当前位置:文档之家› Matlab画Lorenz系统的最大李雅普诺夫指数图

Matlab画Lorenz系统的最大李雅普诺夫指数图

Matlab画Lorenz系统的最大李雅普诺夫指数图
Matlab画Lorenz系统的最大李雅普诺夫指数图

Lorenz 系统

文档分两个文件方程m文件和计算L指数m文件分开写,复制粘贴即可运行matlab2012a,改写方程文件和参数即可算自己的系统,其中最大L指数用的是经典的柏内庭(G.Benettin)计算方法,准确快速无误!附计算结果图!!

方程m文件:

function dX = Loren(t,X)

global a; % 变量不放入参数表中

global b;

global c;

x=X(1); y=X(2); z=X(3);

% Y的三个列向量为相互正交的单位向量

% 输出向量的初始化

dX = zeros(6,1);

% Lorenz吸引子

dX(1)=a*(y-x);

dX(2)=x*(b-z)-y;

dX(3)=x*y-c*z;

end

计算最大L指数文件

Z=[];

global a;

global b;

global c;

a=10;

c=8/3;

d0=1e-7;

for b=linspace(0,500,500)

lsum=0;

x=1;y=1;z=1;

x1=1;y1=1;z1=1+d0;

for i=1:100

[T1,Y1]=ode45('Loren',1,[x;y;z;16;b;4]);

[T2,Y2]=ode45('Loren',1,[x1;y1;z1;16;b;4]);

n1=length(Y1);n2=length(Y2);

x=Y1(n1,1);y=Y1(n1,2);z=Y1(n1,3);

x1=Y2(n2,1);y1=Y2(n2,2);z1=Y2(n2,3);

d1=sqrt((x-x1)^2+(y-y1)^2+(z-z1)^2);

x1=x+(d0/d1)*(x1-x);

y1=y+(d0/d1)*(y1-y);

z1=z+(d0/d1)*(z1-z);

if i>50

lsum=lsum+log(d1/d0);

end

end

Z=[Z lsum/(i-50)];

end

b=linspace(0,500,500);

plot(b,Z,'-');

title('JD_{1} 系统最大lyapunov指数')

xlabel('parameter b'),ylabel('The largest Lyapunov exponents'); grid on;

结果图

matlab 三维图形绘制实例

三维图形 一. 三维曲线 plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n) 其中每一组x,y,z 组成一组曲线的坐标参数,选项的定义和plot 函数相同。当x,y ,z 是同维向量时,则x,y,z 对应元素构成一条三维曲线。当x,y ,z 是同维矩阵时,则以x,y,z 对应列元素绘制三维曲线,曲线条数等于矩阵列数。 Example1.绘制三维曲线。 程序如下: clf, t=0:pi/100:20*pi; x=sin(t); y=cos(t); z=t.*sin(t).*cos(t); %向量的乘除幂运算前面要加点 plot3(x,y,z); title('Line in 3-D Space'); xlabel('X');ylabel('Y');zlabel('Z'); grid on; 所的图形如下: -1 1 X Line in 3-D Space Y Z 二. 三维曲面 1. 产生三维数据 在MATLAB 中,利用meshgrid 函数产生平面区域内的网格坐标矩阵。

语句执行后,矩阵X 的每一行都是向量x ,行数等于向量y 的元素的个数,矩阵Y 的每一列都是向量y ,列数等于向量x 的元素的个数。 2. 绘制三维曲面的函数 surf 函数和mesh 函数 example2. 绘制三维曲面图z=sin(x+sin(y))-x/10。 程序如下: clf, [x,y]=meshgrid(0:0.25:4*pi); %产生平面坐标区域内的网格坐标矩阵 z=sin(x+sin(y))-x./10; surf(x,y,z); axis([0 4*pi 0 4*pi -2.5 1]); title('surf 函数所产生的曲面'); figure; mesh(x,y ,z); axis([0 4*pi 0 4*pi -2.5 1]); title('mesh 函数所产生的曲面'); -2.5 -2-1.5-1-0.500.51surf 函数所产生的曲面

李雅普诺夫函数

1 李雅普诺夫稳定性 系统的李雅普诺夫稳定性指的是系统在平衡状态下受到扰动时,经过“足够长”的时间以后,系统恢复到平衡状态的能力。因此,系统的稳定性是相对系统的平衡状态而言的。 自治系统的静止状态就是系统的平衡状态。无外部输入作用时的系统称为自治系统。 设系统状态方程为),(t x f x = ,若对所有t ,状态x 满足0=x ,则称该状态x 为平衡状态,记为e x 。故有下式成立0),(=t x f e 。由此式在状态空间中所确定 的点,称为平衡点。 线性定常系统的平衡点:将方程),(t x f x = 化成Ax x = ,其平衡状态e x 应满足代数方程0=Ax 。解此方程,当A 是非奇异时,则系统存在惟一的一个平衡点0=e x 。当A 是奇异时,则系统的平衡点可能不止一个。 如果A 的行列式值为0,则A 为奇异矩阵;行列式值不为0,则A 为非奇异矩阵。换言之,能求逆的矩阵为非奇异矩阵。 大范围渐近稳定性的理解: 系统不管在什么样的初始状态下,经过足够长的时间总能回到平衡点附近且不断的向平衡点靠拢,则系统就是大范围渐近稳定。 对于线性系统,由于其满足叠加原理,所以系统若是渐近稳定的,则一定是大范围渐近稳定的。在此验证了线性系统稳定性与初始条件大小无关的特性。 对于线性系统,从不稳定平衡状态出发的轨迹,理论上一定趋向于无穷远。 2. 李雅普诺夫稳定性理论 李雅普诺夫第一法又称间接法。它的基本思路是通过系统状态方程的解来判别系统的稳定性。对于线性定常系统,只需解出特征方程的根即可作出稳定性判断。对于非线性不很严重的系统,则可通过线性化处理,取其一次近似得到线性化方程,然后再根据其特征根来判断系统的稳定性。 线性定常系统Ax x ≡ ,渐近稳定的充要条件是系统矩阵A 的特征值λ均具有负实部,即()n i i ,2,1,0Re =<λ 李雅普诺夫第二法又称直接法。运用此法可以在不求出状态方程解的条件下,直接确定系统的稳定性。 之间要用到二次型函数。 李氏第二法是从能量观点出发得来的,它的基本思想是建立在古典力学振动系统中一个直观的物理事实上。如果系统的总能量(含动能和势能)随时间按增长而连读的衰减,直到平衡状态为止,那么振动系统是稳定的。

认知无线电频谱切换源码matlab仿真

clear clc %rand('twister',1); blockpu=[]; blocksu=[]; for N=3:2:7 block=[]; for lambdap =0.01:0.05:0.5 %***************************************** %假设 1. CR网络和主网络(授权网络)共同存在于同一区域,并且使用同一频段。假设该频段共有N个信道,每个主用户或CR用户每次接入只占用一个信道。 % 若所有信道均被主用户占用,此时CR用户到达就被阻塞。若CR用户正在使用的信道有主用户出现,此时CR用户被迫中断,并进入缓存区排队等待 % 空闲可用信道以继续刚被中断的通信,若等待超过一定时限,则判定CR用户强制中断退离缓存区。 % 故共有三个队列,分别表示如下: % X队列——主用户队列,抢占优先,优先级最高 % Y队列——次用户队列,优先级最低 % Z队列——次用户切换队列,优先级次高,若在时延Tao内,则较次用户队列优先接入可用信道 % 2. 主用户和次用户的到达服从泊松分布,参数分别为lambdap和lambdas,平均服务时间服从参数为mup和mus的负指数分布 % 3. 对次用户而言,主用户抢占优先。总共有N个信道,也就是最多可以有N个主用户抢占所有信道, % 故Z队列的长度不会超过N,这里给定Z队列长度为N。 % 4. 假设初始状态所有N个信道均空闲,次用户理想感知,感知延时为0.005 %***************************************** % 2009年10月12日10月25日 %***************************************** %初始化 %***************************************** a = 100; %主用户数量 b = 100; %次用户数量 %N =3 %Z队列最大长度/总的信道数 %Tao=5 %切换时延门限Tao A = [ ]; %某主用户到达时刻占用信道序号的集合 B = [ ]; %某次用户到达时刻占用信道序号的集合 C = [ ]; %切换用户占用的当前所有信道序号集合 D = [ ]; %某次用户到达时刻主用户占用信道集合 member = [ ]; member_CR = [ ]; j1=1; %主用户参数*****************************************

matlab三维二维离散曲面画图教程

傅里叶变换 img=imread('RADU}4W~M9]09V7Q)ZQ5%~7.png'); %img=double(img); f=fft2(img); %傅里叶变换 f=fftshift(f); %使图像对称 r=real(f); %图像频域实部 i=imag(f); %图像频域虚部 margin=log(abs(f)); %图像幅度谱,加log便于显示 phase=log(angle(f)*180/pi); %图像相位谱 l=log(f); subplot(2,2,1),imshow(img),title('源图像'); subplot(2,2,2),imshow(l,[]),title('图像频谱'); subplot(2,2,3),imshow(margin,[]),title('图像幅度谱'); subplot(2,2,4),imshow(phase,[]),title('图像相位谱'); https://www.doczj.com/doc/7a3708856.html,/s/blog_1667198560102wmzu.html 傅里叶变换 I = imread('RADU}4W~M9]09V7Q)ZQ5%~7.png'); %读入数字图像 I = rgb2gray(I);%将图像进行灰度处理 J = fft2(I);%将图像实行傅里叶变换 figure,imshow(I);%这里能得到频谱图 J = fftshift(J); figure,imshow(log(abs(J)),[]); %将频谱平移 J(abs(J)<5)=0;%不必要的过滤掉 figure,imshow(log(abs(J)+eps),[]); J = ifftshift(J);K = ifft2(J);figure,imshow(K,[0 255]);%傅里叶逆变换 自己所写的代码 I = imread('RADU}4W~M9]09V7Q)ZQ5%~7.png'); %读入数字图像 J = fft2(I); %将图像实行傅里叶变换figure,imshow(I); %这里能得到频谱图 J = fftshift(J); figure,imshow(log(abs(J)),[]); %将频谱平移 J(abs(J)<5)=0; %不必要的过滤掉figure,imshow(log(abs(J)+eps),[]); J = ifftshift(J);K = ifft2(J); ss=real(ifft2(J));sss=uint8(ss);subplot(1,2,2); imshow(sss) figure,imshow(K,[0 255]); %傅里叶逆变换

李雅普诺夫稳定性分析

基于正定二次型的 李雅普诺夫稳定性分析 张俊超 (控制科学与工程、控制理论与控制工程、2010010215) 摘要:李雅普诺夫稳定性理论以状态向量描述为基础,不仅适用于单变量、 线性、定常系统,而且适用于多变量、非线性、时变系统。但要应用李氏判据判断系统稳定性,就要涉及到系统矩阵A特征值的求解以及根据系统状态方程构造正定二次型的李雅普诺夫函数来判断系统稳定性。 1.问题的提出 我们在处理实际工程问题时,经常需要判断系统稳定性,一般稳定性判据都有一定局限性,李雅普诺夫稳定性理论是确定系统稳定性的一般的理论,不仅适用于单变量、线性、定常系统,而且适用于多变量、非线性、时变系统,它以状态向量描述为基础,结合正定二次型的相关知识对系统稳定性进行判断。 2.问题的求解 李雅普诺夫稳定性理论分析系统稳定性的两种方法: (1)利用线性系统微分方程的解来判断系统的稳定性 ——李雅普诺夫第一法(间接法) 李雅普诺夫第一法的主要内容 1)用一次近似式表示状态方程,即:X=AX+B(x) 如果A的全部特征值都具有负实部,则系统在平衡点xe=0处是稳定的, 且系统的稳定性与高阶项B(x)无关。 2)如果X=AX+B(x)的A的特征值中至少有一个具有正实部,则无论B(x)如何,系统在平衡点xe=0处为不稳定的。 3)如果X=AX+B(x)的A的含有等于零的特征值,则系统的稳定性由B(x)决定。李雅普诺夫第一法是根据系统矩阵A的特征值来判断系统的稳定性的。 (2)构造李雅普诺夫函数,利用构造的李氏函数判断系统稳定性 ——李雅普诺夫第二法(直接法) 观察振动现象,若系统能量(含动能和位能)随时间推移而衰减,则系统迟早会达到平衡状态。基本思想:若系统内部能量随时间↑而↓,最终到达静止状态,系统稳定。虚构一个能量函数(李雅普诺夫函数) V(x,t)=f(x 1,x 2 , (x) n ,t) V(x)=f(x 1,x 2 , (x) n ) V(x,t)或V(x)是一个标量函数。能量总大于零,故为正定函数。能量随随时间增加而衰减,即:V(x,t)或V(x)的导数小于零。

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

李雅普诺夫稳定性分析

第六章 李雅普诺夫稳定性分析 在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。因为它关系到系统是否能正常工作。 经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。 1892年俄国学者李雅普诺夫(Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。 §6-1 外部稳定性和内部稳定性 系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述),相应的稳定性便分为外部稳定性和内部稳定性。 一、外部稳定性 1、定义(外部稳定性): 若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的。 (外部稳定性也称为BIBO (Bounded Input Bounded Output )稳定性) 说明: (1)所谓有界是指如果一个函数)(t h ,在时间区间],0[∞中,它的幅值不会增至无穷,即存在一个实 常数k ,使得对于所有的[]∞∈0 t ,恒有∞<≤k t h )(成立。 (2)所谓零状态响应,是指零初始状态时非零输入引起的响应。 2、系统外部稳定性判据 线性定常连续系统 ∑),,(C B A 的传递函数矩阵为 Cx y Bu Ax x =+= BU A sI X BU X A sI CX Y BU AX sX 1)()(--==-=+= B A sI C s G 1 )()(--= 当且仅当)(s G 极点都在s 的左半平面内时,系统才是外部稳定(或BIBO 稳定)的。 【例6.1.1】已知受控系统状态空间表达式为

李雅普诺夫稳定性方法

李雅普诺夫稳定性方法 李雅普诺夫第一方法又称间接法,它是通过系统状态方程的解来判断系统的稳定性。如果其解随时间而收敛,则系统稳定;如果其解随时间而发散,则系统不稳定。 李雅普诺夫第二方法又称直接法,它不通过系统状态方程的解来判断系统的稳定性,而是借助李雅普诺夫函数对稳定性作出判断,是从广义能量的观点进行稳定性分析的。例如有阻尼的振动系统能量连续减小(总能量对时间的导数是负定的),系统会逐渐停止在平衡状态,系统是稳定的。由于李雅普诺夫第一方法求解通常很烦琐,因此李雅普诺夫第二方法获得更广泛的应用。李雅普诺夫第二方法的难点在于寻找李雅普诺夫函数。迄今为止,尚没有通用于一切系统的构造李雅普诺夫函数的方法。 对于系统[]t ,f x x = ,平衡状态为,0e =x 满足()0f e =x 。如果存在一个标量函数()x V ,它满足()x V 对所有x 都具有连续的 一阶偏导数;同时满足()x V 是正定的;则 (1)若()x V 沿状态轨迹方向计算的时间导数()dt /)(dV V x x = 为半负定,则平衡状态稳定; (2) 若()x V 为负定,或虽然()x V 为半负定,但对任意初始状 态不恒为零,则平衡状态渐近稳定。进而当∞→∞→)(V x x 时,,则系统大范围渐近稳定; (3) 若()x V 为正定,则平衡状态不稳定。 判断二次型 x x x P )(V τ=的正定性可由赛尔维斯特

(Sylvester )准则来确定,即正定(记作V(x)>0)的充要条件为P 的所有主子行列式为正。如果P 的所有主子行列式为非负,为正半定(记作V(x)≥0);如果-V(x)为正定,则V(x)为负定(记作V(x)<0);如果-V(x)为正半定,则V(x)为负半定(记作V(x)≤0)。 例: []正定。 则)(V 0 1121412110 ,0411 10,010x x x 1121412110x x x )(V 321321x x >---->>----=??? ????????????? 例: )x x (x x x ) x x (x x x 2 2212122221121+--=+-= (0,0)是唯一的平衡状态。设正定的标量函数为 ∞→∞→<+-=+--++-=+=??+??=+=)V(,且当0 )x 2(x )]x (x x x [2x )]x (x x [x 2x x 2x x 2x dt dx x V dt dx x V )(V x x )V(2222122212122221121221122112 2 21x x x x 故系统在坐标原点处为大范围渐近稳定。

matble课程论文(MATLAB在三维作图中的应用)

《MATLAB》课程论文 MATLAB在三维作图中的应用 姓名: 学号: 专业: 班级: 指导老师: 学院: 完成日期:

MATLAB在三维作图中的应用 [摘要]MATLAB提供了一系列的绘图函数,用户不仅不许考虑绘图细节,只需给出一些基本的参数就能得到所需要的图形,这一类函数称为高层绘图函数。除此之外,MATLAB还提供了直接对句柄进行操作的一系列的低层的绘图操作。这类操作将图形的每个元素看做是一个独立的对象,系统给每个对象独立的分配一个句柄,以后可以通过该句柄对改图元素进行操作,而不影响图形的其他部分。高层绘图操作简单明了,方便高效,使用户最常使用的绘图方法,而低层绘图操作控制和表现图形的能力更强,为用户自主绘图创造了条件。其实MATLAB的高层绘图函数都是利用低层绘图函数建立起来的。所以MATLAB的计算准确、效率高、使用快捷等优点常被广泛应用于科学和工程领域. [关键字]MATLAB语言三维图形图像处理绘制 一,问题的提出 MATLAB语言是当前国际学科界应用很广泛的一种软件,强大的绘图功能是MATLAB的特点之一。MATLAB提供了一系列的绘图函数,利用它强大的图像处理来绘制三维图形既简单而且也很方便。在绘制三维图形的过程中也用到了MATLAB语言的其他功能,绘制三维图形时用到了它提供的一些函数,利用这些函数可以方便的生成一些特殊矩阵,因此可生成一个坐标平面。MATLAB语言强大的功能也在二维三维绘图中的得到了很广泛的应用,利用它所提供的精细的图像处理功能,如MATLAB还提 供了直接对句柄进行操作的一系列的低层的绘图操作。这类操作将图形的每个元素看做是一个独立的对象,系统给每个对象独立的分配一个句柄,以后可以通过该句柄对改图元素进行操作,而不影响图形的其他部分。高层绘图操作简单明了,使用户最常使用的绘图方法,而低层绘图操作控制和表现图形的能力更强,为用户自主绘图创造了条件,还可以对所绘制的三维图形作一个修饰的处理。MATLAB语言具有强大的以图形化显示矩阵和数组的能力,同时它给这些图形增加注释并且可以对图形进行标注和打印。MATLAB的图形技术包括三维的可视化、图形处理、动画等高层次的专业图形的高级绘图,例如图形的光照处理、色度处理以及四维数据的表现等。那么,如何把它强大的功能应用于实际应用中,下面我们将用实例说明MATBLE在三维作图中的应用。 二,MATLAB的主要功能及特点 MATLAB近几年广泛用于图像处理和识别, 使用MATLAB设计模式识别应用软件将使设

基于MATLAB的泊松分布的仿真

泊松过程样本轨道的MATLAB 仿真 一、 Poisson Process 定义 若有一个随机过程{:0}t N N t =≥是参数为λ>0的Poisson 过程,它满足下列条件: 1、0N = 0; 2、对任意的时间指标0s t ≤<,增量()()t s N N t s ω-ωλ(-)服从参数为泊松分布。 3、对任意的自然数n ≥2和任意的时间指标0120n t t t t =<<

基于MATLAB的数字模拟仿真..

基于MATLAB的数字模拟仿真 摘要:本文阐述了计算机模拟仿真在解决实际问题时的重要性,并较为系统的介绍了使用计算机仿真的原理及方法。对于计算机模拟仿真的三大类方法:蒙特卡罗法、连续系统模拟和离散事件系统模拟,在本文中均给出了与之对应的实例及基于MATLAB模拟仿真的相关程序,并通过实例深入的分析了计算机模拟解决实际问题的优势及不足。 关键词:计算机模拟;仿真原理;数学模型;蒙特卡罗法;连续系统模拟;离散事件系统模拟 在实际问题中,我们通常会面对一些带随机因素的复杂系统,用分析方法建模常常需要作许多简化假设,这样进行处理过后的模型与我们面临的实际问题可能相差很远,以致求解得到答案根本无法应用,这时,计算机模拟几乎成为唯一的选择。本文通过对计算机模拟仿真进行系统地介绍,寻求利用模拟仿真来解决问题的一般方法,并深入探讨了这些方法的长处和不足。我们定义一些具有特定的功能、相互之间以一定的规律联系的对象所组成的总体为一个系统,模拟就是利用物理的、数学的模型以系统为问题解决对象,来类比、模仿现实系统及其演变过程,以寻求过程规律的一种方法。模拟的基本思想是建立一个实验的模型,这个模型包含所研究系统的主要特点,这样做的目的就是通过对这个实验模型的运行,获得所要研究系统的必要信息。另外,系统的运行离不开算法,仿真算法是将系统模型转换成仿真模型的一类算法,在数字仿真模型中起核心和关键作用。 1、所谓计算机仿真 计算机仿真是利用计算机对一个实际系统的结构和行为进行动态演示,以评价或预测该系统的行为效果。它是解决较复杂的实际问题的一条有效途径。针对一个确定的系统,根据运行的相似原理,利用计算机来逼真模仿研究对象(研究对象可以是真实的系统,也可以是设想中的系统),计算机仿真是将研究对象进行数学描述,建模编程,且在计算机中运行实现。 对比于物理模拟通常花费较大、周期较长,且在物理模型上改变系统结构和系数都较困难的诸多缺陷,计算机模拟不怕破坏、易修改、可重用,有更强的系统适应能力。但是计算机模拟也有缺陷,比如受限于系统建模技术,即系统数学模型不易建立、程序调试复杂等。 计算机仿真可以用于研制产品或设计系统的全过程中,包括方案论证、技术指标确定、设计分析、生产制造、试验测试、维护训练、故障处理等各个阶段。 2、计算机仿真的目的 对于一个系统,是否选择进行计算机模拟的问题,基于判断计算机模拟与非计算机模拟方法孰优孰劣的问题。归纳以下运用计算机模拟的情况: (1)在一个实际系统还没有建立起来之前,要对系统的行为或结果进行分析研究时,计算机仿真是一种行之有效的方法。 (2)在有些真实系统上做实验会影响系统的正常运行,这时进行计算机模拟就是为了避免给实际系统带来不必要的损失。如在生产中任意改变工艺参数可能会导致废品,在经济活动中随意将一个决策付诸行动可能会引起经济混乱。 (3)当人是系统的一部分时,他的行为往往会影响实验的效果,这时运用系统进行仿真研究,就是为了排除人的主观因素的影响。

随机信号matlab仿真

电子科技大学通信与信息工程学院 标准实验报告 实验名称:随机数的产生及统计特性分析

电 子 科 技 大 学 实 验 报 告 学生姓名:吴振国 学 号:2011019190006 指导教师:周宁 实验室名称:通信系统实验室 实验项目名称: 随机数的产生及统计特性分析 【实验内容】 1、编写MATLAB 程序,产生正态分布或均匀分布或二项分布或泊松分布或你感 兴趣的分布的随机数,完成以下工作: (1)、测量该序列的均值,方差,并与理论值进行比较,测量其误差大小, 改变序列长度观察结果变化; (2)、分析其直方图、概率密度函数及分布函数,并与理论分布进行比较; (3)、计算其相关函数,检验是否满足 Rx(0)=mu^2+sigma2,观察均值mu 为0和不为0时的图形变化; (4)、 用变换法产生正态分布随机数,或用逆变换法产生其他分布随机数, (5)、重新完成以上内容,并与matlab 函数产生的随机数的结果进行比较。 2、已知随机信号: 仿真M 个样本,估计其自相关函数和样本的功率谱(用自相关法和周期图 法),并利用样本估计序列X (n )的功率谱。 【实验原理】 本实验采用matlab 实验方法进行实验,相关采样方法,作图方法等均在matlab 的学习中有过使用!下面不作具体介绍! 【实验程序】 1.程序1: clear; sigma=1; mu=1; N=100; X=normrnd(sigma,1,1,N); average=sigma; variable=sigma^2; 1212()cos(80)4cos(200)(),,~[0,2],()~(0,1)X n t t N t U N t N πφπφφφπ=++++白噪声

教你如何用matlab绘图(全面)

强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。 本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。 一.二维绘图 二维图形是将平面坐标上的数据点连接起来的平面图形。可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。二维图形的绘制是其他绘图操作的基础。 一.绘制二维曲线的基本函数 在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。 1.plot函数的基本用法 plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。plot函数的应用格式 plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。 例51 在[0 , 2pi]区间,绘制曲线 程序如下:在命令窗口中输入以下命令 >> x=0:pi/100:2*pi; >> y=2*exp(-0.5*x).*sin(2*pi*x); >> plot(x,y) 程序执行后,打开一个图形窗口,在其中绘制出如下曲线 注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。 例52 绘制曲线 这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:

§6.4 李雅普诺夫第二方法.doc

§6.4 李雅普诺夫第二方法上一节我们介绍了稳定性概念,但是据此来判明系统解的稳定性,其应用范围是极其有限的. 李雅普诺夫创立了处理稳定性问题的两种方法:第一方法要利用微分方程的级数解,在他之后没有得到大的发展;第二方法是在不求方程解的情况下,借助一个所谓的李雅普诺夫函数)(x V 和通过微分方程所计算出来的导数 dt x dV )(的符号性质, 就能直接推断出解的稳定性,因此又称为直接法.本节主要介绍李雅普诺夫第二方法. 为了便于理解,我们只考虑自治系统 ) (x F d t d x =n R x ∈ (6.11) 假设T n x F x F x F ))(,),(()(1 =在{}K x R x G n ≤∈=上连续,满足局部利普希茨条件,且 O O F =)(. 为介绍李雅普诺夫基本定理,先引入李雅普诺夫函数概念. 定义6.3 若函数 R G x V →:)( 满足0)(=O V ,)(x V 和 i x V ??) ,,2,1(n i =都连续,且若存在K H ≤<0,使在 {}H x x D ≤=上)0(0)(≤≥x V ,则称)(x V 是常正(负)的;若在D 上除O x ≠外总有 )0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正又不是常负的函数称为变号函数. 通常我们称函数)(x V 为李雅普诺夫函数.易知: 函数2 22 1x x V +=在),(21x x 平面上为正定的; 函数 )(2 22 1x x V +-=在),(21x x 平面上为负定的; 函数222 1x x V -=在),(21x x 平面上为变号函数;

函数 21x V =在),(21x x 平面上为常正函数. 李雅普诺夫函数有明显的几何意义. 首先看正定函数),(21x x V V =. 在三维空间),,(21V x x 中, ),(21x x V V =是一个位于坐标面21Ox x 即0=V 上方的曲面.它与坐标面21Ox x 只在一个点,即原点)0,0,0(O 接触(图6-1(a)).如果用水平面 C V =(正常数)与),(21x x V V =相交,并将截口垂直投影到21Ox x 平面上,就得到一组一 个套一个的闭曲线族C x x V =),(21 (图6-1(b)),由于),(21x x V V =连续可微,且 0)0,0(=V ,故在021==x x 的充分小的邻域中, ) ,(21x x V 可以任意小.即在这些邻域中 存在C 值可任意小的闭曲线C V =. 对于负定函数),(21x x V V =可作类似的几何解释,只是曲面),(21x x V V =将在坐标面21Ox x 的下方. 对于变号函数),(21x x V V =,自然应对应于这样的曲面,在原点O 的任意邻域,它既有在21Ox x 平面上方的点,又有在其下方的点. 定理6.1 对系统(6.11),若在区域D 上存在李雅普诺夫函数)(x V 满足 (1) 正定; (2) )(1 ) 11.5(x F x V dt dV i n i i ∑=??= 常负, (a) (b)

李雅普诺夫稳定性分析

第六章李雅普诺夫稳定性分析 在反馈控制系统的分析设计中,系统的稳定性是首先需要考虑的问题之一。因为它关系到系统是否能正常工作。 经典控制理论中已经建立了劳斯判据、Huiwitz 稳定判据、Nquist 判据、对数判据、根轨迹判据等来判断线性定常系统的稳定性,但不适用于非线性和时变系统。分析非线性系统稳定性及自振的描述函数法,则要求系统的线性部分具有良好的滤除谐波的性能;而相平面法则只适合于一阶、二阶非线性系统。 1892 年俄国学者李雅普诺夫( Lyapunov )提出的稳定性理论是确定系统稳定性的更一般的理论,它采用状态向量来描述,不仅适用于单变量、线性、定常系统,还适用于多变量、非线性、时变系统。 §6-1 外部稳定性和内部稳定性系统的数学模型有输入输出描述(即外部描述)和状态空间描述(即内部描述) ,相应的稳定性便分为外部稳定性和内部稳定性。 一、外部稳定性 1、定义(外部稳定性) :若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定 的。 ( 外部稳定性也称为BIBO( Bounded Input Bounded Output )稳定性) 说明: (1)所谓有界是指如果一个函数h(t) ,在时间区间[0, ]中,它的幅值不会增至无穷,即存在一个实 常数k ,使得对于所有的t 0 ,恒有h(t) k 成立。 (2)所谓零状态响应,是指零初始状态时非零输入引起的响应。 2、系统外部稳定性判据 线性定常连续系统(A,B,C) 的传递函数矩阵为 x Ax Bu y Cx sX AX BU Y CX (sI A)X BU X (sI A) 1BU G(s) C(sI A) 1 B 当且仅当G(s) 极点都在s的左半平面内时,系统才是外部稳定(或BIBO稳定)的。 例6.1.1 】已知受控系统状态空间表达式为

Poisson 泊松方程的差分方法matlab实现

Poisson 泊松方程的差分方法 问题: 设G 是如下图所示的十字形区域,由5 个相等的正方形构成。 试用五点差分格式求解下面的Possion 问题: 解法分析: 原方程用五点差分格式写出来就变成了:

源代码: function F=fivepointdiff(l,n) h=l/n; N=2*(n-1)*n+(3*n-1)*(n-1); XY=zeros(2,N);%分割xy轴后每一个节点的坐标 for i=1:n for j=1:n-1 XY(:,(n-1)*(i-1)+j)=[l+j*h;i*h]; end end for i=1:n-1 for j=1:3*n-1 XY(:,n*(n-1)+(3*n-1)*(i-1)+j)=[j*h;l+i*h]; end end for i=1:n for j=1:n-1 XY(:,n*(n-1)+(3*n-1)*(n-1)+(n-1)*(i-1)+j)=[l+j*h;2*l+(i-1)*h]; end end A=zeros(N,N); for i=1:N for j=1:N

if(i==j) A(i,j)=4; else if(((XY(1,i)-XY(1,j))^2+(XY(2,i)-XY(2,j))^2)<2*h*h)%若是相邻点择系数为-1 A(i,j)=-1; end end end end f=zeros(N,1);%就是等号右边F for i=1:N f(i,1)=h*h; end U=bicg(A,f,0.1,100);%求解Au=F F=[XY;U'];%输出 命令框中输入: fivepointdiff(1,25); x=ans(1,:); y=ans(2,:); z=ans(3,:); plot3(x,y,z) 得到的结果:

matlab画三维曲面图

Matlab画三维曲面图 对于如下的数据,如何才能在matlab中画出三维图形. 620 0.03 110 620 0.07 112 630 0.07 119 645 0.02 210 650 0.02 200 650 0.03 230 650 0.06 145 650 0.08 155 655 0.01 180 655 0.06 145 660 0.05 150 680 0.02 175 680 0.04 170 680 0.06 145 680 0.08 155 x y z Matabl程序如下: %%定义数据 x=[620 620 630 645 650 650 650 650 655 655 660 680 680 680 680]; y=[0.03 0.07 0.07 0.02 0.02 0.03 0.06 0.08 0.01 0.06 0.05 0.02 0.04 0.06 0.08]; z=[110 112 119 210 200 230 145 155 180 145 150 175 170 145 155]; %%画图函数部分,参考https://www.doczj.com/doc/7a3708856.html,/thread-128595-1-1.html cbboy编写的函数%% function PlotGriddata(x,y,z) mx=min(x); %求x的最小值 Mx=max(x); %求x的最大值 my=min(y); My=max(y); Nx=20; %定义x轴插值数据点数,根据实际情况确定 Ny=20; %定义y轴插值数据点数,根据实际情况确定 cx=linspace(mx,Mx,Nx);%在原始x数据的最大值最小值之间等间隔生成Nx个插值点 cy=linspace(my,My,Ny);%在原始数据y的最大值最小值之间等间隔生成Ny个插值点 cz=griddata(x,y,z,cx,cy','cubic');%调用matlab函数进行立方插值,插值方式还有'v4'、'linear' surf(cx,cy,cz); %meshz(cx,cy,cz) %绘制曲面

李雅普诺夫方法在线性系统的应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1.预备知识 (1) 1.1李雅普诺夫第一法 (5) 1.2李雅普诺夫第二法 (1) 1.3线性系统的特征 (2) 2.李雅普诺夫意义下的稳定性 (2) 2.1稳定与一致稳定 (2) 2.2 渐进稳定和一致渐近稳定 (3) 2.3 不稳定 (3) 3.李雅普诺夫稳定性定理 (3) 4.线性系统的李雅普诺夫稳定性分析 (4) 小结 (7)

参考文献 (7)

李雅普诺夫方法在线性系统中的应用 摘要:在判定线性系统稳定性时,李雅普诺夫方法的优点在于无须求解系统方程的解,就能对系统的稳定性进行分析.文章介绍了李雅普诺夫稳定性分析在线性系统中的应用. 关键词:正定矩阵;标量函数;渐近稳定 Application of Lyapunov’s method in linear system Abstract:In determining the stability of linear systems,the advantages of the Lyapunov’s method is without solving the system equation,which can analyze the stability of the systems.we introduce the application in linear system analysis in Lyapunov stability in the paper. Keywords:positive definite matrix;Scalar function; asymptotic stability 前言 自动控制系统最重要的特性之一是稳定性.系统的稳定性,表示在遭受外界扰动偏离原来的平衡状态,而在扰动消失后,系统自身仍有能力恢复到原来平衡状态的一种“顽性”[]1.本文中,我们把研究对象集中到线性系统上,来讨论线性系统的稳定性问题.对于这个问题的讨论,都是建立在李雅普诺意义的稳定性的基本概念之上的.1.预备知识 1.1李雅普诺夫第一法 李雅普诺夫第一法又称间接法,它的基本思路是通过系统状态方程的解来判别系统的稳定性.对于线性定常系统,只需解出特征方程的解即可作出稳定性判断. 1.2李雅普诺夫第二法 李雅普诺夫第二法又称直接法,是通过构造一个类似于“能量”的李雅普诺夫函数,并分析它和其一次导数的定号性,直接对系统平衡状态的稳定性作出判断.

第二讲 §5.2 李雅普诺夫(Liapunov)第二方法(5课时)

第二讲 §5.2 李雅普诺夫(Liapunov )第二方法(5课时) 一、教学目的:了解Liapunov 在处理稳定性中的两种方法;了解 Liapunov 函数的特征与构造;理解Liapunov 第 二方法并学会运用它来判定自治系统的稳定性。 二、教学要求:了解Liapunov 函数的特征与构造;理解Liapunov 第二方法并学会运用它来判定自治系统解的稳定性。 三、教学重点:运用Liapunov 第二方法判定自治系统解的稳定性。 四、教学难点:如何构造Liapunov 函数。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程: 1.相关概念 上一节我们介绍了稳定性概念,但是据此来判明系统解的稳定性,其可解范围是极其有限的. Liapunov 创立了处理稳定性问题的两种方法:第一方法要利 用微分方程的级数解,在他之后没有得到大的发展;第二方法是在不求方程解的情况下,借助一个所谓的Liapunov 函数V(x)和通过微分方程所计算出来的导数 ()dV X dt 的符号性质,就能直接推断出解的稳 定性,因此又称为直接法。本节主要介绍Liapunov 第二方法。

为了便于理解,我们只考虑自治系统 (),dx F x dt = n x R ∈ (5.11) 假设1 ()((),,()) T n F x F x F x = 在{}n G x R x K =∈≤上连续,满足局部李普 希兹条件,且F(0)=0. 为介绍Liapunov 基本定理,先引入Liapunov 函数概念. 定义5.3 若函数 ():V x G R →满足V(0)=0, ()V x 和 (1,2,,) i V i n x ?=? 都连续,且若存在0H K < ≤,使在 { }D x x H =≤上()0(0)V x ≥≤,则称()V x 是常正(负)的;若在 D 上除x=0 外总有()0(0)V x ><,则称()V x 是正(负)定的;既不是常正又不是常负的函数称为变号的. 通常我们称函数()V x 为Liapunov 函数. 易知:函数2 2 12 V x x =+在12(,)x x 平面上为正定的; 函数 2212()V x x =-+在12(,)x x 平面上为负定的; 函数 2 2 12()V x x =-在12(,)x x 平面上为变号函数; 函数 2 1 V x =在12(,)x x 平面上是常正函数. 李雅普诺夫函数有明显的几何意义.

相关主题
文本预览
相关文档 最新文档