当前位置:文档之家› 线性代数在生活中的应用

线性代数在生活中的应用

线性代数在生活中的应用
线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组是各个方程关于未知量均为一次的方程组

xj 表示未知量,aij 为系数,bi 为常数项。则有

???????=+++=+++=+++n

n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c2,…,cn )为一个解。若c1,c2,…,cn 不全为0,则称(c1,c2,…,cn )为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。

当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n 维空间的一个子空间。

线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请看下面一个例子。

例:

一个庙里有一百个和尚, 这中间有大和尚有小和尚, 这一百个和尚每顿饭总共要吃一百个馒头, 其中大和尚一个人吃三个, 小和尚三个人吃一个, 问有多少大和尚, 多少小和尚?

那么, 假设大和尚的数目是x 1, 小和尚的数目是x 2, 那么由第一个条件, 总共

有100个和尚

可以知道: x 1+x 2=100

而由第二个条件, 大和尚一个人吃3个馒头, 小和尚一个人吃1/3个馒头, 吃的馒头的总数是100个, 那么就得第二个方程

1003

1321=+

x x 将上面两个方程联立, 就得线性方程组: ?????=+=+)2(100313)1(1002121x x x x

要解这个方程组有两种办法, 其实质是一样的, 一种叫消元法, 从(1)式解出x 1得

x 1=100-x 2

将其代入到(2)式, 得

257510075

8600300

)100(91003

1)100(3122

2222=-====+-?=+-?x x x x x x x

因此算出共有75个小和尚, 25个大和尚.或者用加减法, 先将(1)式乘3得

3x 1+3x 2=300 (3)

用此(3)式减去(1)式得

2003

1322=-x x 同样能够解得 x 2=75

由此可以推知更多元的线性方程组的解法。

而其实, 更多元的线性方程组也是同样的解法.

那么, 为什么还要开线性代数这门课程专门研究解线性方程组的问题呢? 线性代数要研究的是解有许多变元的线性方程组, 即变量的个数要比上例多得多, 可能会多到几十个变元, 上百个变元, 甚至成千上万个变元.

因此, 线性代数给出的一般的线性方程组的形式是:

???????=+++=+++=+++n

n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 那么, 既然变元如此之多, 一定不能用人工手算, 必然要用计算机来进行计算. 因此, 如果没有计算机的发展, 线性代数这门课也就没有什么用. 实际上, 线性代数正是为了用计算机解线性方程组提供理论基础。

在科技实践中,从实际中来的数学问题无非分为两类:一类线性问题;一类非线性问题。线性问题是研究最久、理论最完善的,我们可以简单地说数学中的线性问题是最容易被解决的,如微分学研究很多函数线性近似的问题。而非线性问题则可以在一定基础上转化为线性问题求解。

因此遇到一个问题,首先判定是线性问题还是非线性问题;其次如果是线性

问题如何处理,若是非线性问题如何转化为线性问题。可见线性代数作为研究线性关联性问题的代数理论的重要性。

随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。在物理学方面, 整个物理世界可以分为机械运动, 电运动, 还有量子力学的运动。而机械运动的基本方程是牛顿第二定律, 即物体的加速度同它所受到的力成正比, 这是一个基本的线性微分方程. 由此根据不同的力学系统, 又可以构成更为复杂的微分方程。电运动的基本方程是麦克思韦方程组, 这个方程组表明电场强度与磁场的变化率成正比, 而磁场的强度又与电场强度的变化率成正比, 因此麦克思韦方程组也正好是线性方程组。而量子力学中描绘物质的波粒二象性的薜定谔方程, 也是线性方程组。

所以在各种理、工学的研究与实践中,都脱离不了线性方程组。

而在经济学和会计学方面, 线性方程组也得到了广泛的运用。比如上面这个实际上是一个经济学的例子, 是给一个庙的和尚作伙食供给时的问题。而实际过程如果不是一个庙, 而是一家公司, 这家公司的职员也不是分为两等, 而是许多等, 他们的薪水不同, 消耗的生产或者办公器材的多少也不同, 投资多少也不同, 这样就可以构成了大量的线性方程组。

总之,线性代数的主要研究如何用高等数学的方法研究解线性方程组。解线性方程组有独立的系统的科学体系,在实践中应用极为广泛,尤其是为计算机解决、归纳和分析目前大量繁琐的科研数据提供了理论基础。

李欢霖

1321897

物流管理B13-1

线性代数应用实例

线性代数应用实例 ● 求插值多项式 右表给出函数()f t 上4个点的值,试求三次插值多项式230123()p t a a t a t a t =+++,并求(1.5)f 的近似值。 解:令三次多项式函数230123()p t a a t a t a t =+++过 表中已知的4点,可以得到四元线性方程组: ?????? ?=+++-=+++=+++=6 27931842033 210321032100 a a a a a a a a a a a a a 对于四元方程组,笔算就很费事了。应该用计算机求解了,键入: >>A=[1,0,0,0;1,1,1,1;1,2,4,8;1,3,9,27], b=[3;0;-1;6], s=rref([A,b]) 得到x = 1 0 0 0 3 0 1 0 0 -2 0 0 1 0 -2 0 0 0 1 1 得到01233,2,2,1a a a a ==-=-=,三次多项函数为23 ()322p t t t t =--+,故(1.5)f 近 似等于23 (1.5)32(1.5)2(1.5)(1.5) 1.125p =--+=-。 在一般情况下,当给出函数()f t 在n+1个点(1,2,,1)i t i n =+ 上的值()i f t 时,就可以用n 次多项式2012()n n p t a a t a t a t =++++ 对()f t 进行插值。 ● 在数字信号处理中的应用----- 数字滤波器系统函数 数字滤波器的网络结构图实际上也是一种信号流图。它的特点在于所有的相加节点都限定为双输入相加器;另外,数字滤波器器件有一个迟延一个节拍的运算,它也是一个线性算子,它的标注符号为z -1。根据这样的结构图,也可以用类似于例7.4的方法,求它 的输入输出之间的传递函数,在数字信号处理中称为系统函数。 图1表示了某个数字滤波器的结构图,现在要求出它的系统函数,即输出y 与输入u 之比。先在它的三个中间节点上标注信号的名称x1,x2,x3,以便对每个节点列写方程。

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数应用案例资料

线性代数应用案例

行列式的应用 案例1 大学生在饮食方面存在很多问题,多数大学生不重视吃早餐,日常饮 食也没有规律,为了身体的健康就需要注意日常饮食中的营养。大学生每天的配餐中需要摄入一定的蛋白质、脂肪和碳水化合物,下表给出了这三种食物提供的营养以及大学生的正常所需营养(它们的质量以适当的单位计量)。 试根据这个问题建立一个线性方程组,并通过求解方程组来确定每天需要摄入的上述三种食物的量。 解:设123,, x x x 分别为三种食物的摄入量,则由表中的数据可以列出下列 方程组 123231 23365113337 1.1352347445 x x x x x x x x ++=?? +=? ?++=? 利用matlab 可以求得 x = 0.27722318361443 0.39192086163701 0.23323088049177 案例2 一个土建师、一个电气师、一个机械师组成一个技术服务社。假设在 一段时间内,每个人收入1元人民币需要支付给其他两人的服务费用以及每个人的实际收入如下表所示,问这段时间内,每人的总收入是多少?(总收入=实际收入+支付服务费)

解:设土建师、电气师、机械师的总收入分别是123,,x x x 元,根据题 意,建立方程组 1232133 120.20.35000.10.47000.30.4600 x x x x x x x x x --=?? --=??--=? 利用matlab 可以求得 x = 1.0e+003 * 1.25648414985591 1.44812680115274 1.55619596541787 案例3 医院营养师为病人配制的一份菜肴由蔬菜、鱼和肉松组成,这份菜肴 需含1200cal 热量,30g 蛋白质和300mg 维生素c ,已知三种食物每100g 中的有关营养的含量如下表,试求所配菜肴中每种食物的数量。 解:设所配菜肴中蔬菜、鱼和肉松的数量分别为123,,x x x 百克,根据题意,建立方程组 12312312360300600120039630906030300 x x x x x x x x x ++=?? ++=? ?++=? 利用matlab 可以求得 x = 1.52173913043478 2.39130434782609

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数论文设计(矩阵在自己专业中地应用及举例)

矩阵在自己专业中的应用及举例

摘要: I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。 II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。 III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。 关键词: 矩阵可逆矩阵图形学图形变换 正文: 第一部分引言 在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。在线性代数中,矩阵也占据着一定的重要地位,

与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。尤其他们在作为处理一些实际问题的工具上的时候。 图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。这些变换有着不同的作用,却又紧密联系在一起。 第二部分 研究问题及成果 1. 矩阵的概念 定义:由n m ?个数排列成的m 行n 列的矩阵数表 ????? ???????ann an an n a a a n a a a ΛM ΛM M K Λ212222111211 称为一个n m ?矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。A,B 元素都是实数的矩阵称为实矩阵。元素属于复数的矩阵称为复矩阵。 下面介绍几种常用的特殊矩阵。 (1)行距阵和列矩阵 仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为 a=(a11,a12,.....a1n). 仅有一列的矩阵称为列矩阵(也称为列向量),如

线性代数在实际生活中的应用

线性代数在生活中的实际应用 大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。;;初等的数学 知识学习线性代数数学建模函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则一一克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮 70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷 149克,钾30克,问三种化肥各需多少千克?

线代贴吧-线性代数超强总结

线性代数公式总结

()0A r A n A Ax A A οο??

③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ????????? ? ⑤1 11 11 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=??? ? ???? ????? ? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοοο ?? ?? ? ??? ? ???==???????????? 11112222 kk kk A B A B AB A B ο ο ????? ?=????? ?

线性代数在实际生活中的应用

线性代数在生活中的实际应用 制药工程学院环境科学苏雷10204118 大学数学是自然科学的基本语言,是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅是学习一种专业的工具而已。;;;初等的数学知识学习线性代数数学建模函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式实质上是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝和与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在他的论文中提出了利用行列式求解线性方程组的著名法则——克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机和计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、化肥每千克含氮64克,磷10克,钾0.6克;丙种化肥每千克含氮70克,磷5克,钾1.4克.若把此三种化肥混合,要求总重量23千克且含磷

线性代数超强总结

√ 关于12,,,n e e e ???: ①称为 n 的标准基, n 中的自然基,单位坐标向量; ②12,,,n e e e ???线性无关; ③12,,,1n e e e ???=; ④tr()=E n ; ⑤任意一个n 维向量都可以用12,,,n e e e ???线性表示. √ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则 (1)mn A A A A B B B B A A B B οο οοο * = = =* *=- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -???? →初等行变换 ③11a b d b c d c a ad bc --???? =????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 11 2 1n a a n a a a a -???? ???? ? ???=???? ???? ??? ?? ? 2 1 1 1 12 1 1n a a n a a a a -???? ???? ? ???=???? ??????????

⑤1 1111 2 21n n A A A A A A ----???? ???? ? ???=???? ???? ??? ?? ? 1 112 1 211 n n A A A A A A ----? ? ? ????? ? ???=???? ???? ?????? √ 方阵的幂的性质:m n m n A A A += ()()m n mn A A = √ 设1110()m m m m f x a x a x a x a --=++ ++,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E --=++ ++为A 的一个多项式. √ 设,,m n n s A B ??A 的列向量为12,,,n ααα???,B 的列向量为12,,,s βββ???,AB 的列向量为 12,, ,s r r r , 1212121122,1,2,,,(,,,)(,,,) ,(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==???=?? ==++?? ???则:即 用中简 若则 单的一个提 即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量; 用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘, 与分块对角阵相乘类似,即:11 11 22 22 ,kk kk A B A B A B A B οοο ο ?? ?? ? ??? ? ???==???????????? √ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时, √ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系. √ 判断12,, ,s ηηη是0Ax =的基础解系的条件:

线性代数在实际生活中的应用

线性代数在生活中的实际应用 大学数学就是自然科学的基本语言,就是应用模式探索现实世界物质运动机理的主要手段。学习数学的意义不仅仅就是学习一种专业的工具而已。 ;;;初等的数学知识 学习线性代数数学建模 函数模型的建立及应用,作为变化率的额倒数在几何学、物理学、经济学中的应用,抛体运动的数学建模及其应用,最优化方法及其在工程、经济、农业等领域中的应用,逻辑斯谛模型及其在人口预测、新产品的推广与经济增长预测方面的应用,网络流模型及其应用,人口迁移模型及其应用,常用概率模型及其应用,等等。 线性代数中行列式 实质上就是又一些竖直排列形成的数表按一定的法则计算得到的一个数。早在1683年与1693年,日本数学家关孝与与德国数学家莱布尼茨就分别独立的提出了行列式的概念。之后很长一段时间,行列式主要应用与对现行方程组的而研究。大约一个半世纪后,行列式逐步发展成为线性代数的一个独立的理论分支。1750年瑞士数学家克莱姆也在她的论文中提出了利用行列式求解线性方程组的著名法则——克莱姆法则。随后1812年,法国数学家柯西发现了行列式在解析几何中的应用,这一发现机器了人们对行列式的应用进行探索的浓厚兴趣。如今,由于计算机与计算软件的发展,在常见的高阶行列式计算中,行列式的数值意义虽然不大,但就是行列式公式依然可以给出构成行列式的数表的重要信息。在线性代数的某些应用中,行列式的只就是依然非常重要。 例如:有甲、乙、丙三种化肥,甲种化肥每千克含氮70克,磷8克,钾2克;乙种、 化肥每千克含氮64克,磷10克,钾0、6克;丙种化肥每千克含氮70克,磷5克,钾1、4克.若把此三种化肥混合,要求总重量23千克且含磷149克,钾30克,问三种化肥各需多少千克? 解: 题意得方程组 依千克、、各需设甲、乙、丙三种化肥32,1x x x ??? ??=++=++=++. 304.16.02,1495108,23321 321321x x x x x x x x x ,527- =D 此方程组的系数行列式81275 81 321-=-=-=D D D ,,又 由克莱姆法则,此方程组有唯一解:3=x 1;52=x ;.153=x 即甲乙丙三种化肥各需 3千克 5千克 15千克、 矩阵实质上就就是一张长方形的数表,无论就是在日常生活中还就是科学研究中,矩阵就是一种非常常见的数学现象。学校课表、成绩单、工厂里的生产进度 表、车站时刻表、价目表、故事中的证劵价目表、科研领域中的数据分析表,它就是表述或处理大量的生活、生产与科研问题的有力的工具。矩阵的重要作用主要就是它能把头绪纷繁的十五按一定的规则清晰地展现出来,使我们不至于背一些表面瞧起来杂乱无章的关系弄得晕头转向。塌还可以恰当的给出事物之间内在的联系,并通过矩阵的运算或变换来揭示事物之间的内在联系。它也就是我们求解数学问题时候“数形结合”的途径。矩阵的运算就是非常重要的内容。

线性代数的应用论文

论文:线性代数的应用与心得体会班级: 姓名: 学号: 指导老师: 完成时间:2014年10月20日

目录 【摘要】 (2) 【关键词】 (2) 一、线性代数被广泛运用的原因 (2) 二、线性代数在实际中的应用 (2) 1. 用二阶行列式求平行四边形面积,用三阶行列 式求平行六面面体 (2) 2. 希尔密码 (2) 3.在人们平常日常生活的应用——减肥配方的实 现 (3) 4、在城市人们出行的应用——交通流的分析 (4) 5、马尔可夫链 (5) 6、在人口迁移的应用人口迁徙模型 (5) 三、心得与体会 (7)

【摘要】我们对线性代数的了解大概是,线性代数理论有着悠久的历史和丰富的内容,还有其主要知识:矩阵、方程组和向量;我们也应该了解其在众多的科学技术领域和实际生活中的应用都十分广泛。下面就是看一些具体实例应用,和一些心得体会。 【关键词】线性代数;实际生活;应用实例;心得体会; 。 一、线性代数被广泛运用的原因 为什么线性代数得到广泛运用,也就是说,为什么在实际的科学研究中解线性方程组是经常的事,而并非解非线性方程组是经常的事呢? 原因之一,大自然的许多现象恰好是线性变化的,研究的是单个变量之间的关系。例如我们高中学过的物理学科中,物理可以分为机械运动、电运动、还有量子力学的运动。而比较重要的机械运动的基本方程是牛顿第二定律,即物体的加速度同它所受到的力成正比,其实这又恰恰符合基本的线性微分方程。再如电运动的基本方程是麦克思韦方程组,这个方程组表明电场强度与磁场的变化率成正比,而磁场的强度又与电场强度的变化率成正比,因此麦克思韦方程组也正好是线性方程组。 原因之二,之后随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,因为各种实际问题在大多数情况下可以线性化,而且由于计算机的发展,线性化了的问题又可以计算出来,所以,线性代数因这方面的成为了解决这些问题的有力工具而被广泛应用。 原因之三,在数学中线性代数与几何和代数有着不可分割的联系。线性代数所体现的几何观念与代数方法之间的联系,从具体概念变为抽象出来的公理化方法,对于强化人们的数学训练,增强科学性是非常有用的。 二、线性代数在实际中的应用 1.用二阶行列式求平行四边形面积,用三阶行列式求平行六面面体 2.希尔密码 希尔密码(Hill Password)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n 的矩阵相乘,再将得出的结果模26。注意用作加密的矩阵(即密匙)在\mathbb_^n必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。 例题、 设明文为HPFRPAHTNECL,密钥矩阵为:

线性代数超强的总结(不看你会后悔的)

线性代数超强总结 ()0A r A n A Ax A A οο??

√ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则(1)mn A A A A B B B B A A B B οο οοο *===** =- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -????→ 初等行变换 ③11a b d b c d c a ad bc --????=????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 1121n a a n a a a a -????????????=???????? ????? ? 2 1 1 1 121 1n a a n a a a a -???? ???? ? ???=???? ??????????

线性代数在企业生产中的应用

线性代数在企业生产中的应用 小组:第五组 系部:工商管理系 专业:市场营销 指导老师:赵梅春 提交日期:2015年5月27日

目录 线性代数在企业生产中的应用 (1) 摘要 (2) 简介 (3) 什么是线性代数 (3) 线性代数在经营管理领域中的应用 (4) 线性代数应用广泛的原因 (4) 相关知识 (5) 实例分析 (9) 1、价格平衡模型 (9) 2、生产总值问题 (11) 3、产品成本计算 (13) 4、投入产出数学模型 (14) 参考文献 (15) 致谢 (15)

摘要 线性代数是一门讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的学科。当代,睡着线性代数在企业生产领域的广泛应用,线性代数显得日益的重要。通过对线性代数知识的运用,企业可以预测市场变化、计算投资与回报、调节最优的生产模式等。科学地运用线性代数可以使企业生产更加适应当今不断变化的市场环境。可见,对线性代数研究的深浅将直接影响我国企业是否能在未来的生产中顺利发展。本文将围绕线性代数在企业生产中的应用,通过四个线性代数在企业生产中应用的实例,即运用线性代数建立投入产出模型、运用线性代数计算产品成本、运用线性代数解决生产总值问题等四个实例,目的在于通过对这四个实例的分析,来说明线性代数在企业生产中有着那些应用,并解释为什么这些应用对企业生产有着不可替代的重要作用,以及解答如何在企业生产中科学地运用小小大,而更重要的是,我们希望本文的研究成果,能为企业在运用线性代数解决生产问题这一方面提供科学有效的参考价值。 关键词:线性代数企业生产数学模型预测市场 Abstract

Linear algebra is a discussion of matrix theory, matrix binding and subject finite-dimensional vector space linear transformation theory. Contemporary, asleep linear algebra is widely used in the production field, linear algebra is becoming increasingly important. Through the use of linear algebra, companies can predict market changes, and return on investment calculation, adjusting optimal production mode. Scientific use of linear algebra can make production more responsive to today's ever-changing market environment. Seen on the depth of linear algebra will directly affect whether the smooth development of Chinese enterprises in the future production. This article will focus on linear algebra in the enterprise production, by way of example in the production of four linear algebra applied, that the use of linear algebra establish input-output model, using linear algebra calculation of product cost, using linear algebra to solve the problem of GDP four instances, the aim of the analysis by these four examples to illustrate the production of linear algebra with those applications, and explain why these applications on the production plays an irreplaceable role, and how to answer in enterprise production Little Big scientific use, but more importantly, we hope that results of this study can provide

线性代数总结

线性代数总结 [转贴 2008-05-04 13:04:49] 字号:大中小 线性代数总结 一、课程特点 特点一:知识点比较细碎。 如矩阵部分涉及到了各种类型的性质和关系,记忆量大而且容易混淆的地方较多。 特点二:知识点间的联系性很强。 这种联系不仅仅是指在后面几章中用到前两章行列式和矩阵的相关知识,更重要的是在于不同章节中各种性质、定理、判定法则之间有着相互推导和前后印证的关系。 复习线代时,要做到“融会贯通”。 “融会”——设法找到不同知识点之间的内在相通之处; “贯通”——掌握前后知识点之间的顺承关系。 二、行列式与矩阵 第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算,其中具体行列式的计算又有低阶和阶两种类型;主要方法是应用行列式的性质及按行\列展开定理化为上下三角行列式求解。 对于抽象行列式的求值,考点不在求行列式,而在于、、等的相关性质,及性质(其中为矩阵的特征值)。 矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、、、的性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初等矩阵的性质等。 三、向量与线性方程组 向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。 向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。 解线性方程组可以看作是出发点和目标。线性方程组(一般式) 还具有两种形式: (Ⅰ)矩阵形式,其中 ,, (Ⅱ)向量形式,其中 ,

相关主题
文本预览
相关文档 最新文档