当前位置:文档之家› 无线传感器网络

无线传感器网络

无线传感器网络
无线传感器网络

V ol.14, No.7 ?2003 Journal of Software 软 件 学 报 1000-9825/2003/14(07)1282 无线传感器网络

? 任丰原1+, 黄海宁2, 林 闯1 1

(清华大学 计算机科学与技术系,北京 100084) 2(中国科学院 声学研究所,北京 100080)

Wireless Sensor Networks

REN Feng-Yuan 1+, HUANG Hai-Ning 2, LIN Chuang 1

1

(Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China) 2(Institute of Acoustics, The Chinese Academy of Sciences, Beijing 100080, China)

+ Corresponding author: Phn: 86-10-62783596, Fax: 86-10-62771138, E-mail: renfy@https://www.doczj.com/doc/7a6071719.html,

https://www.doczj.com/doc/7a6071719.html,/

Received 2002-10-21; Accepted 2003-03-11

Ren FY, Huang HN, Lin C. Wireless sensor networks. Journal of Software , 2003,14(7):1282~1291. https://www.doczj.com/doc/7a6071719.html,/1000-9825/14/1282.htm

Abstract : Sensor network, which is made by the convergence of sensor, micro-electro-mechanism system and networks technologies, is a novel technology about acquiring and processing information. In this paper, the architecture of wireless sensor network is briefly introduced. Next, some valuable applications are explained and forecasted. Combining with the existing work, the hot spots including power-aware routing and media access control schemes are discussed and presented in detail. Finally, taking account of application requirements, several future research directions are put forward.

Key words : sensor network; low power; routing technology

摘 要: 集成了传感器、微机电系统和网络三大技术而形成的传感器网络是一种全新的信息获取和处理技术.在简要介绍传感器网络体系结构的基础上,分析和展望了一些有价值的应用领域.结合已有研究,总结并详细阐述了包括低功耗路由技术和介质访问控制方法等在内的热点研究问题.最后,针对应用需求,提出了几点研究设想.

关键词: 传感器网络;低功耗;路由技术

中图法分类号: TP393 文献标识码: A

更小、更廉价的低功耗计算设备代表的“后PC 时代”冲破了传统台式计算机和高性能服务器的设计模式;普遍的网络化带来的计算处理能力是难以估量的;微机电系统(micro-electro-mechanism system,简称MEMS)的

? Supported by the National Natural Science Foundation of China under Grant No.60273009 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2001AA112080 (国家高技术研究发展计划(863)); the National Grand Fundamental Research 973 Program of China under Grant No.G1999032707 (国家重点基础研究发展规划(973))

第一作者简介: 任丰原(1970-),男,甘肃临洮人,博士,讲师,主要研究领域为网络流量管理与控制,传感器网络,系统性能评价.

任丰原等:无线传感器网络1283

迅速发展奠定了设计和实现片上系统(system on chip,简称SOC)的基础.以上3方面的高度集成又孕育出了许多新的信息获取和处理模式,传感器网络就是其中一例.

随机分布的集成有传感器、数据处理单元和通信模块的微小节点通过自组织的方式构成网络,借助于节点中内置的形式多样的传感器测量所在周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等众多我们感兴趣的物质现象.在通信方式上,虽然可以采用有线、无线、红外和光等多种形式,但一般认为短距离的无线低功率通信技术最适合传感器网络使用,为明确起见,一般称作无线传感器网络.但也不绝对,Berkeley的Smart Dust[1]因为可以像尘埃一样悬浮在空中,有效地避免了障碍物的遮挡,因此采用光作为通信介质.

无线传感器网络与传统的无线网络(如WLAN和蜂窝移动电话网络)有着不同的设计目标,后者在高度移动的环境中通过优化路由和资源管理策略最大化带宽的利用率,同时为用户提供一定的服务质量保证.在无线传感器网络中,除了少数节点需要移动以外,大部分节点都是静止的.因为它们通常运行在人无法接近的恶劣甚至危险的远程环境中,能源无法替代,设计有效的策略延长网络的生命周期成为无线传感器网络的核心问题.当然,从理论上讲,太阳能电池能持久地补给能源,但工程实践中生产这种微型化的电池还有相当的难度.在无线传感器网络的研究初期,人们一度认为成熟的Internet技术加上Ad-hoc路由机制对传感器网络的设计是足够充分的,但深入的研究表明[2]:传感器网络有着与传统网络明显不同的技术要求.前者以数据为中心,后者以传输数据为目的.为了适应广泛的应用程序,传统网络的设计遵循着“端到端”的边缘论思想[3],强调将一切与功能相关的处理都放在网络的端系统上,中间节点仅仅负责数据分组的转发,对于传感器网络,这未必是一种合理的选择.一些为自组织的Ad-hoc网络设计的协议和算法未必适合传感器网络的特点和应用的要求.节点标识(如地址等)的作用在传感器网络中就显得不是十分重要,因为应用程序不怎么关心单节点上的信息;中间节点上与具体应用相关的数据处理、融合和缓存也显得很有必要.在密集性的传感器网络中,相邻节点间的距离非常短,低功耗的多跳通信模式节省功耗,同时增加了通信的隐蔽性,也避免了长距离的无线通信易受外界噪声干扰的影响.这些独特的要求和制约因素为传感器网络的研究提出了新的技术问题.

1 传感器网络的体系结构

1.1 节点组成

在不同应用中,传感器网络节点的组成不尽相同,但一般都由数据采集、数据处理、数据传输和电源这4部分组成.被监测物理信号的形式决定了传感器的类型.处理器通常选用嵌入式CPU,如Motorola的68HC16,ARM公司的ARM7和Intel的8086等.数据传输单元主要由低功耗、短距离的无线通信模块组成,比如RFM公司的TR1000等.因为需要进行较复杂的任务调度与管理,系统需要一个微型化的操作系统,UC Berkeley为此专门开发了TinyOS[4],当然,uCOS-II和嵌入式Linux等也是不错的选择.图1描述了节点的组成,其中实心箭头的方向表示数据在节点中的流动方向.

Fig.1 Components in node of sensor network

图1 传感器网络节点的组成

1284 Journal of Software软件学报2003,14(7)

Fig.2 Architecture of sensor network

图2 传感器网络的体系结构

1.2 网络体系结构

在传感器网络中,节点任意散落在被监测区域内,这一过程是通过飞行器撒播、人工埋置和火箭弹射等方式完成的.节点以自组织形式构成网络,通过多跳中继方式将监测数据传到sink节点,最终借助长距离或临时建立的sink链路将整个区域内的数据传送到远程中心进行集中处理.卫星链路可用作sink链路,借助游弋在监测区上空的无人飞机回收sink节点上的数据也是一种方式,UC Berkeley在进行UAV(unmanned aerial vehicle)项目[5]的外场测试时便采用了这种方式.如果网络规模太大,可以采用聚类分层的管理模式,图2给出了传感器网络体系结构一般形式的描述.

2 传感器网络的应用

MEMS支持下的微小传感器技术和节点间的无线通信能力为传感器网络赋予了广阔的应用前景,主要表现在军事、环境、健康、家庭和其他商业领域.当然,在空间探索和灾难拯救等特殊的领域,传感器网络也有其得天独厚的技术优势.

2.1 军事应用

在军事领域,传感器网络将会成为C4ISRT(command,control,communication,computing,intelligence, surveillance,reconnaissance and targeting)系统不可或缺的一部分.C4ISRT系统的目标是利用先进的高科技技术,为未来的现代化战争设计一个集命令、控制、通信、计算、智能、监视、侦察和定位于一体的战场指挥系统,受到了军事发达国家的普遍重视.因为传感器网络是由密集型、低成本、随机分布的节点组成的,自组织性和容错能力使其不会因为某些节点在恶意攻击中的损坏而导致整个系统的崩溃,这一点是传统的传感器技术所无法比拟的,也正是这一点,使传感器网络非常适合应用于恶劣的战场环境中,包括监控我军兵力、装备和物资,监视冲突区,侦察敌方地形和布防,定位攻击目标,评估损失,侦察和探测核、生物和化学攻击.在战场,指挥员往往需要及时准确地了解部队、武器装备和军用物资供给的情况,铺设的传感器将采集相应的信息,并通过汇聚节点将数据送至指挥所,再转发到指挥部,最后融合来自各战场的数据形成我军完备的战区态势图.在战争中,对冲突区和军事要地的监视也是至关重要的,通过铺设传感器网络,以更隐蔽的方式近距离地观察敌方的布防;当然,也可以直接将传感器节点撒向敌方阵地,在敌方还未来得及反应时迅速收集利于作战的信息.传感器网络也可以为火控和制导系统提供准确的目标定位信息.在生物和化学战中,利用传感器网络及时、准确地探测爆炸中心将会为我军提供宝贵的反应时间,从而最大可能地减小伤亡.传感器网络也可避免核反应部队直接暴露在核辐射的环境中.在军事应用中,与独立的卫星和地面雷达系统相比,传感器网络的潜在优势表现在以下几个方面:

(1) 分布节点中多角度和多方位信息的综合有效地提高了信噪比,这一直是卫星和雷达这类独立系统难以克服的技术问题之一.

任丰原等:无线传感器网络1285

(2) 传感器网络低成本、高冗余的设计原则为整个系统提供了较强的容错能力.

(3) 传感器节点与探测目标的近距离接触大大消除了环境噪声对系统性能的影响.

(4) 节点中多种传感器的混合应用有利于提高探测的性能指标.

(5) 多节点联合,形成覆盖面积较大的实时探测区域.

(6) 借助于个别具有移动能力的节点对网络拓扑结构的调整能力,可以有效地消除探测区域内的阴影和盲点.

2.2 环境科学

随着人们对于环境的日益关注,环境科学所涉及的范围越来越广泛.通过传统方式采集原始数据是一件困难的工作.传感器网络为野外随机性的研究数据获取提供了方便,比如,跟踪候鸟和昆虫的迁移,研究环境变化对农作物的影响,监测海洋、大气和土壤的成分等.ALERT[6]系统中就有数种传感器来监测降雨量、河水水位和土壤水分,并依此预测爆发山洪的可能性[7].类似地,传感器网络对森林火灾准确、及时地预报也应该是有帮助的.此外,传感器网络也可以应用在精细农业中,以监测农作物中的害虫、土壤的酸碱度和施肥状况等.

2.3 医疗健康

如果在住院病人身上安装特殊用途的传感器节点,如心率和血压监测设备,利用传感器网络,医生就可以随时了解被监护病人的病情,进行及时处理[8].还可以利用传感器网络长时间地收集人的生理数据,这些数据在研制新药品的过程中是非常有用的,而安装在被监测对象身上的微型传感器也不会给人的正常生活带来太多的不便.此外,在药物管理等诸多方面,它也有新颖而独特的应用.总之,传感器网络为未来的远程医疗提供了更加方便、快捷的技术实现手段.

2.4 空间探索

探索外部星球一直是人类梦寐以求的理想,借助于航天器布撒的传感器网络节点实现对星球表面长时间的监测,应该是一种经济可行的方案.NASA的JPL(Jet Propulsion Laboratory)实验室研制的Sensor Webs[9]就是为将来的火星探测进行技术准备的,已在佛罗里达宇航中心周围的环境监测项目中进行测试和完善.

2.5 其他商业应用

自组织、微型化和对外部世界的感知能力是传感器网络的三大特点,这些特点决定了传感器网络在商业领域应该也会有不少的机会.比如,嵌入家具和家电中的传感器与执行机构组成的无线网络与Internet连接在一起将会为我们提供更加舒适、方便和具有人性化的智能家居环境;文献[10]中描述的城市车辆监测和跟踪系统中成功地应用了传感器网络;德国某研究机构正在利用传感器网络技术为足球裁判研制一套辅助系统,以减小足球比赛中越位和进球的误判率.此外,在灾难拯救、仓库管理、交互式博物馆、交互式玩具、工厂自动化生产线等众多领域,无线传感器网络都将会孕育出全新的设计和应用模式[11].

3 传感器网络研究中的热点问题

到现在为止,传感器网络的研究大致经过了两个阶段.第1阶段主要偏重利用MEMS技术设计小型化的节点设备,代表性的研究项目有WINS[12]和Smart Dust.对于网络本身问题的关注和研究可以认为是传感器网络研究的第2个阶段,目前正在成为无线网络研究领域的一个不小的热点.从网络分层模型的角度分析,每一层都有需要结合传感器网络的特点进行细致研究的问题,就已有的研究而言,主要集中在网络层和链路层.下面我们就其中需要解决的问题和已有的方案进行归纳总结.

3.1 网络层

传感器网络中的路由协议分为平面型和层次型两种,但大都采用多跳形式在节点和易移动的sink节点之间建立连接.Ad-hoc网络中已有的多跳路由协议,如AODV(Ad-hoc demand distance vector)和TORA(temporally ordered routing algorithm)等,一般都不适合传感器网络的特点和要求.传感器中的大部分节点不像Ad-hoc网络

1286 Journal of Software软件学报2003,14(7)

中的节点一样快速移动,因此没有必要花费很大的代价频繁地更新路由表信息.

3.1.1 平面路由协议

(1) Flooding

泛洪是一种传统的路由技术,不要求维护网络的拓扑结构,并进行路由计算,接收到消息的节点以广播形式转发分组.对于自组织的传感器网络,泛洪路由是一种较直接的实现方法,但消息的“内爆”(implosion)和“重叠”(overlap)是其固有的缺陷[13].为了克服这些缺陷,S.hedetniemi等人提出了Gossiping策略[13],节点随机选取一个相邻节点转发它接收到的分组,而不是采用广播形式.这种方法避免了消息的“内爆”现象,但有可能增加端到端的传输延时.

(2) SPIN (sensor protocol for information via negotiation)[14]

SPIN是以数据为中心的自适应路由协议,通过协商机制来解决泛洪算法中的“内爆”和“重叠”问题.传感器节点仅广播采集数据的描述信息,当有相应的请求时,才有目的地发送数据信息.SPIN协议中有3种类型的消息,即ADV,REQ和DATA.节点用ADV宣布有数据发送,用REQ请求希望接收数据,用DATA封装数据.SPIN协议有4种不同的形式:

? SPIN-PP.采用点到点的通信模式,并假定两节点间的通信不受其他节点的干扰,分组不会丢失,功率没有任何限制.要发送数据的节点通过ADV向它的相邻节点广播消息,感兴趣的节点通过REQ发送请求,数据源向请求者发送数据.接收到数据的节点再向它的相邻节点广播ADV消息,如此重复,使所有节点都有机会接收到任何数据.

? SPIN-EC.在SPIN-PP的基础上考虑了节点的功耗,只有能够顺利完成所有任务且能量不低于设定阈值的节点才可参与数据交换.

? SPIN-BC.设计了广播信道,使所有在有效半径内的节点可以同时完成数据交换.为了防止产生重复的REQ请求,节点在听到ADV消息以后,设定一个随机定时器来控制REQ请求的发送,其他节点听到该请求,主动放弃请求权利.

? SPIN-RL.它是对SPIN-BC的完善,主要考虑如何恢复无线链路引入的分组差错与丢失.记录ADV消息的相关状态,如果在确定时间间隔内接收不到请求数据,则发送重传请求,重传请求的次数有一定的限制.

(3) SAR (sequential assignment routing)[15]

在选择路径时,有序分配路由(SAR)策略充分考虑了功耗、QoS和分组优先权等特殊要求,采用局部路径恢复和多路经备份策略,避免节点或链路失败时进行路由重计算需要的过量计算开销.为了在每个节点与sink节点间生成多条路经,需要维护多个树结构,每个树以落在sink节点有效传输半径内的节点为根向外生长,枝干的选择需满足一定QoS要求并要有一定的能量储备.这一处理使大多数传感器节点可能同时属于多个树,可任选其一将采集数据回传到sink节点.

(4) 定向扩散(directed diffusion)[2]

定向扩散模型是Estrin等人专门为传感器网络设计的路由策略,与已有的路由算法有着截然不同的实现机制.节点用一组属性值来命名它所生成的数据,比如将地震波传感器生成的数据命名为Type=seismic,id=12, timestamp=02.01.22/21:10:23,location=75?80S/100?120E.Sink节点发出的查询业务也用属性的组合表示,逐级扩散,最终遍历全网,找到所有匹配的原始数据.有一个称为“梯度”的变量与整个业务请求的扩散过程相联系,反映了网络中间节点对匹配请求条件的数据源的近似判断.更直接的方法是节点用一组标量值表示它的选择,值越大意味着向该方向继续搜索获得匹配数据的可能性越大,这样的处理最终将会在整个网络中为sink节点的请求建立一个临时的“梯度”场,匹配数据可以沿“梯度”最大的方向中继回sink节点.图3描述了定向扩散模型的工作原理.

任丰原 等:无线传感器网络

1287

(a) Request diffusion (a) 请求扩散

(b) Set up gradients

(b) 梯度场建立

Source (c) Data transfer (c) 数据传输 Source

Fig.3 Principle of directed diffusion routing

图3 定向扩散路由原理 3.1.2 层次路由协议

(1) LEACH (low energy adaptive clustering hierarchy)[16] LEACH 是MIT 的Chandrakasan 等人为无线传感器网络设计的低功耗自适应聚类路由算法.与一般的平面多跳路由协议和静态聚类算法相比,LEACH 可以将网络生命周期延长15%,主要通过随机选择聚类首领,平均分担中继通信业务来实现.LEACH 定义了“轮”(round)的概念,一轮由初始化和稳定工作两个阶段组成.为了避免额外的处理开销,稳定态一般持续相对较长的时间.

在初始化阶段,聚类首领是通过下面的机制产生的.传感器节点生成0,1之间的随机数,如果大于阈值T ,则选该节点为聚类首领.T 的计算方法如下:

,)]

/1( mod [1p r p p T ?= 其中p 为节点中成为聚类首领的百分数,r 是当前的轮数.一旦聚类首领被选定,它们便主动向所有节点广播这一消息.依据接收信号的强度,节点选择它所要加入的组,并告知相应的聚类首领.基于时分复用的方式,聚类首领为其中的每个成员分配通信时隙.在稳定工作阶段,节点持续采集监测数据,传与聚类首领,进行必要的融合处理之后,发送到sink 节点,这是一种减小通信业务量的合理工作模式.持续一段时间以后,整个网络进入下一轮工作周期,重新选择聚类首领.

(2) TEEN (threshold sensitive energy efficient sensor network protocol)[17]

依照应用模式的不同,通常可以简单地将无线自组织网络(包括传感器网络和Ad-hoc 网络)分为主动(proactive)和响应(reactive)两种类型.主动型传感器网络持续监测周围的物质现象,并以恒定速率发送监测数据;而响应型传感器网络只是在被观测变量发生突变时才传送数据.相比之下,响应型传感器网络更适合应用在敏感时间的应用中.TEEN 和LEACH 的实现机制非常相似,只是前者是响应型的,而后者属于主动型传感器网络.在TEEN 中定义了硬、软两个门限值,以确定是否需要发送监测数据.当监测数据第一次超过设定的硬门限时,节点用它作为新的硬门限,并在接着到来的时隙内发送它.在接下来的过程中,如果监测数据的变化幅度大于软门限界定的范围,则节点传送最新采集的数据,并将它设定为新的硬门限.通过调节软门限值的大小,可以在监测精度和系统能耗之间取得合理的平衡.NS2平台上的仿真研究结果表明[18]:TEEN 比LEACH 更有效.

(3) PEGAGIS (power-efficient gathering in sensor information system)[19]

PEGASIS 由LEACH 发展而来.它假定组成网络的传感器节点是同构且静止的.节点发送能量递减的测试信号,通过检测应答来确定离自己最近的相邻节点.通过这种方式,网络中的所有节点能够了解彼此的位置关系,进而每个节点依据自己的位置选择所属的聚类,聚类的首领参照位置关系优化出到sink 节点的最佳链路.因为PEGASIS 中每个节点都以最小功率发送数据分组,并有条件完成必要的数据融合,减小业务流量.因此,整个网络的功耗较小.研究结果表明,PEGASIS 支持的传感器网络的生命周期是LEACH 的近两倍.PEGASIS 协议的不足之处在于节点维护位置信息(相当于传统网络中的拓扑信息)需要额外的资源.

(4) 多层聚类算法[2]

1288 Journal of Software软件学报2003,14(7)

多层聚类算法是Estrin为传感器网络设计的一种新的聚类实现机制.工作在网络中的传感器节点处于不同的层,所处层次越高,所覆盖面积越大.起初,所有节点均在最低层,通过竞争获得提升高层的机会.新的工作周期开始时,每一个节点都广播自己的状态信息,包括储备能量、所在层次和首领的ID(如果有)等,然后进入等待状态以便相互了解信息,等待时间与所在层次成正比.处在最低层的节点如果没有首领,等待状态结束后,立刻启动一个“晋升定时器”,定时时间与自身能量以及接收到同层其他节点广播消息的数目成反比,目的是为能量较高且在密集区的节点获得较多的提升机会.一旦定时时间到,节点升入高层,将有发给自己广播消息的节点视为潜在的子节点,并广播自己新的状态信息,低层节点选择响应这些准首领的广播消息,最终确定惟一的通信关系.选择了首领的节点,自己的“晋升定时器”将停止工作,也就意味着本轮放弃了晋升机会.在每一个工作周期结束以后,高层节点将视自己的状态信息(如有无子节点,功率是否充足)决定是否让出首领位置.上述的多层聚类算法具有递归性,Estrin等人用两层模型验证了它在传感器网络中的有效性.

3.2 链路层

链路层协议用于建立可靠的点到点或点到多点通信链路,主要由介质访问控制(MAC)组成.就实现机制而言,MAC协议分3类:确定性分配、竞争占用和随机访问[20].前两者不是传感器网络的理想选择.因为TDMA固定时隙的发送模式功耗过大,为了节省功耗,空闲状态应关闭发射机;竞争占用方案需要实时监测信道状态,也不是一种合理的选择;随机介质访问模式比较适合于无线传感网络的节能要求.

蜂窝电话网络、Ad-hoc和蓝牙技术是当前主流的无线网络技术,但它们各自的MAC协议不适合无线传感器网络.GSM和CDMA中的介质访问控制主要关心如何满足用户的QoS要求和节省带宽资源,功耗是第二位的;Ad-hoc网络则考虑如何在节点具有高度移动性的环境中建立彼此间的链接,同时兼顾一定的QoS要求,功耗也不是其首要关心的;而蓝牙采用了主从式的星型拓扑结构,这本身就不适合传感器网络自组织的特点.

基于以上两个方面的原因,需要为传感器网络设计新的低功耗MAC协议.下面我们简单介绍几种已有的典型方案.

3.2.1 SMACS[21]

SMACS是分布式的MAC协议,无须任何局部或全局主节点的调度便能让传感器节点发现相邻节点,并安排合理信道占用时间.在具体实现中,相邻节点的发现和信道的分配是一起完成的,因此,当节点听到它所有的相邻节点时,也就意味着已经建立相应的通信子网,链路由固定频率、随机选择的时隙组成.SMACS无须全网的时间同步机制,但在各子网内部保持同步是必要的.在竞争信道资源时,带延时的随机唤醒机制有效地减小了能量的损耗.SMACS的缺点是时隙分配方案不够严密,属于不同子网的节点之间有可能永远得不到通信机会.

3.2.2 基于CSMA的介质访问控制[22]

传统的载波侦听/多路访问(CSMA)机制不适合传感器网络的原因有二:其一,持续侦听信道的过量功耗;其二,倾向支持独立的点到点通信业务,这样容易导致临近网关的节点获得更多的通信机会,而抑制多跳业务流量,造成不公平.为了弥补这些缺陷,Woo和Culler从两个方面对传统的CSMA进行了改进,以适应传感器网络的技术要求:(1) 采用固定时间间隔的周期性侦听方案节省功耗;(2) 设计自适应传输速率控制(adaptive transmission rate control,简称ARC)策略,有针对性地抑制单跳通信业务量,为中继业务提供更多的服务机会,提高公平性.相似的工作还有Wei Ye等人设计的SMAC(sensor media access control)协议[23].它也是利用周期性侦听机制节省功耗,但没有考虑公平性问题,而是在PAMAS(power aware multi-access protocol with signalling)[24]的启发下,精简了用于同步和避免冲突的信令机制.以上两种基于CSMA改进的传感器网络MAC协议都在TinyOS微操作系统上进行了实现,并分别在SmartDust[5]硬件平台上进行了测试,比802.11标准定义的MAC协议节省了1~5倍的功耗,基本上可为传感器网络所用.

3.2.3 TDMA/FDMA组合方案[25]

Sohrabi和Pottie设计的传感器网络自组织MAC协议是一种时分复用和频分复用的混合方案,具有一定的代表性.节点上维护着一个特殊的结构帧,类似于TDMA中的时隙分配表,节点据此调度它与相邻节点间的通信.FDMA技术提供的多信道,使多个节点之间可以同时通信,有效地避免了冲突.只是在业务量较小的传感器

任丰原 等:无线传感器网络 1289 网络中,该组合协议的信道利用率较低,因为事先定义的信道和时隙分配方案限制了对空闲时隙的有效利用.

3.3 其他重要的热点问题

除了网络自身的问题以外,还有许多关键问题也引起了研究者广泛的兴趣,主要集中在两个方面,即如何从系统角度出发节省功耗以及与应用相关的共性技术.

3.3.1 系统节能策略

(1) 动态功率管理(dynamic power management,简称DPM)[26]

在多数传感器网络的应用中,监测事件具有很强的偶发性,节点上所有的工作单元没有必要时刻保持在正常的工作状态.处于沉寂状态,甚至完全关闭,必要时加以唤醒是一种有效的系统节能方案.传感器网络节点的主要功耗器件有处理器、内存、带A/D 的传感器和无线收发单元.Sinhua 等人根据它们的状态组合的有效性,将整个节点分为5种工作状态,在嵌入式操作系统的支持下进行切换,既满足了功能的需要,又节省了功耗.

(2) 动态电压调度(dynamic voltage scheduling,简称DVS)

在文献[27]中,由C. Lm 等人提出的动态电压调度策略的主要原理是基于负载状态动态调节供电电压来减小系统功耗,并被应用到PDA 之类的个人移动设备上.这启发我们将其应用到传感器网络中,提出了如图4所示的功率控制原理图.节点上的嵌入式操作系统负责调度来自不同任务队列的请求接受服务,并实时监测处理器的利用率和任务队列的长度,负载观测器依据这两个参数的序列值计算负载的标称值w ,直流/直流变换器参照该值输出幅值为A 的电压,支持处理器的正常工作.这构成了一个典型的闭环反馈系统.控制理论中成熟的方法可以为该系统中各个模块的设计提供有力的支持.

Voltage reference DC/DC Processor supplying

Load

observe

V (A )

V fixed

w r L with variable voltage

Fig.4 DVS power control principle

图4 DVS 功率控制原理图

3.3.2 共性技术

在大多数传感器网络的应用中,诸如目标定位和时间同步等一些共性技术的支持是必不可少的,在军事应用中它们显得更为重要,因此,吸引了不少研究者的注意.

(1) 时钟同步

传感器网络中的通信协议和应用,比如基于TDMA 的MAC 协议和敏感时间的监测任务等,要求节点间的时钟必须保持同步.在文献[28]中,J. Elson 和D. Estrin 给出了一种简单实用的同步策略.其基本思想是,节点以自己的时钟记录事件,随后用第三方广播的基准时间加以校正,精度依赖于对这段间隔时间的测量.这种同步机制应用在确定来自不同节点的监测事件的先后关系时有足够的精度.设计高精度的时钟同步机制是传感网络设计和应用中的一个技术难点.我们认为,考虑精简NTP(network time protocol)协议的实现复杂度,将其移植到传感器网络中来应该是一个有价值的研究课题.

(2) 定位机制与算法

定位是大多数应用,特别是军事应用的基础.传感器网络中的定位机制与算法包括两部分:节点自身定位和外部目标定位,前者是后者的基础[29].在节点自身定位方面,DARPA 支持的一些有军事应用背景的项目,如DSN(dynamic sensor network)[30]和SCADDS(scalable coordination architecture for deeply distributed and dynamic system)[31]等,大多采用GPS(global positioning system)技术.对于一些定位精度要求不高的项目,则应用了

1290 Journal of Software 软件学报 2003,14(7) LPS(local positioning system)[32].由于GPS 不适合中国的军事国情,我们设想了一种依赖于自己技术实现传感器网络中节点定位的机制,如图5所示.在“北斗一号”双星定位系统的支持下,传感器网络中的某些节点就可以找到自己的精确位置,然后参照此基准,利用局部定位算法,其他节点也可以正确定位.此外,在这种模式下,“北斗一号”的上行数据通路恰好可以作为传感器网络的sink 链路,将数据回传给控制中心,省去了用飞行器等其他手段收集数据的麻烦.确定了节点的基准位置,利用传统的定位机制和算法,如接收信号的强弱、角度和时间等,以及典型的三角形算法,就可以定位外部目标,这是相对成熟的技术

. Station

Center

Fig.5 Principle diagram of position system using sensor nodes

图5 传感器节点定位系统原理图 4 结 论

普遍网络化孕育的传感器网络是一种新的信息获取和处理技术.在特殊领域,它有着传统技术不可比拟的优势,同时也必将开辟出不少新颖而有价值的商业应用.在本文中,我们归纳和总结了已有的研究,着重讨论了路由和介质访问控制等与网络密切相关的技术问题,并对一些可能的研究方向进行了简要的阐述,期望能借此推动国内对这一新兴的网络技术的关注与研究.

References :

[1] Warneke B, Last M, Liebowitz B, Pister KSJ. Smart dust: Communicating with a cubic-millimeter computer. IEEE Computer

Magazine, 2001,34(1):44~51.

[2] Estrin D, Govindan R, Heidemann J, Kumar S. Next century challenges: Scalable coordinate in sensor network. In: Proceedings of

the 5th ACM/IEEE International Conference on Mobile Computing and Networking. Seattle: IEEE Computer Society, 1999, 263~270.

[3] Saltzer J, Reed D, Clark D. End-to-End arguments in system design. ACM Transactions on Computer Systems, 1984,2(4):195~206.

[4] TinyOS. h ttp://https://www.doczj.com/doc/7a6071719.html,.

[5] Unmanned aerial vehicle (UAV). https://www.doczj.com/doc/7a6071719.html,/~pister/29Palms0103/.

[6] ALERT. https://www.doczj.com/doc/7a6071719.html,.

[7] Bonnet P, Gehrke J, Seshadri P. Querying the physical world. IEEE Personal Communication, 2000,7(5):10~15.

[8] Noury N, Herve T, Rialle V, Virone G, Mercier E. Monitoring behavior in home using a smart fall sensor. In: Proceedings of the

IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Lyon: IEEE Computer Society, 2000. 607~610.

[9] Sensor Webs. https://www.doczj.com/doc/7a6071719.html,/.

[10] Shih E, Cho S, Ickes N, Min R, Sinha A, Wang A, Chandrakasan A. Physical layer driven protocol and algorithm design for

energy-efficient wireless sensor networks. In: Proceedings of the ACM MobiCom 2001. Rome: ACM Press, 2001. 272~286.

[11] Akyildiz I.F, Su W, Sankarasubramaniam Y, Cayirci E. Wireless sensor network: A survey. Computer Networks, 2002,38(4):

393~422.

任丰原等:无线传感器网络1291

[12] Asada G, Dong M, Lin TS, Newberg F, Pottie G, Kaiser WJ, Marcy HO. Wireless integrated network sensors (WINS) for tactical

information systems. In: Proceedings of the 1998 European Solid State Circuits Conference. New York: ACM Press, 1998. 15~20. [13] Heinzelman WR, Kulik J, Balakrishnan H. Adaptive protocols for information dissemination in wireless sensor networks. In:

Proceedings of the ACM MobiCom’99. Seattle: ACM Press, 1999. 174~185.

[14] Hedetniemi S, Liestman A. A survey of gossiping and broadcasting in communication networks. Networks, 1988,18(4):319~349.

[15] Sohrabi K, Gao J, Ailawadhi V, Pottie GJ. Protocols for self-organization of a wireless sensor network. IEEE Personal

Communications, 2000,7(5):16~27.

[16] Heinzelman W, Chandrakasan A, Balakrishnan H. Energy efficient communication protocol for wireless microsensor networks. In:

Proceedings of the 33rd Hawaii International Conference on System Sciences. Maui: IEEE Computer Society, 2000. 3005~3014. [17] Manjeshwar A, Agrawal DP. TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In: Proceedings of the

15th Parallel and Distributed Processing Symposium. San Francisco: IEEE Computer Society, 2001. 2009~2015.

[18] Wireless sensor networks (WSN). https://www.doczj.com/doc/7a6071719.html,/~njain/research.html.

[19] Lindsey S, Raghavendra CS. PEGASIS: Power-Efficient gathering in sensor information systems. https://www.doczj.com/doc/7a6071719.html,/~loren/

csc8220-info/menu.html.

[20] Sourabi K, Gao J, Ailawadni V, Pottie GJ. Protocols for self-organization of a wireless sensor network. IEEE Personal

Communications, 2000,7(5):16~27.

[21] Woo A, Culler D. A transmission control scheme for media access in sensor networks. In: Proceedings of the ACM MobiCom 2001.

Rome: ACM Press, 2001. 221~235.

[22] Shih E, Cho S, Ickes N, Min R, Sinha A, Wang A, Chandrakasan A. Physical layer driven protocol and algorithm design for

energy-efficient wireless sensor networks. In: Proceedings of the ACM MobiCom 2001. Rome: ACM Press, 2001. 272~286.

[23] Ye W, Heidemann J, Estrin D. An energy-efficient MAC protocol for wireless sensor network. In: Proceedings of the INFOCOM

2002. San Francisco: IEEE Computer Society, 2002.

[24] Singh S, Raghavendra CS. PAMAS: Power aware multi-access protocol with signaling for Ad hoc networks. ACM Computer

Communication Review, 1998,28(3):5~26.

[25] Sohrabi K, Pottie GJ. Performance of a novel self-organization protocol for wireless Ad hoc sensor networks. In: Proceedings of

the IEEE 50th Vehicular Technology Conference. Amsterdam, 1999. 1222~1226.

[26] Sinhua A, Chandrakasan A. Dynamic power management in wireless sensor network. IEEE Design and Test of Computer, 2001,

18(2):62~74.

[27] Lm C, Kim H, Ha S. Dynamic voltage scheduling technique for low-power multimedia application using buffers. In: Proceedings of

the International Symposium on Low Power Electronics and Design. California: ACM Portal Press, 2001. 34~39.

http://eeserver.korea.ac.kr/~bk21/arch/bk21conf/26.pdf.

[28] Elson J, Estrin D. Time synchronization for wireless sensor network. In: Proceedings of the 15th Parallel and Distributed

Processing Symposium. San Francisco: IEEE Computer Society, 2001. 1965~1970.

[29] Savarese C, Rabaey J. Locationing in distributed Ad-hoc wireless sensor network. In: Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) 2001. https://www.doczj.com/doc/7a6071719.html,/Publications/2001/ Locatng_distrb_ad-hoc_wrlss_snsr_ntwks/ icassp2001_final.pdf.

[30] Dynamic sensor network (DSN). https://www.doczj.com/doc/7a6071719.html,/projects/DSN/.

[31] Scalable coordination architecture for deeply distributed and dynamic system (SCADDS). https://www.doczj.com/doc/7a6071719.html,/scadds/.

[32] Werb J, Lanzl C. Designing a positioning system for finding things and people in indoors. IEEE Spectrum, 1998,35(9):71~78.

无线传感器网络概述

无线传感器网络概述 1科技发展的脚步越来越快,人类已经置身于信息时代,作为信息获取最重要和最基本的技术——传感器技术,得到了极大的发展。 2目前无线网络可分为两种:一种是有基础设施的网络,需要固定基站,例如我们使用的手机,属于无线蜂窝网,它就需要高大的天线和大功率基站来支持,基站就是最重要的基础设施;另外,使用无线网卡上网的无线局域网,由于采用了接入点这种固定设备,也属于有基础设施网。 另一类是无基础设施网,又称为无线Ad hoc网络,节点是分布式的,没有专门的固定基站。 无线Ad hoc网络又可分为两类: 一类是移动Ad hoc网络(Mobile Ad hoc Network,简称MANET),它的终端是快速移动的。一个典型的例子是美军101空降师装备的Ad hoc网络通信设备,保证在远程空投到一个陌生地点之后,在高度机动的装备车辆上仍然能够实现各种通信业务,而无需借助外部设施的支援。另一类就是我们讲的无线传感器网络,它的节点是静止的或者移动很慢。 3传感器网络的标准定义是这样的: 传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,其目的是协作地感知、采集、处理和传输网络覆盖地理区域内感知对象的监测信息,并报告给用户。它的英文是Wireless Sensor Network, 简称WSN。 如图所示,大量的传感器节点将探测数据,通过汇聚节点经其它网络发送给了用户。 在这个定义中,传感器网络实现了数据采集、处理和传输的三种功能,而这正对应着现代信息技术的三大基础技术,即传感器技术、计算机技术和通信技术。 4它们分别构成了信息系统的“感官”、“大脑”和“神经”三个部分。因此说,无线传感器网络正是这三种技术的结合,可以构成一个独立的现代信息系统。 5第一阶段:最早可以追溯二十世纪70年代越战时期使用的传统的传感器系统。当年美越双方在密林覆盖的“胡志明小道”进行了一场血腥较量,这条道路是胡志明部队向南方游击队源源不断输送物资的秘密通道,美军曾经绞尽脑汁动用航空兵狂轰滥炸,但效果不大。后来,美军投放了2万多个“热带树”传感器。所谓“热带树”实际上是由震动和声响传感器组成的系统,它由飞机投放,落地后插入泥土中,只露出伪装成树枝的无线电天线,因而被称为“热带树”。只要对方车队经过,传感器探测出目标产生的震动和声响信息,自动发送到指挥中心,美机立即展开追杀,总共炸毁或炸坏4.6万辆卡车。 这种早期使用的传感器系统的特征在于传感器节点只产生探测数据流,没有计算能力,并且相互之间不能通信。 6第二阶段是二十世纪80年代至90年代之间。 主要是美军研制的分布式传感器网络系统、海军协同交战能力系统、远程战场传感器系统等。这种现代微型化的传感器具备感知能力、计算能力和通信能力。因此在1999年,商业周刊将传感器网络列为21世纪最具影响的21项技术之一。 7第三阶段:21世纪开始至今。也就是本课开始介绍的911事件发生之后。这个阶段的传感器网络技术特点在于网络传输自组织、节点设计低功耗。 除了应用于情报部门反恐活动以外,在其它领域更是获得了很好的应用,所以2002年美国国家重点实验室--橡树岭实验室提出了“网络就是传感器”的论断。 由于无线传感网在国际上被认为是继互联网之后的第二大网络,2003年美国《技术评论》杂志评出对人类未来生活产生深远影响的十大新兴技术,传感器网络被列为第一。 在现代意义上的无线传感网研究及其应用方面,我国与发达国家几乎同步启动,它已经成为我国信息领域位居世界前列的少数方向之一。在2006年我国发布的《国家中长期科学

无线传感器网络的特点

无线传感器网络的特点 大规模网络 为了获取精确信息,在监测区域通常部署大量传感器节点,传感器节点数量可能达到成千上万,甚至更多。传感器网络的大规模性包括两方面的含义:一方面是传感器节点分布在很大的地理区域内,如在原始大森林采用传感器网络进行森林防火和环境监测,需要部署大量的传感器节点;另一方面,传感器节点部署很密集,在一个面积不是很大的空间内,密集部署了大量的传感器节点。 传感器网络的大规模性具有如下优点:通过不同空间视角获得的信息具有更大的信噪比;通过分布式处理大量的采集信息能够提高监测的精确度,降低对单个节点传感器的精度要求;大量冗余节点的存在,使得系统具有很强的容错性能;大量节点能够增大覆盖的监测区域,减少洞穴或者盲区。 自组织网络在 传感器网络应用中,通常情况下传感器节点被放置在没有基础结构的地方。传感器节点的位置不能预先精确设定,节点之间的相互邻居关系预先也不知道,如通过飞机播撒大量传感器节点到面积广阔的原始森林中,或随意放置到人不可到达或危险的区域。这样就要求传感器节点具有自组织的能力,能够自动进行配置和管理,通过拓扑控制机制和网络协议自动形成转发监测数据的多跳无线网络系统。在传

感器网络使用过程中,部分传感器节点由于能量耗尽或环境因素造成失效,也有一些节点为了弥补失效节点、增加监测精度而补充到网络中,这样在传感器网络中的节点个数就动态地增加或减少,

从而使网络的拓扑结构随之动态地变化。传感器网络的自组织性要能够适应这种网络拓扑结构的动态变化。动态性网络传感器网络的拓扑结构可能因为下列因素而改变:①环境因素或电能耗尽造成的传感器节点出现故障或失效;②环境条件变化可能造成无线通信链路带宽变化,甚至时断时通;③传感器网络的传感器、感知对象和观察者这三要素都可能具有移动性;④新节点的加入。这就要求传感器网络系统要能够适应这种变化,具有动态的系统可重构性。 可靠的网络 传感器网络特别适合部署在恶劣环境或人类不宜到达的区域,传感器节点可能工作在露天环境中,遭受太阳的暴晒或风吹雨淋,甚至遭到无关人员或动物的破坏。传感器节点往往采用随机部署,如通过飞机撒播或发射炮弹到指定区域进行部署。这些都要求传感器节点非常坚固,不易损坏,适应各种恶劣环境条件。由于监测区域环境的限制以及传感器节点数目巨大,不可能人工“照顾每个传感器节点,网络的维护十分困难甚至不可维护。传感器网络的通信保密性和安全性也十分重要,要防止监测数据被盗取和获取伪造的监测信息。因此,传感器网络的软硬件必须具有鲁棒性和容错性。

无线传感器网络作业

无线传感器作业 1.1:传感器网络节点使用的限制因素有哪些? 1.电源能量有限传感器节点体积微小通常只携带能量十分有限的电池。 2.通信能力有限 3.计算和存储能力有限,传感器节点是一种微型嵌入式设备,要求他价格低功耗小,这些 限制必然导致其携带的处理器能力比较弱,存储器容量比较小。 1.2:网络传感器有哪些特点? 1.自组织性 2.数据为中心 3.应用相关性 4.动态性 5.网络规模 6.可靠性 2.1:按照节点功能和结构层次划分,将传感器网络的结构有哪几种?各有什么特点? 答: 1.平面网络结构拓扑结构简单,易维护具有较好的健壮性事实上就是一种,a d h o c网络 结构的形成。由于没有中心管理节点,故采用自组织协同算法组成网络,其组网算法比较复杂。 2.分级网络结构:网络拓扑结构扩展性好,便于集中管理,可以降低系统的建设成本,提 高网络覆盖率和可靠性。 3.混合网络结构:同级网络结构相比较,支持功能更强大,但所需要的硬件成本更高。 4.m e s h网络结构:由无线节点构成网络,按mes h拓扑结构部署,网内有个节点至少 可以和一个其他节点通信支持多跳路由,功耗限制和移动性取决于节点类型及应用的特点,存在多种网络接入方式。 2.2:传感器半径r,被监测区域面积为A,要求达到概率为p的覆盖率,确定传感器数目。 3.1:WSN数据链路层中的媒体访问控制和误差控制的基本思想是什么? 媒体访问控制:①对于感知区域内密集布置节点的多跳无线通信,需要建立数据通信链路以获得基本的网络基础设施。②为了使无线传感器节点公平有效的共享通信资源,需要对共享媒体的访问进行管理。 误差控制:一般基于ARQ的误差控制,主要采用重新传送发费和管理发费。具有低复杂的编码与解码方式的简单误差控制码可能是无线传感器网络中误差控制的最佳解决方案。 3.2:传输层中的Event-to-sink传输和Sink-to-Sensors传说的基本思想是什么? Event-to-sink 由于无线传感网络中存在大量的数据流,Sink节点需要获得一定精度,Event-to-sink的可靠度是必要的,包括了事件特征到Sink’节点的可靠通信,而不是针对区域内各节点生成的单个传感报告/数据包进行基于数据包的可靠传递。 Sink-to-Sensors

无线传感器网络名词解释

邻居节点:是指传感器节点通信半径内的所有其他节点,也就是说:在一个节点通信半径内,可以直接通信的所有其他点。 跳数:两个节点之间间隔的跳段总数,称为这两个节点间的跳数。 跳段距离:是指两个节点间隔的各跳段距离之和。 接收信号强度指示:是指节点接收到无线信号的强度大小。 到达时间:是指信号从一个节点传播到另一节点所需要的时间。 到达时间差:两种不同传播速度的信号从一个节点传播到另一节点所需要的时间之差。 到达角度:指两个相互通信的节点通过测量方式来估计出彼此之间的距离或角度。视线关系:如果传感器网络的两个节点之间没有障碍物,能够实现直接通信,则这两个节点间存在视线关系。 非视线关系:是指两个节点之间存在障碍物。 基础设施:是指协助传感器节点定位的已知自身位置的固定设备(如卫星、基站等)。 红外传感器:红外传感器是一种能够感应目标辐射的红外线,并将其转换成电信号的装置。 视线关系:如果传感器网络的两个节点之间没有障碍物,能够实现直接通信,则这两个节点间存在视线关系。 基础设施:协助传感器节点定位的已知自身位置的固定设备,如卫星、基站等。Zigbee:ZigBee技术是一种面向自动化和无线控制的低速率、低功耗、低价格的无线网络方案。 网络连接度:网络连接度是所有节点的邻居数目的平均值,它反映了传感器配置的密集程度。 信标节点:锚点通过其它方式预先获得位置坐标的节点。 红外传感器:红外传感器是一种能够感应目标辐射的红外线,并将其转换成电信号的装置。 锚点:通过其它方式预先获得位置坐标的节点 无线传感器网络的路由协议的概念? 答:路由是指选择互联网络从源节点向目的节点传输信息的行为,并且信息至少通过一个中间节点。它包括两部分功能:1、寻找源节点和目的节点间的优化路径。2、将数据分组沿着优化路径正确转发。 简述质心定位算法的步骤,和相应的理论依据。 答:在质心定位算法中,锚节点周期性的向临近节点广播分组信息,该信息包含了锚节点的标识和位置。当某个未知节点接收到来自不同锚点的分组信息数量超过一个门限之后,就可以计算这些锚点所组成的多边形的质心,作为确定出自身位置的依据。 质心定位算法:在质心定位算法中,信标节点周期性地向邻近节点广播信标分组,信标分组中包含信标节点的标识号和位置信息。当未知节点接收到来自不同信标节点的信标分组数量超过某一个门限或接收一定时间后,就确定自身位置为这些信标节点所组成的多边形的质心。质心算法完全基于网络连通性,无需信标节点和未知节点之间的协调,因此比较简单,容易实现。但质心算法假设节点都拥有

《无线传感器网络》试题.

《无线传感器网络》试题 一、填空题(每题4分,共计60分) 1、传感器网络的三个基本要素:传感器,感知对象,观察者 2、传感器网络的基本功能:协作地感知、采集、处理和发布感知信息 3、无线传感器节点的基本功能:采集、处理、控制和通信等 4、传感器网络常见的时间同步机制有: 5、无线通信物理层的主要技术包括:介质的选择、频段的选择、调制技术和扩频技术 6扩频技术按照工作方式的不同,可以分为以下四种: :直接序列扩频、跳频、跳时、宽带线性调频扩频 7、定向扩散路由机制可以分为三个阶段:周期性的兴趣扩散、梯度建立和路径加强 8、无线传感器网络特点:大规模网络、自组织网络、可靠的网络、以数据为中心的网络、应用相关的网络 9、无线传感器网络的关键技术主要包括:网络拓扑控制、网络协议、时间同步、定位技术、数据融合及管理、网络安全、应用层技术等 10、IEEE 802.15.4标准主要包括:物理层和MAC层的标准 11、简述无线传感器网络后台管理软件结构与组成:后台管理软件通常由数据库、数据处理引擎、图形用户界面和后台组件四个部分组成。 12、数据融合的内容主要包括:多传感器的目标探测、数据关联、跟踪与识别、情况评估和预测 13、无线传感器网络可以选择的频段有:868MHZ、915MHZ、2.4GHZ 5GHZ 14、传感器网络的电源节能方法:休眠机制、数据融合等, 15、传感器网络的安全问题:(1) 机密性问题。 (2) 点到点的消息认证问题。 (3) 完整性鉴别问题。 16、802.11规定三种帧间间隔:短帧间间隔SIFS,长度为 28 μs 、点协调功能帧间间隔PIFS长度是 SIFS 加一个时隙(slot)长度,即78 μs 分布协调功能帧间间隔DIFS ,DIFS长度=PIFS +1个时隙长度,DIFS 的长度为128 μs

无线传感器网络中的同步算法

WWW.cismag.com.cn 54 引 言 无线传感器网络(WSNs)是当前的一个研究热点,被称为是21世纪最重要的技术之一。一般来说,无线传感器网络是由大量的传感器节点组成,这些节点能够感知周围的环境,具有数据采集、处理、无线通信和自动组网的能力,能协作完成大型或复杂的监测任务。无线传感器网络有监测精度高、容错性好、覆盖区域大等显著优点,在军事、环境监测、工业控制和城市交通等方面有着广泛的应用前景,特别适合部署在恶劣环境和人不宜到达的场所。时间同步是WSNs中的一项关键技术,无线传感器网络的许多应用和关键技术中都离不开时间同步,例如,在多传感器数据融合技术中,网络中的节点必须以一定的精度保持时间同步,否则根本无法实现数据融合。在低能耗MAC协议的设计中,为减少能量的消耗,通常是通过调节占空比来实现TMDA调度算法的,但需要参与通信的双方首先实现时间同步,并且同步精度越高,防护频带越小,相应的功耗也越低。定位技术也依赖于时间同步,在声波测距定位中,如果网络中的节点保持时间同步,则声波在节点间的传输时间很容易被确定,反之亦然。节点间的数据处理也离不开时间同步,通信是无线传感器网络中最主要的能 耗单元,传统分布式系统中的集中式 数据处理模式需要频繁交换原始数据,不适合无线传感器网络;利用节点上的独立处理能力,发挥节点间的协同作用,对原始采样数据进行加工与萃取,以减小网络传输开销是延长网络生命周期的有效途径。另外,进行数据压缩和剔除冗余数据等也是减小网络传输的手段,但进行这些处理需要目标附近的节点具有统一的时标来判定不同的原始监测数据是对同一事件的刻画,还是不同事件的描述。更重要的是,无线传感器网络的一些独特的特性:对于能量、带宽等的限制等,使得现有网络的同步技术不再适合于这种新型的网络,因而有必要研究WSN中的时间同步。 同步算法分析 1. 时间同步的基本原理要设计网络中的时间同步算法,必须要了解同步的原理。图1通过一对节点的双向信息交换,介绍了两个节点是如何同步的。 如图1所示,在T1时刻,节点A向节点B发送一个包含A的标识和T1值的synchronization_pulse信息包,要求与节点B同步;在T2时刻,节点B收到节点A发送的包,此时T2=T1+dr+de,其中dr表示时钟漂移,de表示传播时延;在T3时刻,节点B向节点A返回一个acknowl-edgment信息包,该包包含B的标识以及T1、T2、T3的值;在T4时刻,节点A接收到节点B返回的ac-knowledgment信息包,此时T4=T3-dr+de。 假定,在T1到T4这么短的时间内,时钟漂移和传播时延不会发生变化,则可以算出时钟漂移dr=[(T2-T1)-(T4-T3)]/2,传播时延de=[(T2-T1)+(T4-T3)]/2。 知道了时钟漂移,则节点A就能纠正其时钟,从而与节点B的时钟达到同步,即发送方把其时钟与接收方的时钟同步,这就是发送方-接收方同步的基本原理。 在传统计算机网络中,时间同步 基本上都是采用这种发送方-接收方的同步算法,那么在传感器网络中能不能采用这种方法 呢? 通信技术 无线传感器网络中的同步算法 摘 要:无线传感器网络由于其自身的独特性,使得传统网络的时间同步算法不适合于这种网络。本文分析了当前传感器网络中两种典型的同步算法,提出了一种新的设想。 韩翠红 李立宏 赵尔沅/ 文 图1 节点间双向消息交换的时间线

无线传感器网络复习总结

复习 题型:共计38~39题,计算题较少,原理题很多 (1)选择题15’ (2)填空题10’ (3)名词解释3’x5 (4)作图题10’x1 (5)问答题20’x1(根据原理应用自主进行选择作答) 第1章 1.P3 图1.1无线网络的分类 2.无线传感器的定义P3 无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户。 无线传感器网络的三个基本要素:传感器、感知对象、用户; 无线传感器网络的基本功能:协作式的感知、采集、处理和发布感知信息。

3.P4 图1.2现代信息技术与无线传感器网络之间的关系 无线传感器网络三个功能:数据采集、处理和传输; 对应的现代信息科技的三大基础技术:传感器技术、计算机技术和通信技术;对应的构成了信息系统的“感管”、“大脑”和“神经”。 4.P5P6 ★图1.3无线传感器网络的宏观架构 传感器网络网关原理是什么?

无线传感器通常包括传感器节点(sensor node),汇聚节点(sink node)和管理节点(manager node)。汇聚节点有时也称网关节点、信宿节点。 传感器节点见后2要点介绍。 Sink node:网关节点通过无线方式接收各传感器节点的数据并以互联网、移动通信网等有线的或无线的方式将数据传送给最终用户计算机。网关汇聚节点只需要具有处理器模块和射频模块、通过无线方式接收探测终端发送来的数据信息,再传输给有线网络的PC或服务器。汇聚节点通常具有较强的处理能力、存储能力和通信能力,它既可以是一个具有足够能量供给和更多内存资源与计算能力的增强型传感器节点,也可以是一个带有无线通信接口的特殊网关设备。汇聚节点连接传感器网络和外部网络。通过协议转换实现管理节点与传感器网络之间的通信,把收集到的数据信息转发到外部网络上,同时发布管理节点提交的任务。 5.传感器网络节点的组成P5 图1.4传感器网络节点的功能模块组成 传感器网络节点由哪些模块组成?---作图、简答 传感器模块负责探测目标的物理特征和现象,计算机模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发布和接受,电源模块负责节点供电,节点由嵌入式软件系统支撑,运行网络的五层协议。 6.传感器网络的协议分层P5 1.5传感器网络的协议分层 每一层的作用是什么?---作图、简单

无线传感器网络的时间同步问题

无线传感器网络的时间同步问题 摘要 时间同步对任何分布式系统都是一个关键的基础问题。分布式无线传感器网络广泛使用的同步时间,往往在范围,寿命和精度同步实现等方面有特殊要求,以及实现同步所需的时间和所需的能源。现有的时间同步方法需要扩展,以满足这些新的需求。我们列举了传感器网络未来的同步要求,并提出了我们自己的低能耗同步方案,事后同步。我们还描述了一个实验,其性能特点是使用很少的能量创造短暂的,局部的,但高精度的同步。 1.介绍 最近的发展小型化和低成本,低能耗设计导致积极研究在大规模,高度分散的小系统,无线,低功耗,无人值守传感器和致动器[ 1,7, 4 ] 。许多研究人员提出了创造传感器丰富的“聪明环境”的设想。通过有计划或临时部署数千个传感器,每一个短距离无线通信通道,并能够检测环境条件如温度,运动,声,光,或存在某些物体。 时间同步对任何分布式系统都是一个关键的基础设施。分布式,无线传感器网络使特别是广泛使用的同步时间:例如,将时间序列的接近侦测到的速度估计[ 3 ] ;测量声音的运行时间定位其来源[ 5 ] ;分发波束阵列[ 13 ] ;或制止重复邮件,由认识到他们所描述重复检测同一事件不同的传感器[ 6 ] 。传感器网络也有许多相同的要求,传统的分布式系统:精确的时间戳,往往需要在加密计划,以协调活动定于今后,供订购记录的事件在系统调试,等等。传感器网络应用的广泛性导致时间要求的范围,寿命和精度不同于传统的系统。此外,许多节点新兴的传感器系统将非系留,因此有小型的能源储备。所有通讯,甚至被动的听,将产生重大的影响,这些储备时间同步方法的传感器网络 因此,必须也考虑到他们消费的时间和精力。 在本文中,我们认为,非均质性要求在传感器网络应用的需要能源效率和其他方面的限制没有发现在常规分布式系统,甚至是各种硬件而传感器网络将部署,使目前的同步计划不足以完成这项任务。传感器网络,现有的计划将需要扩大和合并后新的方式,以便提供服务,以满足应用的需要与可能的最低能量支出。 在此框架内,我们提出我们的想法事后同步,极低功耗同步方法时钟在一个地方时,准确的时间戳记是需要具体的事件。我们还提出了实验这表明这个多式联运计划能够精确在1微秒。为了更好地级比的两种模式,它的组成。这些结果是令人鼓舞的,但仍是初步的,表现实验室条件下的理想化。 第2节中,我们提出了一些指标,可以用来区分两种类型所提供的服务同步 方法和要求的应用使用这些方法。第3节介绍我们的事后同步的想法,并介绍了实验的特点其表现。第4节描述今后的工作中,我们的结论在第5节。 2.时间同步的特征 许多不同的方法分配的时间同步在共同使用。如美国全球定位系统(GPS )[ 8 ]和WWV / WWVB广播电台由国家研究所标准与技术[ 2 ]提供参考美国时间和频率标准。网络时间协议,特别是在Mills的NTP [ 10 ] ,从这些主要来源的网络连接电脑分配时间。 在研究适用于传感器网络,我们已发现有用的特点是不同类型的时间沿线各轴同步。我们认为某些指标特别重要: 精密,无论是分散之间的一组同龄人,或最大误差对外部标准。 生命周期,这可以从持续同步持续只要网络运营,几乎瞬时(有益的,例如,如果节点要比

无线传感器网络的应用分析解析

天津电子信息职业技术学院课程设计 课题名称无线传感器网络的应用姓名XXX 学号34 班级电子S09-3 专业应用电子技术 成绩 完成日期2011/10/26

摘要 传感器探测技术和结点间的无线通信能力,为无线传感器网络赋予了广阔的应用前景。作为一种无处不在的感知技术,无线传感器网络广泛应用于各种行业领域,这里主要对当前成功应用的一些领域进行简略介绍。 关键词:传感器;应用;领域

目录 一、前言 (4) 二、无线传感器网络的标准定义和优势 (4) 三、无线传感器网络应用领域 (4) 1、军事领域 (4) 2、工业领域 (5) 3、农业领域 (5) 4、智能交通领域 (6) 5、家庭与健康领域 (6) 6、环境保护领域 (7) 7、其他领域 (7) 四、需要解决的问题 (7) 1、网络内通信问题 (8) 2、成本问题 (8) 3、系统能量供应问题 (8) 4、高效的无线传感器网络结构 (8)

一、前言 随着通信技术、嵌入式计算机技术与传感器技术的飞速发展和日益成熟,具有感知能力、计算能力和通信能力的微型传感器开始在世界范围内出现。由这些微型传感器构成的传感器网络引起了人们的极大关注。这种传感器网络综合了传感器技术、嵌入式计算技术、分布式信息处理技术和通信技术,能够通过协作实时监测、感知和采集网络分布区域内的各种环境或监测队象的信息,并对这些信息进行处理,获得详细、准确的数据,传送到需要这些信息的用户。 科技发展的脚步越来越快,人类已经置身于信息时代。而作为信息获取最重要和最基本的技术——传感器技术,也得到了极大的发展。传感器信息获取技术已经从过去的单一化渐渐向集成化、微型化和网络化方向发展,并将会带来一场信息革命。具有感知能力、计算能力和通信能力的无线传感器网络综合了传感器技术、嵌人式计算技术、分布式信息处理技术和通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的信息,传送到需要这些信息的用户。 无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。无线传感器网络的广泛使用是一种必然趋势,将为人类社会带来极大的变革。 二、无线传感器网络的标准定义和优势 无线传感器网络是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地探测、处理和传输网络覆盖区域内感知对象的监测信息,并报告给用户。它的英文是wireless sensor network,简称WSN。 另外,从定义上可以看出,传感器、感知对象和用户是传感器网络的三个要素。 无线传感器网络和传统传感器和测控系统相比具有明显的优势。它采用点对点或点对多点的无线连接,大大减少了电缆成本,在传感器节点端即合并了模拟信号/数字信号转换、数字信号处理和网络通信功能,节点具有自检功能,系统性能与可靠性明显提升而成本明显缩减。 三、无线传感器网络应用领域 1、军事领域 信息技术正推动着一场新的军事变革。信息化战争要求作战系统“看得明、反应快、打得准”,谁在信息的获取、传输、处理上占据优势(取得制信息权),谁就能掌握战争的主动权。无线传感器网络以其独特的优势,能在多种场合满足军事信息获取的实时性、准确性、全面性等需求。

无线传感器网络作业

无线传感器作业 :传感器网络节点使用的限制因素有哪些? 1.电源能量有限传感器节点体积微小通常只携带能量十分有限的电池。 2.通信能力有限 3.计算和存储能力有限,传感器节点是一种微型嵌入式设备,要求他价格低功耗小,这些 限制必然导致其携带的处理器能力比较弱,存储器容量比较小。 :网络传感器有哪些特点? 1.自组织性 2.数据为中心 3.应用相关性 4.动态性 5.网络规模 6.可靠性 :按照节点功能和结构层次划分,将传感器网络的结构有哪几种?各有什么特点? 答: 1.平面网络结构拓扑结构简单,易维护具有较好的健壮性事实上就是一种,a d h o c 网络结构的形成。由于没有中心管理节点,故采用自组织协同算法组成网络,其组网算法比较复杂。 2.分级网络结构:网络拓扑结构扩展性好,便于集中管理,可以降低系统的建设成本,提 高网络覆盖率和可靠性。 3.混合网络结构:同级网络结构相比较,支持功能更强大,但所需要的硬件成本更高。 4.m e s h网络结构:由无线节点构成网络,按mes h拓扑结构部署,网内有个节点至少 可以和一个其他节点通信支持多跳路由,功耗限制和移动性取决于节点类型及应用的特点,存在多种网络接入方式。 :传感器半径r,被监测区域面积为A,要求达到概率为p的覆盖率,确定传感器数目。 :WSN数据链路层中的媒体访问控制和误差控制的基本思想是什么? 媒体访问控制:①对于感知区域内密集布置节点的多跳无线通信,需要建立数据通信链路以获得基本的网络基础设施。②为了使无线传感器节点公平有效的共享通信资源,需要对共享媒体的访问进行管理。 误差控制:一般基于ARQ的误差控制,主要采用重新传送发费和管理发费。具有低复杂的编码与解码方式的简单误差控制码可能是无线传感器网络中误差控制的最佳解决方案。 :传输层中的Event-to-sink传输和Sink-to-Sensors传说的基本思想是什么? Event-to-sink 由于无线传感网络中存在大量的数据流,Sink节点需要获得一定精度,Event-to-sink的可靠度是必要的,包括了事件特征到Sink’节点的可靠通信,而不是针对区域内各节点生成的单个传感报告/数据包进行基于数据包的可靠传递。 Sink-to-Sensors

无线传感器网络结课论文

无线传感器网络结课论文 学号: 姓名: 学院:

目录 一.无线传感器网时间同步技术综述 (1) <一>引言 (1) <二>同步技术研究现状 (1) <三>时间同步算法 (2) 3.1泛洪时间同步协议 (2) 3.2 RBS 协议 (2) 3.3LTS协议 (3) <四>小结 (3) 二.基于无线传感器网络的环境监测系统 (3) <一>网络系统简介 (3) <二>网络系统结构 (3) 2.1总体结构 (3) 2.2传感器节点结构 (4) 2.3汇聚节点结构 (5) <三>应用无线传感器网络的意义 (6) 三.学习心得 (7) 四. 参考文献 (8)

一.无线传感器网时间同步技术综述 <一>引言 无线传感器网络 ( Wireless Sensors Network,WSN) 是一种在一定区域内投放大量的传感器节点,通过无线通信形成的一个单跳或多跳的自组织式的网络系统,它通常采集和处理监测区域中被感知目标的信息,并通过网络发送给主机端以提高人类对物理环境的远端监视和控制能力。无线传感网络技术在交通、国防、医学、农业等方面有着重要的运用。无线传感器网络由大量的节点构成,通常包括传感器节点、汇聚节点和任务管理节点。大量体积小、精度高的传感器节点随机部署在监测区域内,通过自组织的方式构成网络。传感器节点将监测到的数据传输给其它传感器节点,经过多跳后路由到汇聚节点,最后通过互联网或卫星到达任务管理节点。用户则通过任务管理节点发布监测任务以及收集监测数据,对无线传感器网络进行管理。 无线传感器网络是许多领域里的关键技术之一,而时间同步则是无线传感器网络中的关键技术之一。简而言之,在检测与监视某对象的过程中,目标定位和追踪、协同数据处理、能量管理等都对物理时间的精确度都有着敏感的需求。因此,无线传感器网络的应用通常需要一个适应性比较好的时间同步服务,以保证数据的一致性和协调性。此外,数据融合、通信信道复用等也都需要时间同步的保障。所以,如何根据无线传感器网络的特点对物理时间进行同步是一个重要的问题。 目前,学术界和业界对无线传感器网络的时间同步技术进行了一定的研究,本章节描述了无线传感器网络时间同步技术的研究现状,对3种不同时间同步机制的经典算法进行分析和比较。 <二>同步技术研究现状 时间同步技术相对于计算机网络的相关技术而言尚为年轻,自从2002年学术会议Hot Nets上首次提出了时间同步这一研究课题后,到目前为止,无线传感器网络的时间同步技术也取得了一定进展,同时也开发出了多种极其有价值时间同步的算法。 目前,对于单跳网络的同步研究已趋于成熟,但由于同步误差的累积,导致单跳网络的同步技术难以扩展到多跳网络,使得多跳网络的同步技术研究较为薄弱。若再考虑节点的移动性,则会极大增加同步技术的研究难度。因此,无线传感器网络的时间同步技术还有很大的研究空间。

无线传感器网络知识点归纳

一、无线传感器网络的概述 1、无线传感器网络定义,无线传感器网络三要素,无线传感器网络的任务,无线传感器网 络的体系结构示意图,组成部分(P1-2) 定义:无线传感器网络(wireless sensor network, WSN)是由部署在监测区域内大量的成本很低、微型传感器节点组成,通过无线通信方式形成的一种多跳自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖范围内感知对象的信息,并发送给观察者或者用户 另一种定义:无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 三要素:传感器,感知对象和观察者 任务:利用传感器节点来监测节点周围的环境,收集相关的数据,然后通过无线收发装置采用多跳路由的方式将数据发送给汇聚节点,再通过汇聚节点将数据传送到用户端,从而达到对目标区域的监测 体系结构示意图: 组成部分:传感器节点、汇聚节点、网关节点和基站 2、无线传感器网络的特点(P2-4) (1)大规模性且具有自适应性 (2)无中心和自组织 (3)网络动态性强 (4)以数据为中心的网络 (5)应用相关性 3、无线传感器网络节点的硬件组成结构(P4-6) 无线传感器节点的硬件部分一般由传感器模块、处理器模块、无线通信模块和能量供应模块4部分组成。

4、常见的无线传感器节点产品,几种Crossbow公司的Mica系列节点(Mica2、 Telosb) 的硬件组成(P6) 5、无线传感器网络的协议栈体系结构(P7) 1.各层协议的功能 应用层:主要任务是获取数据并进行初步处理,包括一系列基于监测任务的应用层软件 传输层:负责数据流的传输控制 网络层:主要负责路由生成与路由选择 数据链路层:负责数据成帧,帧检测,媒体访问和差错控制 物理层:实现信道的选择、无线信号的监测、信号的发送与接收等功能 2.管理平台的功能 (1)能量管理平台管理传感器节点如何使用能源。 (2)移动管理平台检测并注册传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪邻居的位置。 (3)任务管理平台在一个给定的区域内平衡和调度监测任务。 6、无线传感器网络的应用领域(P8-9) (1)军事应用 (2)智能农业和环境监测 (3)医疗健康 (4)紧急和临时场合 (5)家庭应用 (6)空间探索

无线传感器网络多跳时间同步算法

文章编号: 1673 9965(2010)06 560 05 无线传感器网络多跳时间同步算法* 侯宏录1,杨朋伟2,谢矿生2,胡民效2 (1.西安工业大学光电工程学院,西安710032;2.武警西安指挥学院教研部,西安710038) 摘 要: 针对多跳网络中同步误差累积和同步开销大的问题,提出了一种最优拓扑结构的时间同步算法.通过构造最优拓扑结构和在网络节点之间传递时间同步报文来减小累积误差和时间同步开销.借鉴无线传感器网络时间同步延迟测量算法的打时间戳技术进行时间偏差估计来提高时间同步的精度.应用结果表明:在具有33个节点的传感器网络中,相比无线传感器网络时间同步协议算法,该算法的时间同步开销减小了2/3,引起累积误差的关键路径长度减小了1/2. 关键词: 最优拓扑结构;时间同步;关键路径;无线传感器网络 中图号: T P301.6 文献标志码: A 传统的传感器网络时间同步算法有参考广播同步(Reference Bro adcast Sy nchr onization,RBS)算法[1]、无线传感器网络时间同步协议(T iming Sync Protocol for Sensor N etw orks,T PSN)算法[2]、FT SP[3](Flooding Tim e Synchronization Pro to col)算法、基于累计时延统计的传感器网络数据同步算法[4]以及基于连通支配集的时间同步算法[5].这些算法都采用提高单跳同步精度、采用最短路径同步以减少跳数,降低多跳误差累积,却没有充分利用周围节点的时钟信息以降低误差随跳数累积的速度.另外这些算法为了提高时间同步的精确度,节点之间信息交换的次数比较多,因此同步开销和节点功耗较大. 基于连通支配集的时间同步算法通过在支配节点之间传递时间同步报文,非支配节点只接收时间同步报文,从而实现时间同步,由于只有支配节点发送时间同步报文,该算法大大减少了时间同步开销,但是,该算法仍然存在着较大的累积误差,在网络规模较大时这种情况更加明显. 为更好的减小累积误差,受到基于连通支配集的时间同步算法的启发,考虑到通过构造最优拓扑结构的方法来减小时间同步过程中关键路径的长度,从而实现减小累积误差和减少时间同步开销.受到无线传感器网络时间同步延迟测量(Delay M easurement Time Synchronizatio n for Wireless Sensor Netw orks,DM TS)算法打时间戳技术的启发,以及研究时间同步报文在传感器网络中的传播规律,通过在MAC层进行标记时间戳及应用累计时延统计方法来进行时延估计,从而及时调整和更正错误的时间包信息,以减小累积误差,进而实现时间的精确同步. 文中通过构造最优拓扑结构及时 估计的方法实现了全网节点的时间同步.设计了一种低同步开销及低累计误差的时间同步算法. 1 传感器网络多跳时间同步算法 算法的基本思想是通过构造拓扑结构和借鉴DM TS算法的打时间戳技术,在拓扑结构中传递时间同步报文以实现整个网络中节点的时间同步. 1.1 相关概念定义 定义1 (相邻节点)给定图中的两个节点,若 第30卷第6期 西 安 工 业 大 学 学 报 V ol.30N o.6 2010年12月 Jo ur nal of X i an T echno lo gical U niver sity Dec.2010 *收稿日期:2009 05 05 基金资助:国防基础预研项目(B2220061084) 作者简介:侯宏录(1960 ),男,西安工业大学教授,主要研究方向为光电检测技术、智能控制、复杂系统建模仿真及效能评估. E mail:hlhou@https://www.doczj.com/doc/7a6071719.html,.

无线传感器网络中文

译文 无线传感器网络的实现及在农业上的应用 1.摘要 无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统。其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息 并发送给观察者。“传感器、感知对象和观察者”构成了网络的三个要素。这里说的传感器 并不是传统意义上的单纯的对物理信号进行感知并转化为数字信号的传感器它是将传感器模块、数据处理模块和无线通信模块集成在一块很小的物理单元即传感器节点上 功能比传统的传感器增强了许多 不仅能够对环境信息进行感知而且具有数据处理及无线通信的功能。借助传感器节点中内置的形式多样的传感器件可以测量所在环境中的热、红外、声纳、雷达和地震波信号等信号。从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等等众多我们感兴趣的物质现象。无线传感器网络是一种全新的信息获取和信息处理模式。由于我国水资源已处于相当紧缺的程度,加上全国90%的废、污水未经处理或处理未达标就直接排放的水污染,11%的河流水质低于农田供水标准。水是农业的命脉,是生态环境的控制性要素,同时又是战略性的经济资源,因此采用水泵抽取地下水灌溉农田,实现水资源合理利用,发展节水供水,改善生态环境,是我国目前精确农业的关键 因此采用节水和节能的灌水方法是当今世界供水技术发展的总趋势。 2.无线传感器网络概述 2.1无线传感器网络的系统架构无线传感器网络的系统架构如图1所示 通常包括传感器节点、汇聚节点和管理节点。传感器节点密布于观测区域 以自组织的方式构成网络。传感器节点对所采集信息进行处理后 以多跳中继方式将信息传输到汇聚节点。然后经由互联网或移动通信网络等途径到达管理节点。终端用户可以通过管理节点对无线传感器网络进行管理和配置、发布监测任务或收集回传数据。 图1无线传感器网络的系统架构

无线传感器网络技术的应用

无线传感器网络技术的应用 摘要:无线传感器网络(WSN)是新兴的下一代传感器网络,在国防安全和国民经济各方面均有着广阔的应用前景。本文介绍了无线传感器网络的组成和特点,讨论了无线传感器网络在军事、瓦斯监测系统、智能家具,环境监测,农业。交通等方面的现有应用,最后提出无线传感器网络技术需要解决的问题。 关键词:无线传感器网络,军事、瓦斯监测系统、智能家具,环境监测,农业。交通。 1.无线传感器网络研究背景以及发展现状 随着半导体技术、通信技术、计算机技术的快速发展,90年代末,美国首先出现无线传感器网络(WSN)。1996年,美国UCLA大学的William J Kaiser教授向DARPA提交的“低能耗无线集成微型传感器”揭开了现代WSN网络的序幕。1998年,同是UCLA大学的Gregory J Pottie教授从网络研究的角度重新阐释了WSN的科学意义。在其后的10余年里,WSN网络技术得到学术界、工业界乃至政府的广泛关注,成为在国防军事、环境监测和预报、健康护理、智能家居、建筑物结构监控、复杂机械监控、城市交通、空间探索、大型车间和仓库管理以及机场、大型工业园区的安全监测等众多领域中最有竞争力的应用技术之一。美国商业周刊将WSN网络列为21世纪最有影响的技术之一,麻省理工学院(MIT)技术评论则将其列为改变世界的10大技术之一。WSN是由布置在监测区域内传感器节点以无线通信方式形成一个多跳的无线自组网(Ad hoc),其目的是协作的感知,采集

和处理网络覆盖区域中感知对象的信息,并发送给观察者。传感器、感知对象和观察者是WSN的三要素。将Ad hoc技术与传感器技术相结合,人们可以通过WSN感知客观世界,扩展现有网络功能和人类认识世界的能力。WSN技术现已经被广泛应用。图为WSN基本结构。 WSN经历了从智能传感器,无线智能传感器到无线传感器三个发展阶段,智能传感器将计算能力嵌入传感器中,使传感器节点具有数据采集和信息处理能力。而无线智能传感器又增加了无线通信能力,WSN将交换网络技术引入到智能传感器中使其具备交换信息和协调控制功能。 无线传感网络结构由传感器节点,汇聚节点,现场数据收集处理决策部分及分散用户接收装置组成,节点间能够通过自组织方式构成网络。传感器节点获得的数据沿着相邻节点逐跳进行传输,在传输过程中所得的数据可被多个节点处理,经多跳路由到协调节点,最后通过互联网或无线传输方式到达管理节点,用户可以对传感器网络进行决策管理、发出命令以及获得信息。无线传感器网络在农业中的运用是推进农业生产走向智能化、自动化的最可行的方法之一。近年来国际上十分关注WSN在军事,环境,农业生产等领域的发展,美国和欧洲相继启动了WSN研究计划,我国于1999年正式启动研究。国家自然科学基金委员会在2005年将网络传感器中基础理论在一篇我国20年预见技术调查报告中,信息领域157项技术课题中7项与传感器网络有直接关系,2006年初发布的《国家长期科学与技术发展

无线传感器网络复习(1_3章)

题型:共计38~39题,计算题较少,原理题很多 (1)选择题15’ (2)填空题10’ (3)名词解释3’x5 (4)作图题10’x1 (5)问答题20’x1(根据原理应用自主进行选择作答) 第1章 1.P3 图1.1 无线网络的分类 2.无线传感器的定义P3 无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域感知对象的监测信息,并报告给用户。无线传感器网络的三个基本要素:传感器、感知对象、用户; 无线传感器网络的基本功能:协作式的感知、采集、处理和发布感知信息。

图1.2 现代信息技术与无线传感器网络之间的关系 无线传感器网络三个功能:数据采集、处理和传输; 对应的现代信息科技的三大基础技术:传感器技术、计算机技术和通信技术;对应的构成了信息系统的“感管”、“大脑”和“神经”。 4.P5 P6 ★图1.3 无线传感器网络的宏观架构 传感器网络网关原理是什么?

无线传感器通常包括传感器节点(sensor node),汇聚节点(sink node)和管理节点(manager node)。汇聚节点有时也称网关节点、信宿节点。 传感器节点见后2要点介绍。 Sink node:网关节点通过无线方式接收各传感器节点的数据并以互联网、移动通信网等有线的或无线的方式将数据传送给最终用户计算机。网关汇聚节点只需要具有处理器模块和射频模块、通过无线方式接收探测终端发送来的数据信息,再传输给有线网络的PC或服务器。汇聚节点通常具有较强的处理能力、存储能力和通信能力,它既可以是一个具有足够能量供给和更多存资源与计算能力的增强型传感器节点,也可以是一个带有无线通信接口的特殊网关设备。汇聚节点连接传感器网络和外部网络。通过协议转换实现管理节点与传感器网络之间的通信,把收集到的数据信息转发到外部网络上,同时发布管理节点提交的任务。 5.传感器网络节点的组成P5 图1.4 传感器网络节点的功能模块组成 传感器网络节点由哪些模块组成?---作图、简答 传感器模块负责探测目标的物理特征和现象,计算机模块负责处理数据和系统管理,存储模块负责存放程序和数据,通信模块负责网络管理信息和探测数据两种信息的发布和接受,电源模块负责节点供电,节点由嵌入式软件系统支撑,运行网络的五层协议。 6.传感器网络的协议分层P5 1.5 传感器网络的协议分层 每一层的作用是什么?---作图、简单 能量分配管理在各个层中,能量是怎么考虑的?

相关主题
文本预览
相关文档 最新文档