技术检验黑色签字笔添改字迹研究

拉曼光谱技术检验黑色签字笔添改字迹研究文章编号:1004-5929(2014)01-068-05

拉曼光谱技术检验黑色签字笔添改字迹研究

林建成,李开开,黄建同

(中国人民公安大学,北京,100038)

摘要:本工作为鉴别黑色签字笔添改字迹变造文件提供一种无损、便捷、有效的检验方法。拉曼光谱检测变造字

迹实验,并根据黑色签字笔书写色料类型的不同,分别说明不同情况的字迹添改。拉曼光谱技术能够有效检验出

使用不同签字笔添改的笔画,但用炭黑型签字笔添改炭黑型签字笔书写字迹除外。拉曼光谱技术应用于添改字迹

的鉴别有方法简单,易操作的特点。

关键词:拉曼光谱技术;黑色签字笔;添改字迹;染料;炭黑

中图分类号:O657.37 文章标识码:A

The Study of Raman Spectroscopic Technique on Changed

Handwriting Written by Black Signature Pen

LIN Jian-cheng,LI Kai-kai,HUANG Jian-tong

(People's Public Security University of China, Beijing 100038,china) Abstract: This work provides a non-destructive, convenient and effective testing method to identi- fy the added or altered handwriting by black signature pens. The inspection process is conducted by Raman experiment, and the changed handwritings made by black pens with different types of pigments are classified, showing that Raman spectroscopy technique is

able to identify different types of signature pens but carbon black. The Raman spectroscopy technique can be used to identi- fy the changed handwriting with the advantages of the convenient preparation of sample and the easy and fast operation of instrument measurement.

Key words: Raman spectroscopic technique; black signature pen; changed handwriting; dyes; carbon.

1 引言现对检材的零破坏,并且能够快速、有效检出添改

字迹与原字迹的不同,从而证明添改事实。签字笔是中性笔的一种,它逐渐

取代了钢笔成

拉曼光谱技术对字迹的检验在文检领域早有为常用书写工具,因用于较正式

的签字而得名。黑

[1] ,唐旭等人曾对拉曼光谱技术区分黑色签字使用色签字作为签字笔的主

力军,在现代的书写活动中 [2] 笔墨水进行了研究 ;连园园等人利用拉曼光谱技已经十分常见,在司法鉴定中就经常会遇到使用黑 [3]术对朱墨时序进行了研究;李春江利用拉曼光谱色签字笔对支票、收据、合同等票据上的金额、时间 [4] 技术区分不同品牌圆珠笔油墨 ;曹广涛等人对添和其他重要文字进行添改变造文件的案件。由于 [5]改字迹进行多光谱检验,但未使用拉曼光谱技检材有限,且有重要的证据价值,这类案件的鉴定术,因此使用拉曼光谱技术检验黑色签字笔添改字一般要求不损坏检材,而拉曼光谱技术不仅可以实

收稿日期:2013-07-01 修改稿:2013-11-20 基金项目:中国人民公安大学基本

科研业务费资助(2013LG06-2)

作者简介:林建成(1988-),硕士,研究方向为文件检验技术. E-mail: 20613930@https://www.doczj.com/doc/7a9625077.html,

迹是结合以上工作所做的一次新的应用。行添改,因此添改时一旦使用了其他的书写工具,

添改部分笔画与原笔画的色料形成同色异谱现象, 2 拉曼光谱技术检验添改字迹原理从而确定添改事实。

拉曼光谱技术的理论基础是拉曼散射效应,当

3 拉曼光谱技术检验添改字迹的方法一定频率的激光束射入介质后,除了被介质吸收的

光之外,大部分仍以相同频率沿入射方向穿过介我们使用美国 Thermo Fisher 公司的 DXR 型显

质,还有一小部分光被介质散射到四面八方,并且微拉曼光谱仪进行检验,采用 Ar+激光器,其激发

波长为 532 nm,物镜放大倍数为 50 倍,使用 25 μm 改变了方向。散射光中不仅有与入射光相同频率

pinhole。单次采集时间为 5 s, 累积次数 30 次,控制的光而且还包含有频率发生变化的散射光。散射

样品表面上的激光功率为 2 mW, 空间分辨率为 2 光的频率发生变化,说明入射光与物质间发生了能 -1μm,仪器分辨率为 2 cm。量的转移。通过分子的拉曼光谱可以得到有关分

日常书写所使用的黑色签字笔的书写色料成子结构的信息,可用于区分检验物质成分。不同物

分有三种类型,第一类色料是全部由炭黑组成;第质其拉曼光谱的峰位、峰数量不同,因此通过比较

二类色料是不含炭黑成分,全部由多种颜色的染料两种未知物质的拉曼光谱图就可以确定两种物质

拼制而成;第三类色料是含有部分炭黑成分和其他成分的异同。 [6]染料组成。基于此,书写人在进行添改字迹时使拉曼光谱技术检验添改字迹正是利用了这一

用了色料成分不同类型的笔,那么添改部分笔画和点,对可疑添改的笔画和其他笔画进行拉曼光谱扫

原笔画的色料拉曼光谱一定不一致,即使是使用了描,确定二者是否存在成分差异,若存在差异,则说

色料类型相同的笔,其色料成分也会因为品牌、型明可疑笔画是后使用了其他笔添改形成。这是由

号的差异导致二者拉曼光谱图不一致,从而区分开于书写人添改字迹变造文件时一般都能够使用同

来,但仅含炭黑的除外。色色料的书写工具,但不一定能够使用同一支笔进Table 1 The branch origin, brand and type of the pens 纯品牌型号笔支编号产地 AIHAO 爱好之风 8663 1-1 韩国实验一 1-2 中国五千年 260 2-1 日本三菱 uni-ball IIfineUB-103 实验二 2-2 中国橘林 J505

3-1 中国宝克 BAOKE PC 1838 实验三 3-2 日本三菱 uni-ball UMR-10

下面我们通过三个实验来说明拉曼光谱技术

检验添改字迹的过程,实验用笔的产地、品牌、型号

表 1。实验一:使用含碳型签字笔书写,染料型见

签字笔添改

如图 1,“7000”是由两支笔两次书写而成,先

用笔 1-1 书写“1000”,再用笔 1-2 在“1”上添写一横

形成“7”,经过拉曼光谱扫描,“7”字的横笔和竖笔

拉曼光谱图不一致,见图 2。竖笔色料的拉曼光谱 -1 -1 图只在 1350 cm和1600 cm处出现了碳元素的特

征峰,表明竖笔笔画色料中只含有有炭黑成分。横

笔色料的的拉曼光谱图则出现了较多的峰位,其峰

位、峰数与竖笔色料明显不同,从而证明了添写事

Fig.1 Schematic diagram of experiment 1 实。

Fig 2 Raman spectra of writings in experiment 1

实验二:使用不同品牌的染料型签字笔书写、添改

如图 3,“4000”是由两支笔两次书写而成,先用笔 2-1 书写“1000”,再用笔 2-2 在“1”上添写一笔形成“4”,经过拉曼光谱扫描,“4”字的“ ? ”和“?”拉曼光谱图不一致,见图 4。竖笔出现了四个较为明- 1- 1 显的特征峰,后添写的一笔在 1347 cm、1437 cm等处出现的特征峰是前者不具有的,因而说明了前后笔画成分不一致。尽管二者的成分中都含有染料,但不同厂家的具体成分是不一样的,因此可以通过拉曼谱图的差异证明添改事实。

Fig 3 Schematic diagram of experiment 2

Fig 4 Raman spectra of writings in experiment 2

实验三:使用色料成分都为炭黑的不同品牌签字笔用笔 3-1 书写“1000”,再用笔 3-2 在“1000”上添写

一个“0”变成“10000”,经过拉曼光谱扫描,“1000” 进行书写、添改和后边的“0”拉曼光谱图较为一致,都只出现了碳如图 5,“10000”是由两支笔两次书写而成,先

元素的特征峰。这是因为原笔画是使用色料仅含

炭黑的笔书写形成,而添改所使用的笔尽管牌子不

一样,但其色料也仅含有炭黑,所以尽管“0”字是后

添写而形成,但其原笔画和添写笔画拉曼光谱图都

只有碳元素的特征峰,不能通过拉曼光谱检验说明

添改事实。

4 结论

拉曼光谱技术由于其无损、快速、准确等优点

能够用于添改字迹的检验,只要使用了色料成分不

一样的笔进行添改,就可以通过添改笔画和原笔画的拉曼光谱图的差异说明添改事实;对于使用色料

Fig 5 Schematic diagram of experiment 3 成分仅含炭黑的笔进行添改,同时原笔画色料成分

Fig 6 Raman spectra of writings in experiment 3

Journal of Light Scattering, 2008,20(2):136-141) 也只含有炭黑,不能因为二者的拉曼光谱图一致而

[2] 唐旭,彭迪.激光拉曼光谱鉴别签字笔黑色墨水初探- 否定添改事实。同时在添改字迹时不排除使用同

中国化学会第十五届全国有机分析及生物分析学术一支笔进行添改,因此对于有添改嫌疑而拉曼光谱

研讨会论文集[C].重庆:《分析实验室》编辑部,2009: 又未检出差异的笔迹,不能仅凭拉曼光谱检验一项

101- 102. (Tang Xu, Peng Di. The primary study of 就说明无添改事实,以上情况还需其他理化方法进 differentiation of signature pen ink with laser raman 一步检验,以得出结论。 spectroscopy- The 15th national organic analysis and 在使用拉曼光谱技术检验添改字迹时,需要注bioanalysis seminar symposium of chinese chemical 意对于扫描点的选择。选点应该是随机多次的,只 society[C].Chong Qing: The editorial department of

有每次所得光谱一致,才能保证所测物质确为书写 Chinese Journal of Analysis Laboratory, 2009:101-

色料,而不是其他杂质,同时尽量保证嫌疑笔画和 102)

原笔画是在同一条件下测量。 [3] 连园园,梁鲁宁,黄建同等.拉曼光谱成像技术检验朱

墨时序中书写笔种类对检验结果的影响研究[J].中国参考文献: 司法鉴定,2011,6:26- 29.(Lian yuanyuan, Liang Lun-

ing, Huang Jiantong, et al. Research on the Impact of [1] 柯惟中,衡航.显微拉曼光谱技术在司法文书鉴定中

的一些应用[J].光散射学报,2008,20(2):136-141. (Ke Inks on the Examining Result of the Sequence of

Stroke and Stamp Impression by Raman Imaging[J]. Weizhong,Heng Hang. Applications of Raman Spec-

Chinese Journal of Forensic Sciences, 2011,6:26-29) troscopic Technique on the Expert Testimony[J].The

[4] 李春江.拉曼光谱法区分不同品牌圆珠笔油墨种类的 19-23.(Huang Jiantong. The study of quick identifica-

研究[J].湖北警官学院学报,2013,3:169-171.(Li Chun- tion technology on add and changed handwriting writ-

jiang. The study of Raman spectroscopic technique ten by black signature pen[J].Journal of Chinese Peo-

on distingu ishing different brands of ballpoint pen. ple’s Public Security University(Science and Tech-

Journal of University of Police,2013,3:169-171) nology).2007,(3):19-23)

[5] 曹广涛,巍巍,余鹏程.多光谱技术检验添改字迹初探 .激光拉曼光谱识别不同厂家 [7] 梁鲁宁,杨爱东,林雷祥

[J] 森林公安,2011,5,23- 2.(Cao Guangtao,Wei Wei, 激光打印机打印文件[J].光散射学报.2003,(2):92-94.

Yu Pengcheng. Multispectral change handwriting tim (Liang Luning, Yang Aidong, Lin Leixiang. Raman

Spectroscopy- Based Separation to Documents Printed preliminary technical inspection[J], Forest Public Se-

[J].The Journal of Light Scattering,2003,15(2):92-94curity,

2011,5,23-2 ) )

[6] 黄建同.添加变造黑色签字笔字迹的快速鉴别技术研 [8] Andermann T. Raman spectroscopy of ink on paper.

究[J].中国人民公安大学学报(自然科学版).2007,(3): Problems of Forensic Sciences. 2001.

拉曼光谱的原理及应用.doc

拉曼光谱的原理及应用 拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。 (一)含义 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2 拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器 3 拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。 4 因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。 5 共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。(四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术 2、以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术 3、采用傅立叶变换技术的FT-Raman光谱分析技术 4、共振拉曼光谱分析技术 5、表面增强拉曼效应分析技术 (五) 拉曼频移,拉曼光谱与分子极化率的关系 1、拉曼频移:散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的,与入射光的波长无关,适应于分子结构的分析 2、拉曼光谱与分子极化率的关系 分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积 诱导偶极矩与外电场的强度之比为分子的极化率 分子中两原子距离最大时,极化率也最大 拉曼散射强度与极化率成正比例 (六)应用激光光源的拉曼光谱法 应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有

拉曼光谱技术

拉曼光谱 OVERVIEW 1. Raman spectra give information on molecular vibrations and are obtained from changes in the frequency of light observed in a scattering experiment (inelastic scattering). 2. The physical picture arises from considering changes in polarizability (induced dipole moment) that arise if a vibration occurs during the time the electrons are oscillating in response to the applied radiation. 3. The gross selection rule is that the vibrational motion must produce a change in the polarizability of the molecule. 4. The anisotropy of the polarization of the scattering can be measured. Comparison of the spectra polarized perpendicular and parallel to the incident radiation gives information on the symmetry of the vibrational motions. 5. Raman spectra can be obtained in water. This is a major advantage over infrared spectra. 6. Resonance Raman spectra result when the wavelength of the exciting light falls within an electronic absorption band of a chromophore in the molecule. Some vibrations associated with such a chromophore may be enhanced by factors of 1000 or more. 7. The experimental parameters of a band in a spectrum are its position ( ) (which is independent of the frequency of the exciting light), its intensity (which is directly proportional to concentration), and its polarization. 8. The main biological applications of conventional Raman are very similar to those for infrared. Resonance Raman affords a means of probing selective sites in molecules. For example, in metalloproteins, Raman can give information on the nature of the ligand directly attached to the metal. 6.1 引言 拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。拉曼光谱的突出优点是可以很容易地测量含水的样品,而且拉曼散射光可以在紫外和可见光波段量测。由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。 拉曼光谱得名于印度物理学家拉曼(Raman)。1928年,拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。拉曼因此获得诺贝尔奖。

签字笔墨水的组成分析

龙源期刊网 https://www.doczj.com/doc/7a9625077.html, 签字笔墨水的组成分析 作者:王瑞华 来源:《商场现代化》2012年第10期 签字笔是目前国际上流行的一种新颖的书写工具,是圆珠笔的一种,圆珠笔是利用球珠滚动带出书写介质(墨水或油墨)的书写工具的统称。由于圆珠笔的书写介质不同可分为三类,即圆珠笔油墨、水性墨水和中性墨水。其中粘度较大的书写介质称油性墨水,即圆珠笔用的油墨;可溶于水的粘度较小的书写介质称为水性墨水,即滚珠笔、宝珠笔等所用的墨水;粘度介于水性和油性之间的书写介质称为中性墨水,如GEL、INKPEN使用的墨水。中性墨水具有圆珠笔油墨和水性墨水的最佳性能,并且是二者最佳性能的综合,即圆珠笔墨水的耐久性和水性墨水的书写流利性。中性笔起源于日本,日本的SAKURA株式会社于1984年研制成功称为“BALLSIGN”的产品并推向市场。1988年日本PENTEL株式会社研制成功被称为”HYBRID”的产品,中性笔由此宣告诞生。由于中性笔兼具自来水笔和圆珠笔的优点,书写流利、携带方便、不漏墨水,符合现代人们对日常书写工具简便快捷的需求,因此逐渐成为学习、办公的必需品。 我国在20世纪90年代中期引进国外的墨水开始生产签字笔,但目前所使用的签字笔墨水大部分是从日本、美国、德国和韩国进口,国内生产的比较少,我国有关墨水生产厂正在开展签字笔墨水的研制工作,如我国天津鸵鸟墨水有限公司已开始研制中性墨水,并于2000年研制成功,另外还有很多厂家也在研制和开发。一旦签字笔墨水全部由国内生产,签字笔的生产将有更大的发展,其应用会更加广泛。 签字笔墨水主要由溶剂、着色剂、表面活性剂和其他添加剂等组成。但是因为着色剂含量不同,所以签字笔墨水颜色不同于传统的碳素钢笔水颜色,形成了其特有的属性。如一项美国专利的黑色签字笔,它的黑色签字笔墨水有以下组成成份。 黑色签字笔墨水的组成部分 溶剂是签字笔墨水中的挥发性成分,加入的目的是溶解签字笔墨水中的着色剂,并且载着着色剂顺利流过球座体和球体。由于签字笔墨水的粘稠度高,所以要使用极性大,渗透性强,润湿效果明显的溶剂,以打破签字笔墨水胶质物的牵扯力,发挥其较好的作用,因此溶剂多数以醇类、醚类为主。目前,经常使用的溶剂有:二甘醇、三甘醇、五甘醇、甘油、苯甲醇、苯氧基乙醇等。大多数厂家为了提高着色剂溶解性,改善书写质量,都采用了混合溶剂的方法,一方面可以克服因蒸发速度过快造成签字笔墨水干涸而封住笔头的弊端,另一方面也可以克服蒸发速度过慢而导致书写字迹不干、渗透、铺开等缺点。签字笔墨水书写在纸张上之后,字迹与大气接触,溶剂成分就很容易挥发,含量发生变化。随着时间的推移,溶剂会发越来越多,溶剂成分的这一特点,为鉴定字迹的形成时间提供了重要的途径。

拉曼光谱原理及应用简介

拉曼光谱原理及应用简介 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究。 应用激光光源的拉曼光谱法。应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段。

1. 激光拉曼光谱法的原理是拉曼散射效应 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不光改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 2. 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 3. 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学:拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是判断化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物:拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中

拉曼光谱原理及应用简介

拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。(一)含义 光照射到物质上发生弹性散射和非弹性散射.弹性散射的散射光是与激发光波长相 同的成分.非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征 (二)拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧,这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的 能量。

c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 (三)拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。 2拉曼一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器3拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。4因为激光束的直径在它的聚焦部位通常只有0.2-2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势。而且,拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。5共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。 (四)几种重要的拉曼光谱分析技术 1、单道检测的拉曼光谱分析技术

拉曼光谱技术综述

拉曼光谱技术综述 摘要:本文从拉曼散射原理出发,介绍了拉曼技术的特征,以及拉曼技术的优势和不足,从激光技术和纳米技术出发介绍了当前拉曼技术的广泛发展和应用。综述了近年来了曼技术的主要的分析技术。涉及拉曼光谱技术的发展简史,发展现状和最新研究进展等方面。 关键字:光谱分析、拉曼散射、激光、光子 1、拉曼光谱的发展简史 印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射,称之谓并合散射。然而到1940年,拉曼光谱的地位一落千丈。主要是因为拉曼效应太弱(约为入射光强的),人们难以观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技术的进步和商品化更使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器的出现,使得拉曼散射的研究进入了一个全新的时期。由于激光器的单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率。成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rrin show公司相继推出,拉曼探针共焦激光拉曼光谱仪,由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,这样入射光的功率可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼光谱的应用范围更加广阔。 2、拉曼光谱简介:

拉曼光谱培训教材

内容概要
拉曼光谱原理
拉曼光谱仪各部件功能
激光器 滤光片 物镜及共焦针孔 光栅和焦长 探测器CCD 常用附件及选择
? 2009 HORIBA, Ltd. All rights reserved.

拉曼光谱原理
? 2009 HORIBA, Ltd. All rights reserved.

什么是拉曼效应?
1928 年,印度科学家C.V Raman in首先在CCL4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。
Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science
? 2009 HORIBA, Ltd. All rights reserved.

弹性散射与非弹性散射
弹性散射: 频率不发生改变,如瑞利散射 非弹性散射: 频率发生改变,如拉曼散射
拉曼散射
λscatter≠ λlaser
λlaser
瑞利散射
λscatter= λlaser
拉曼散射
λscatter≠ λlaser
? 2009 HORIBA, Ltd. All rights reserved.

斯托克斯散射
反斯托克斯散射 反斯托克斯散射 斯托克斯散射 瑞利散射
能级示意图
虚态
瑞利散射 电子激发态 +激光线
hv0 hv0 hv0
h(v0-v) hv0
能量差
hv
h(v0+v) 电子基态
-x
0
x
Raman shift (cm-1)
? 2009 HORIBA, Ltd. All rights reserved.

拉曼光谱

拉曼光谱 1.1引言 拉曼光谱和红外光谱都反映了分子振动的信息,但其原理却有很大差别:红外光谱是吸收光谱,而拉曼光谱是散射光谱。红外光谱的信息是从分子对入射电磁波的吸收得到的,而拉曼光谱的信息是从入射光与散射光频率的差别得到的。拉曼光谱的突出优点是可以很容易地测量含水的样品, 而且拉曼散射光可以在紫外和可见光波段量测。由于紫外光和可见光能量很强,因此其量测比红外波段要容易和优越得多。 拉曼光谱得名于印度物理学家拉曼(R a m a n)。1928年, 拉曼首先从实验观察到单色的入射光投射到物质中后产生的散射,通过对散射光进行谱分析,首先发现散射光除了含有与入射光相同频率的光外,还包含有与入射光频率不同的光。以后人们将这种散射光与入射光频率不同的现象称为拉曼散射。拉曼因此获得诺贝尔奖。 当一束入射光通过样品时,在各个方向上都发生散射。拉曼光谱仪收集和检测与入射光成直角的散射光。由于收集和检测的散射光强度非常低,因此拉曼光谱的应用和发展受到很大限制。六十年代激光开始广泛应用,拉曼光谱仪以激光作光源, 光的单色性和强度都大大提高,拉曼散射仪的信号强度因而大大提高,拉曼光谱技术得以迅速发展,应用领域遍及物理,材料,化学,生物等学科,并已成为光谱学的一个分支 拉曼光谱学。 2.1拉曼光谱原理 2.1.1光的散射 入射光通过样品后,除了被吸收的光之外,大部分沿入射方向穿过样品, 一小部分光则改变方向,发生散射。一部分散射光的波长与入射光波长相同, 这种散射称为瑞利散射(R a y l e i g h s c a t t e r i n g)。1899年,瑞利从实验中得出结论:晴天时天空呈兰色的原因是大气分子对阳光的散射。瑞利还证实:散射光的强度与波长的四次方成反比。这就是瑞利散射定律。由于组成白光的各种颜色的光中,兰光的波长最短,因而散射光强度最大。天空因而呈现兰色。 瑞利当时并没有考虑到散射光的频率变化。 他认为散射光与入射光的频率是相同的。所以后来把与入射光波长相同的散射称为瑞利散射,而把波长与入射光不同的散射称为拉曼散射。 2.1.2拉曼散射的产生 2.1.2.1机械力学的解释 光由光子组成,这是光的微粒性。光子与样品分子间的相互作用, 可以用光子与样品分子之间的碰撞来解释。 光照射样品时,光子和样品分子之间发生碰撞。如果碰撞时只是运动方向改变而未发生能量交换即发生了弹性碰撞,则光子的能量不变。由E=hν,能量不变频率也就不变。这就是瑞利散射产生的原因。如果光子和样品分子间发生非弹性碰撞, 即光子除改变运动方向外还有能量的改变,一部分能量碰撞时在光子和样品之间发生交换,光子的能量有所增减,则光的频率发生改变。 2.1.2.2从能级之间的跃迁来分析 光子和样品分子之间的作用也可以从能级之间的跃迁来分析。 样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要

拉曼光谱的应用

拉曼光谱的应用 拉曼光谱技术由于信息丰富,制样简单,水干扰小等独特优点,在化学、材料、物理、高分子、生物、医药、地质等领域有广泛的应用。 1、拉曼光谱在化学研究中的应用 拉曼光谱在有机化学方面主要用作结构鉴定和分子相互作用的手段,它与红外光谱互为补充,可以鉴别特殊的结构特征或特征基团。拉曼位移大小、强度及拉曼峰形状是鉴定化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为分子异构体判断的依据。 在无机化合物中金属离子和配位体中的中心元素相结合的阴离子或中性分子,如含有孤对电子的卤素元素、氨,天然水体中主要的配位体有无机的和有机的两类,前者有CH-、CO 3 2-、 OH-、 SO 42-和PO 4 3-等,后者有腐殖质、氨基酸等。许多废水中也含有可与金属络合的配位体, 如含氰废水中,CN-能与金属形成很稳定的络合物配位体。利用不同的络合配位体可对水体中金属离子进行测定、分离以及研究其形态和物理、化学特性等。另外,许多无机化合物具有多种晶型结构,它们具有不同的拉曼活性,因此用拉曼光谱能测定和鉴别红外光谱无法完成的无机化合物的晶型结构。 在催化化学中,拉曼光谱能够提供催化剂本身以及表面上物种的结构信息,还可以对催化剂制备过程进行实时研究。同时,激光拉曼光谱是研究电极/溶液界面的结构和性能的重要方法,能够在分子水平上深入研究电化学界面结构、吸附和反应等基础问题并应用于电催化、腐蚀和电镀等领域。 2、拉曼光谱在高分子材料中的应用 拉曼光谱可提供聚合物材料结构方面的许多重要信息。如分子结构与组成、立体规整性、结晶与取向、分子相互作用以及表面和界面的结构等。从拉曼峰的宽度可以表征高分子材料的立体化学纯度,如无规立场试样或头-头,头-尾结构混杂的样品,拉曼峰是弱而宽,而高度有序样品具有强而尖锐的拉曼峰。研究内容包括: (1)化学结构和立构性判断:高分子中的C=C、C-C、S-S、C-S、N-N等骨架对拉曼光谱非常敏感,常用来研究高分子的化学组份和结构。 (2)组分定量分析:拉曼散射强度与高分子的浓度成线性关系,给高分子组分含量分析带来方便。 (3)晶相与无定形相的表征以及聚合物结晶过程和结晶度的监测。 (4)动力学过程研究:伴随高分子反应的动力学过程如聚合、裂解、水解和结晶等。相应的拉曼光谱某些特征谱带会有强度的改变。 (5)高分子取向研究:高分子链的各向异性必然带来对光散射的各向异性,测量分子的拉曼带退偏比可以得到分子构型或构象等方面的重要信息。 (6)聚合物共混物的相容性以及分子相互作用研究。 (7)复合材料应力松弛和应变过程的监测。 (8)聚合反应过程和聚合物固化过程监控。 3、拉曼光谱技术在材料科学研究中的应用 拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。包括: (1)薄膜结构材料拉曼研究:拉曼光谱已成化学气相沉积法制备薄膜的检测和鉴定手段。拉曼可以研究非晶硅结构以及硼化非晶硅、氢化非晶硅、金刚石、类金刚石等层状薄膜的结构。 (2)超晶格材料研究:可通过测量超晶格中的应变层的拉曼频移计算出应变层的应力,根据拉曼峰的对称性,知道晶格的完整性。

Raman 拉曼光谱原理及应用

拉曼光谱学 ——原理及应用HORIBA Jobin Yvon北京办事处

报告内容 ?1-什么是拉曼光谱? –简单介绍 ?2-拉曼光谱仪工作原理介绍 ?3-拉曼光谱在材料研究中的应用介绍?4-HORIBA Jobin Yvon拉曼光谱仪简介

1928年,印度科学家C.V Raman in首先在CCL 4光谱 中发现了当光与分子相互作用后,一部分光的波长 会发生改变(颜色发生变化),通过对于这些颜色 发生变化的散射光的研究,可以得到分子结构的信 息,因此这种效应命名为Raman效应。 时间 和发现人? Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Science

λlaser λscatter >λlaser 瑞利散射λscatter = λlaser 拉曼散射 光散射的过程:激光入射到样品,产生散射光。 散射光弹性散射(频率不发生改变-瑞利散射) 非弹性散射(频率发生改变-拉曼散射)

2 0004 000 6 0008 00010 000I n t e n s i t y (c n t )400600Raman Shift (cm -1) 520不同材料的拉曼光 谱有各自的不同于其它材料的特征的光谱-特征谱 z 为表征和鉴别材料提 供了指纹谱 z 深入开展光谱学和材 料物性研究打下基础 1332 1580 20000 15000 10000 5000 100012001400160018002000 Wavenumber (cm-1)?组分信息?结构信息

激光拉曼光谱技术

激光拉曼光谱技术 摘要:论文综述了激光拉曼光谱的发展历史,拉曼光谱原理,其中有自发拉曼散射,相干反射托克斯拉曼散射光谱和受 激拉曼散射。 关键词:激光拉曼光谱原理自发反斯托克斯受激 正文 1.拉曼光谱的发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发 现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分 布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种 新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。拉曼因发现这一新的分子辐射和所取得的许多光散射研究 成果而获得了1930年诺贝尔物理奖。与此同时,前苏联兰 茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象, 即由光学声子引起的拉曼散射,称之谓并合散射。 法国罗卡特、卡本斯以及美国伍德证实了拉曼的观察 研究的结果。然而到1940年,拉曼光谱的地位一落千丈。 主要是因为拉曼效应太弱(约为入射光强的10-6),人们难以 观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上 的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技 术的进步和商品化更使拉曼光谱的应用一度衰落。1960年 以后,红宝石激光器的出现,使得拉曼散射的研究进入了一 个全新的时期。由于激光器的单色性好,方向性强,功率密 度高,用它作为激发光源,大大提高了激发效率。成为拉曼 光谱的理想光源。随探测技术的改进和对被测样品要求的 降低,目前在物理、化学、医药、工业等各个领域拉曼光谱

得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rr i ns how公司 相继推出,位曼探针共焦激光拉曼光谱仪,由于采用了凹陷 滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,因而不在需要采用双联单色器甚至三联单色器,而只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率 可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼 光谱的应用范围更加广阔。 2拉曼光谱的原理 2.1自发拉曼散射 泵浦光注入光纤后,其部分能量转为拉曼散射光,当 泵浦光的强度小于阈值时,这时光纤分子的热平衡没有被 破坏,这种拉曼散射叫自发拉曼散射。拉曼散射的产生原 因是光子与分子之间发生了能量交换改变了光子的能量。2.2拉曼散射的产生 光子和样品分子之间的作用可以从能级之间的跃迁来 分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞 利散射。如果样品分子回到电子能级基态中的较高振动能 级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为St okes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级 基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该 分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为

拉曼光谱及其在现代技术中的应用

拉曼光谱及其在现代技术中的应用 1 拉曼光谱发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发现了新的辐射谱线:在入射光频率ω 的两边出现呈对称分布的,频率为ω0-ω和ω0+ω的明锐边带,这是 属于一种新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。与此同时,前苏联兰茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象,即由光学声子引起的拉曼散射称之谓并合散射。 到40年代中期,红外技术的进步和商品化使拉曼光谱的应用一度衰落。1960年以后,红宝石激光器单色性好,方向性强,功率密度高,用它作为激发光源,大大提高了激发效率,成为拉曼光谱的理想光源。70年代中期,激光拉曼探针的出现,给微区分析注入活力。80年代以后,拉曼探针共焦激光拉曼光谱仪由于采用了凹陷滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,就只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率可以很低,灵敏度得到很大的提高,这使拉曼光谱的应用范围更加广阔。 2 拉曼光谱的原理 当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅发生散射改变方向,其频率仍与激发光源一致,这种散射称为瑞利散射。但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。拉曼散射的产生原因是光子与分子之间发生了能量交换改变了光子的能量。 2.1 拉曼散射 拉曼散射的产生可以从光子和样品分子作用时光子发生能级跃迁来解释。 样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。样品分子在吸收了光子后,被激发到较高的不稳定的能态(虚态)。当样品分子激发到虚态后又回到低能级的振动激发态,此时激发光能量大于散射光能量,散射光频率小于入射光。这时在瑞利散射线较低频率侧就会出现一根拉曼散射线,这条线称为Stokes线。

激光拉曼光谱及其应用进展

山西大学学报(自然科学版)24(3):279~282,2001 Jour nal of Shanxi Univ ersity(Na t.Sci.Ed.) 文章编号:0253-2395(2001)03-0279-04 激光拉曼光谱及其应用进展 刘 玲 (西南师范大学化学化工学院,重庆400715) 摘 要:综述了近年来激光拉曼光谱的几种分析技术及其应用,涉及到的激光拉曼光谱有傅立叶变换拉曼光谱、表面增强拉曼光谱、激光共振拉曼光谱、高温激光拉曼光谱、激光拉曼显微及激光拉曼遥测技术等。 关键词:激光拉曼光谱;应用 中图分类号:O652 文献标识码:A 从1928年起,拉曼光谱的发现距今已有70余年。激光技术的兴起使拉曼光谱成为激光分析中最活跃的研究领域之一。激光拉曼和红外光谱相辅相成,成为进行分子振动和分子结构鉴定的有利工具,被应用于纳米材料[1,2]、水中代谢物[3]、药物及药物成形剂[4]、植物有效成分[5]的结构分析。但传统拉曼光谱仪信号弱,灵敏度低,应用范围受到限制。为了提高激光拉曼光谱的信号强度,人们进行了大量卓有成效的研究工作,提出了一些新的激光拉曼分析技术及方法,本文就近五年来各种拉曼光谱技术在分析化学中的应用作一评述。 1 傅立叶变换拉曼光谱技术 1987年,Per kin Elmer公司推出第一台近红外激发傅立叶变换拉曼光谱(N I R F T-R)商品仪,它采用傅立叶变换技术对信号进行收集,多次累加来提高信噪比,并用1064m m的近红外激光照射样品,大大减弱了荧光背景。从此,N IR F T-R在化学、生物学和生物医学样品的非破坏性结构分析方面显示出了巨大的生命力。1996年,周光明等[6]就傅立叶变换拉曼光谱在无机、有机化合物、生物材料、高聚物等方面应用作过详尽综述。近几年来,化学工作者们对FT-Ra ma n光谱仍在不断探索。王斌等[7]采用F T-Raman光谱仪对蛋白质样品进行多次扫描,曲线拟合原始光谱图,以子峰面积表征对应二级结构含量,从而对蛋白质二级结构进行定量分析。可以根据人体正常组织和病变组织的F T-Ra ma n光谱差异从分子水平鉴别和研究病变的起因[8,9]。孙素琴首次利用F T-Raman光谱直接、准确、快速、无损地测定了23种常用植物生药材,并根据每种药材的光谱特征进行分类[10]。F T-Rama n光谱技术还应用在测定家兔体液中的葡萄糖含量[11]、亚麻油的组分[12]、棉织物上的有机染料[13]、碳酸钙的固相分析[14]以及共聚物[15]、金属有机化合物[16]的结构研究等等。 2 表面增强拉曼光谱技术 自1974年Fleischmann等人发现吸附在粗糙化的Ag电极表现的吡啶分子具有巨大的拉曼散射现象,后被Duy ne等人证实其表现增强因子可达106,加之活性载体表面选择吸附分子对荧光发射的抑制,使激光拉曼光谱分析的信噪比大大提高,这种表面增强效应被称为表面增强拉曼散射(Surface-Enha nce Ra man Scatte ring,简称SERS)。迄今为止的研究主要集中在探讨表面增强的理论模型,寻找新的体系和实验方法以及进行表面增强拉曼光谱的应用研究。关于表面增强效应产生的机理现已提出十余种理论模型,但普遍适用的完善模型尚在不断探索之中。随着表面增强拉曼光谱分析的深入,新的表面活性载体和具有表面增强效应的物质不断涌现,除了早期的金属电极外,目前最普遍的活性载体为金属溶胶、金属沉积岛状膜等。为了提高SERS的灵敏度、稳定性和重现性,氧化银溶液、氯化银溶胶等新的活性基质,激光烧蚀、酸蚀、掺银、涂银等活性载体制备技术也在开发应用中。SERS技术是一种新的表面测试技术,可以在分子水平上研究材料分子的结构信息,如银纳米粒 收稿日期:2001-02-15 作者简介:刘 玲(1973-),女,安徽石台人,西南师范大学化学化工学院研究生。主攻方向:化学发光与低压离子色谱。

拉曼光谱技术及其广泛应用

拉曼光谱技术及其在广泛应用 摘要:本文简单介绍了拉曼光谱的原理,常用的拉曼光谱技术,拉曼光谱技术的特征、优越性以及近年来拉曼光谱分析技术在考古、医学、文物、宝石鉴定、林业和法庭科学等领域的最新进展。并对其未来的应用前景进行了展望。 引言:1928 年,印度科学家Raman 发现了拉曼散射效应,拉曼光谱最初用的光源是聚焦的日光,后来使用汞弧灯,由于它强度不太高和单色性差,限制了拉曼光谱的发展,直到使用激光作为激发光源的激光拉曼光谱仪问世以及傅立叶变换技术的出现,拉曼光谱检测灵敏度才大大增加,其应用范围也在不断地扩大。目前,拉曼光谱已广泛应用于考古、医学、文物、宝石鉴定、石油化工、林业和法庭科学等领域。 1 、拉曼光谱原理 光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长相同的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征

2 、常用的拉曼光谱技术常用的拉曼光谱技术主要有:显微共焦拉曼光谱技术、傅里叶变换拉曼光谱技术、共振增强拉曼光谱技术和表面增强拉曼光谱技术。 3、拉曼散射光谱具有以下明显的特征: a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关; b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。 c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。 4、拉曼光谱技术的优越性 提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。此外 1、由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合

拉曼光谱技术与应用

2010年9月第17卷第27期 研究进展 中国当代医药CHINA MODERN MEDICINE 拉曼光谱是一种散射光谱[1]。拉曼光谱常采用激光作为单色光源,当一束频率为ν0的单色光照射到试样上会出现透射、吸收、散射3种情况。散射光中的大部分频率与入射光相同(ν=ν0),而一小部分频率发生偏移(ν=ν0±νν)。这种频率发生偏移的光的光谱就是拉曼光谱。一般讨论的拉曼散射是指斯托克斯散射(ν=ν0+νν),光谱中常常出现一些尖锐的峰,是试样中某些特定分子的特征。 1拉曼光谱技术 1.1常规拉曼光谱技术 1.1.1傅里叶变换拉曼光谱技术傅立叶变换拉曼光谱技术 使用傅立叶变换的干涉仪型光谱仪。来自试样的拉曼散射光通过干涉仪进入探测器,获得一干涉图,随后进行傅里叶变换得到拉曼光谱。此技术针对荧光强、颜色深的样品更适用。这种技术克服了荧光干扰,具有测量波段宽、热效应小、光谱频率精度高及灵敏度高等优点,且具有多通路的特点,能同时测定所有频率[2]。乔惠君等[3]介绍傅立叶变换近红外拉曼光谱技术是现代激光光谱技术中的一种,对其基础理论进行评价、综述。邓学良等[4]利用傅立叶变换红外光谱法,直接、快速地测定了不同参片样品。 1.1.2显微拉曼光谱技术显微拉曼光谱技术通常是指装备有显微镜系统的拉曼光谱仪。采用了低功率激光器,高转换效率的全息CCD 技术,具有检测灵敏度高、时间短、所需样品量小、样品无需制备等优点。柯惟中等[5] 采用显微激光拉曼谱仪对各类司法文件作了无损检测。证明此技术用于检测、鉴定司法文件是切实可行的,鉴定的结果可以为法庭提供科学依据。 1.1.3光声拉曼技术光声拉曼光谱术是通过光声方法来直 接探测样品中因相干拉曼过程而存储的能量的一种非线性光谱技术。邹文栋[6]运用准平衡模型以及热弹理论,对固体样品中光声拉曼效应进行理论分析,导出了脉冲激光泵浦下光声拉曼信号的解析表达式,并总结分析了固体中光声拉曼效应的一些原理。 1.1.4高温高压原位拉曼光谱技术高温高压原位拉曼光谱技术能揭示试样的微观结构及其在高温高压下的物理化学反应,光谱既能得到反应物和产物的结构信息,还可获取反应中间体及其变化过程的信息。贾茹等[7]在一套高温高压原 位拉曼散射测量系统中描述了一套利用激光加热技术等成功搭建起来的高温高压原位拉曼散射、布里渊散射的光学测量系统。 1.2增强拉曼光谱技术 增强拉曼光谱技术能够克服散射信号强度弱、检测灵敏度低,低浓度试样分析难以得到检测,尤其在微量和痕量分析时发生困难的弱点。增强拉曼光谱术分为两种: 1.2.1表面增强拉曼光谱技术表面增强拉曼散射是指在金属胶粒和粗糙金属(如银、金、铜等)表面作用下,试样的拉曼散射强度会增加104~106倍。刘鹏等[8]采用表面增强拉曼光谱 技术以对样本检测快速、灵敏、无破坏性等众多优点,在分析生化样本成分方面有着非常重要而广泛的应用。秦维等[9]采用机械粗糙、电化学氧化还原、化学刻蚀等方法对纯钛电极表面进行粗糙,在钛基底上获得了表面增强拉曼光谱信号。陈伟炜等[10]测试分析了白术煎剂及其在银胶中的拉曼光谱,并对其进行初步谱峰归属。可能为白术煎剂或其他中药煎剂提供一种准确、直接、快速的检测方法。 1.2.2共振增强拉曼光谱技术当激发光波长与分子的电子 跃迁波长相等时将发生共振拉曼散射。拉曼散射强度比常规拉曼散射要高出约104~106倍,可用于低浓度和微量试样的检测,特别适用于生物大分子试样检测。姜永恒等[11]测量了 CCl 4和CS 2分子的Raman 光谱。用Bertran 理论和群论等相 关理论对其光谱强度进行了分析,获得了发生费米共振分子的拉曼光谱强度的特殊规律。董晓慧等[12]采用共振拉曼光谱技术和量子化学计算研究了苯甲酰苯胺在甲醇和乙腈溶液中的短时光化学动力学行为。结果表明,苯甲酰苯胺的非平面反式结构为最稳定结构。 2拉曼光谱的应用方向 分析拉曼光谱的目标是探测试样元素、成分、分子取向、结晶状态以及应力和应变状态等信息。这些信息隐含在拉曼光谱各拉曼峰的峰高、宽度、面积、位置(频移)和形状中。分析内容通常有3部分:确定拉曼中含有欲测信息的那部分光谱;将有用的拉曼信号从光谱的其他部分(噪声)中分离出来;确立将拉曼信号与试样信息间相联系的数学关系(或化学计量关系)。 拉曼光谱具有定性分析并对相似物质进行区分的功能。由于拉曼光谱的峰强度与相应分子的浓度成正比,拉曼光谱也能用于定量分析,故拉曼光谱的分析方向有两种: 拉曼光谱技术与应用 杨芳 (湖南省常德市药检所,湖南常德 415000) [摘要]本文介绍了拉曼光谱的理论,综述了人们采用常规及其增强两种拉曼光谱分析技术应用于定性和定量研究 方向的应用进展,同时对其应用前景做出了展望。 [关键词]拉曼光谱;傅里叶变换拉曼光谱技术;表面增强拉曼光谱技术[中图分类号]R318.51[文献标识码]A [文章编号]1674-4721(2010)09(c )-012-02 [作者简介]杨芳(1976-),女,民族:汉;毕业院校:成都中医药大学药学院;学历:大学本科;从事工作:药品检验;职称:主管药师。 12

相关主题
文本预览
相关文档 最新文档