当前位置:文档之家› 倍流整流变换器中同步整流控制驱动的研究 开题报告

倍流整流变换器中同步整流控制驱动的研究 开题报告

倍流整流变换器中同步整流控制驱动的研究 开题报告
倍流整流变换器中同步整流控制驱动的研究 开题报告

研究生选题报告

题目:倍流整流变换器中同步整流控制驱动

的研究

学号

姓名

指导教师

院、系、专业电气与电子工程学院

电力电子与电力传动

华中科技大学研究生院制

填表注意事项

一、本表适用于攻读硕士学位研究生选题报告、学术报告,攻

博士学位研究生文献综述、选题报告、论文中期进展报告、

学术报告等

二、以上各报告内容及要求由相关院(系、所)做具体要求。

三、以上各报告均须存入研究生个人学籍档案。

四、本表填写要求文句通顺、内容明确、字迹工整。

倍流整流变换器中同步整流控制驱动的研究

一、课题的来源

随着高速超大规模集成电路不断发展,构成这些电路电源系统的关键部件是各种不同技术规格的DC/DC变换器模块。对于其供电电源来说,这些数据处理电路构成一类特殊的负载,工作电压较低、电流较大,各种工作状态相互转换时对应的电流变化率很高。随着集成度的不断提高,越来越多的处理器集成电路将集成在同一个芯片上,因此下一代微处理器的额定工作电流将达到50A-1OOA,甚至更高,要求微处理器有严格的功率管理措施。所有这些对微处理器这类典型负载的供电电源提出了更高的要求。

针对特殊电路的要求,电压调节器模块必须提供经过严格调整的低压和大电流输出,具有快速的动态响应。从美国开关电源市场来看,跟随着计算机通讯设备迅速、持续稳定的增长及新的网络产品市场的迅速增长,未来的开关电源市场是非常乐观的,对中小功率变换器的需求更是呈现迅速上升趋势。据权威市场专家预测:在今后五年内,小功率DC/DC变换器的主要发展趋势是:为了适应超高频CPU芯片的迅速发展,DC/DC变换器向低输出电压(最低可低到1.2V),高输出电流、低成本、高频化(400-500KHz)、高功率密度、高可靠性(MTBF >10000)、高效率、快速动态响应的方向发展。

模块电源主要分为DC/DC、AC/DC和DC/AC三种,其中DC/DC模块占据了90%的市场份额。随着通信系统对电源产品的要求越来越高,DC/DC模块电源技术正发生着巨大的变化,朝着低电压大电流方向发展。电压最低小于0.8V,负载电流最高大于100A。为了获得更高的效率,同步整流技术在这些DC/DC模块电源中的作用越来越重要,应用也越来越广泛。

二、 本课题研究的意义和目的

为了取得更高的运行速度和相对较低的功耗,数字集成电路的工作电压越来越低。研究表明:如果将数字电路中的5v 高电平降为1V ,运行速度可以提高5倍,功耗将降低为原来的1/5。因此数字集成电路的工作电压己经由原来的5v 降到了2.4-3.3v ,而在不久的将来,1.8v 甚至更低的电压将会成为新的标准工作电压。集成电路工作电压的不断降低对其供电电源(主要是DC-DC 整流模块)提出了新的要求,传统的DC-DC 整流技术己无法满足这些要求。这是因为,原来的DC-DC 整流模块是用肖特基二极管进行整流,而肖特基二极管的正向压降一般为0.3v ,若输出电压降低到2v 以下,仅损耗在肖特基管的正向导通压降上的功率就相当于电源模块输出功率的10%以上。因此,要想取得较高的功率密度几乎是不可能的。

同步整流技术采用同步整流管(同步整流管的导通电阻通常仅0.00x 欧姆)来代替肖特基二极管进行输出整流,解决了因二极管正向压降引起的功率损耗较大的问题,使得输出整流损耗降到最小,大大提高了低压大电流DC-DC 整流模块的效率。

L1

负载

图2-1 副边为倍流电路变换器的同步整流原理图

例如常见的自驱动倍流电路,如图2-1,1SR ,2SR 为两个同步整流管,D1,D2分别为它们的体二极管 。通过控制原边主开关管,当主开关导通,

副边电压为正时,2SR 导通,1SR 关断,输入电源经变压器耦合经L1、2SR 向负载传输能量,而L2也经2SR 续流;当主开关关断,副边电压为负时,2SR 关断,1SR 开通,输入电源经变压器耦合经L2、1SR 向负载传输能量,而L1也经1SR 续流。由于MOSFET 导通电阻很低,在MOSFET 上损失的功率较肖特基二极管要小,尤其是在输出电压低的时候,可以取得极高的效率。

但是同步整流技术并不只是用同步整流管代替肖特基二极管那么简单,它与同步整流技术所用的拓扑和同步整流管的驱动有很大的关系,需要做全面的分析和考虑。

三 、国内外概况和预测

目前,国外对中小功率低电压/大电流输出DC/DC 变换器的研究己取得了较大进展, 对很多关键技术进行了切实有效的研究及技术储备。能够实现3.3V 以下输出电压、50A 以上输出电流的模块电源的大规模生产,且体积己做得相当小,功率密度超过了50W/3in ,现正向120W/3

in 发展。在我国入关之后,国内开关电源研发、生产单位将直接面对国外开关电源市场的竞争,而小功率开关电源又是一种技术含量较高的电力电子产品。高可靠性是第一位重要的指标,其次,EMI,PFC,工艺结构、效率、体积、重量和成本等指标,也是决定我们国内的产品能否参与国际竞争的重要因素。

目前,研究低电压大电流DC/DC 变换器面前面临的困难主要包括:提高输出电流,达到100A 以上;降低输出电压,甚至低到1V 以下:提高工作效率,通常要求90%以上;减小体积,提高功率密度和可靠性等。如何设计出高性能的低电压大电流DC/DC 变换器已经成为了学者们目前必须解决的问题。

2003年在上海举行的DC/DC 电源专题研讨会上,艾默生网络能源有限公

司提出了关于未来DC/DC模块电源发展的6个具有挑战性的新技术:改进的同步整流技术;谐振复位软开关技术;移相谐振软开关技术;高精度稳压的多路输出技术;并联均流技术和厚铜箔多层PCB技术:

其中排在首位的就是同步整流技术。DC/DC模块电源绝大部分运用于通信产品中,其特殊的负载要求使得同步整流技术的运用变得尤为重要。低电压大电流输出时,普通的二极管或者肖特基二极管的损耗已经无法满足高效率的要求,因为普通的二极管和肖特基二极管的正向导通压降很大,电流很大时,损耗在其上的功率相当大。同步整流技术就是在上述情况下应运而生。同步整流管毕竟是功率场控器件,跟普通二极管不同,其损耗包括导通损耗,驱动损耗和开关损耗,采用哪种驱动方式使得变换器的损耗最小是目前研究的较多的一个课题。

四、预计需达到的要求、技术指标,预计的技术关键、技术方案和主要试验研究情况:

本课题预计从实际角度出发,将同步整流技术应用到低电压大电流的场合,对于低压大电流隔离式的DC/DC变换器,大部分损耗发生在副边的整流电路中。

预计技术关键:1。同步整流技术的效率因素;2。原副边拓扑的选择;3。预计对驱动方式的改进

1.同步整流技术的效率因素分析:

相对于传统的肖特基二极管整流技术而言,同步整流技术的效率提高是由很多因素决定,而不是简单地比较肖特基二极管的正向压降。以正激变换器为例,输出电压、输出电流、同步整流管的导通电阻、由同步整流管所取代的肖特基二极管的正向压降和变压器的复位方法对效率的提高都有很大影响。

通常,变换器的效率可以表示为: 00P loss rec P P P η=

++ (1) 其中,0P 是输出功率,loss P 是除整流损耗外的损耗,rec P

为整流损耗。 对于肖特基管整流而言,效率可以表示为:00P sc loss sc

P P P η=++ (2) 对于同步整流二极管而言,效率可以表示为:00P sr loss sr P P P η=

++ (3) 忽略loss P 影响,sc η和sr η的关系可以表示00/sr sc sc sr

P P P P ηη=-+(4) 其中,0sc sc P V I =,sc V 是肖特基二极管的正向压降,0I 是输出电流。

2()00(1)sr ds on dead D dead gate rrec P R I D V I D P P =-+++

(5) 其中()ds on R 是SR 地导通电阻,/dead dead s D t T =为死区占空比,D V 是SR 体二极管压降,gate P 是门极驱动损耗,rrec P

是SR 体二极管反向恢复相关的损耗,gate P 是gs V 、开关频率s f 和栅极电荷(用以充电的栅源电压)的函数。文献[9]中提出了一种估计自驱动门极驱动损耗的方法,根据其中的计算,当开关频率s f <300khz 时,自驱动SR 门极驱动损耗很小,对于输出大于40w 的变换器可以忽略,rrec P 只出现在SR 体二极管导通的情况,但是即使是在体二极管导通的情况下,这个损耗在低频时仍然很小,同样可以忽略。因此,当dead D 很小,可以忽略不计时,比如采用有源箝位的正激变换器,式(5)可以化为:

0()01

1[1]ds on sc sr

sc sc

I R V V V ηη=-- (6)

令0()/ds on sc I R V α=,显然α<1,对于一个给定的α值和sc V ,当输出电压较高时,效率提高并不多,但当输出电压较低时,效率提高明显,相对于同样的输出电压,当sc V 较大时,效率提高比较大,若在总的损耗中,整流损耗起主要作用时效率提高会比较大,同样对于较小值的α,效率提高也比较大,这出现在SR 的导通电阻比较小和输出电流比较低的情况。

2.原副边拓扑的选择:

在中小功率电源领域,使用较多的DC-DC 变换器的拓扑主要有:单端正激、单端反激、半桥、推挽及其派生的电路。它们都有各自的优点和缺点。一般来说,考虑变换器性能通常有以下指标:可靠性、控制是否易于实现、变换器效率、成本以及开关器件的利用率。结合同步整流技术的应用,下面从多个方面考虑几种拓扑的优点和缺点。

(i)在低压大电流DC/DC 变换器中,变压器原边的基本拓扑可以是下面五种:1.反激式;2.正激式;3.推挽式;4.半桥式;5.全桥式。

反激式变换器显然不适合低电压大电流的要求,因为它的输出纹波较大,变压器漏感引起较大的电压尖峰,功率不大(150W 以下),变换器效率不高,而且只能在电压和负载调整率要求不高的场合使用。

正激式变换器是低压大电流变换器中使用的较多的变换器之一,正激式变换器的优点主要在于结构简单,功率开关管峰值电流较低,适合用作降压型变换器,易构成多相变换器。因此,它也是最早应用于低压大电流的变换器拓扑之一。但是,其缺点也是明显的:1)它需要一个额外的磁复位电路来避免变压器的磁饱和;2)对变压器的设计要求比较高,要求漏感小,以减小续流管在关断过程中的损耗:3)同步整流中的死区过大使得其效率减小;4)整流管的体二极管不仅在其导通的过程中增加了电路的损耗,在其关断的过程中,由于其反向恢复特性,也会引起能量损耗。

全桥式拓扑的主功率开关管所承受的电压比半桥式拓扑小一倍。但低压大电流DC/DC变换器,输入电压并不高,半桥式拓扑和全桥式拓扑所表现的性能几乎相同,相比之下,半桥式结构节省了两个昂贵的功率MOSFET管,降低了成本。由于其电路中的变压器体积小,利用率高,开关器件承受峰值电压电流较小,因此在低压大电流DC/DC变换器中,半桥式变换器的应用最为广泛。如图所示.推挽式结构的整流管驱动方式与带倍流整流的半桥式结构是相似的,所示。对于通常的推挽式结构来说,因为功率开关管集电极电压应力两倍于输入电压,而且其主变压器的原边利用率也不如半桥。所以,它适合于更低的输入电压情况下使用。

(ii)适用于低电压大电流输出的变压器副边拓扑有三种:1.正激式拓扑(半波整流);2.中心抽头式拓扑(全波整流);3.倍流整流式拓扑。

正激式拓扑在大电流输出的情况下,其结构并不占有优势。因为它的输出电流波动较大,为了保证大电流时的滤波效果,滤波电感要做的比较大,而且变压器副边工作不对称,对变换器的性能影响很大。

中心抽头式拓扑适用于推挽、全桥或半桥等对称双端变压隔离器的Buck型变换器,由于其输出滤波电感的电压频率是功率开关管的两倍,所以在同样条件下中心抽头式所需要的滤波电感值明显小于正激式,但在输出相同电压的情况下,相比正激式,会增加变压器副边绕组的匝数。

倍流整流方式是从全桥整流方式演化过来的,由于要求电路输出低压大电流,则倍流同步整流结构是最合适的,这是因为:1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小;2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,其输出滤波电容的脉动电流幅值减小了,在倍流型结构中所需要的滤波电感和电容就比正激式的小得多,且大大加快了变

换器的动态响应速度3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了;4)较少的大电流连接线,在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路;5)动态响应很好。而它的不足在于需要两个输出滤波电感,在体积上相对要大些。但如果运用磁集成的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁心内,这样可以大大地减小变换器的体积。

上面也分析过,变换器次级的元件损耗主要来自整流管的损耗,倍流整流式变换器在理想驱动情况下,其变压器的次级电压在初级两个主功率管都关断的死区时间内为零,此时,两个整流管在理想的情况下同时导通,负载电流则在两个整流管中平均流过,而正激变换器在每个开关周期内,整流管的总导通损耗相当于一个周期内输出滤波电感电流流过一个整流管的损耗,相比之下,倍流整流电路总损耗更小。

3.本课题对驱动方式的改进:

如何驱动同步整流管驱动是一个重要的问题。自驱动是采用检测开关变换器SR所在回路的某一电压或电流,作为SR的门极驱动电压,其特点是简单,实用,缺点则是往往不能达到最理想的驱动波形;采用外加控制驱动方法让SR管按照设定的开关时序工作,虽然是比较直接、常规的方法,所得的驱动波形质量比较好,但是其控制复杂,增加了元件数目和整机成本。混合驱动方式是利用部分的控制驱动方法来弥补自驱动的缺陷,一般都可以取得比自驱动方法更好的结果。

同步整流的理想驱动波形如图4-1所示,要满足下面两个要求:

(1)电压无为零时段,避免死区时间内的体二极管的导通现象,使得同步整流损耗主要发生在整流阶段;

(2)电压波形的上升沿和下降沿要陡,并有合适的电压幅值,以满足

MOSFET 快速开关的要求。

图4-1 理想的同步整流驱动波形

自驱动方式分析:

前面,图2-1画出了基本的自驱动倍流电路,而在主开关管均关断的死区时间里,副边的电压为零,这时同步整流管SR1、SR2均关断,负载电流通过同步整流管的体二极管续流,由于体二极管的导通压降比肖特基二极管的导通压降更大,于是增大了损耗,故需对同步整流管的驱动方式做一些改进。这里,完全依靠自驱动方式是不能产生满意的驱动波形的。

栅极电荷保持电压驱动方式分析:

图4-2 栅极电荷保持电压驱动电路及波形

图4-2所示栅极电荷保持(Gate charge retention )电压驱动技术就是其中一种典型的方法。栅极寄生电容C 的电荷由二极管D 和开关管S 保持,所以栅极驱动电压2gsr V 被箝位。直到开关管S 导通,C 上的电荷被放掉,2gsr V

为零,MOSFET 才被关断。一般来说gs V 采用变压器次级的电压信号控制。其中电容C 可利用SR2的等效电容,电阻R 是用来限制冲击电流和控制SR2的关断时间,采用这种驱动方法可以减少体二极管的续流时间,从而提高效率。

如图4-3中则是一种应用了栅极电荷保持电压驱动的驱动方法的电路:D1、C1为VS3的体二极管和栅源极间电容,D2、C2为VS4的体二极管和栅源极间电容。

图4-3 一种半桥倍流同步整流电路

该驱动电路是有一定缺陷的,它无法实现主功率管都关断的时候,同时开通两个同步整流管。由图4-2中对栅极电荷保持电压驱动电路的分析,知道,电荷的保持只保持了当前开通管的栅极驱动电压,比如在死区时刻前是3VS 导通,原边电能经过3VS 送至负载,那么给电路在死区时刻5VS 断开,只能保持3VS 继续导通,而不能使两管同时导通;同样的道理,在死

区时刻前是4VS 导通,原边电能经过4VS 送至负载,那么给电路在死区时刻6VS 断开,只能保持4VS 继续导通。因此,这种驱动方式是不能使得损耗降到最低的,其效率也就比不上其他更加接近理想的驱动方式。

预计实验电路驱动方式分析:

上面的分析说明:要得到较接近理想的驱动波形,往往需要采用自驱动信号来开通同步整流管,并加入控制信号使其关断的混合驱动方式。

L1

图4-4 预计实验的半桥倍流同步整流电路

图4-4的电路是在主开关驱动电路上附加了一些电路产生同步整流管驱动信号,分析:同步整流管的驱动信号是在主开关管驱动信号的基础上通过一些控制电路得到的,当控制电路输出使2TX 的输出电压0V 为正,1VS 开始导通,2VS 关断,主功率变压器T 的电压为正;同时,反相器A 的5VQ 导通,6VQ 关断,输出为零,这使得3VS 关断;反相器B 中7VQ 关断,

8VQ 导通,

输出为正,从而4VS 导通。当控制电路输出使2TX 的输出电压0V 为负,1VS 关断,2VS 开始导通,主功率变压器T 的电压为负;同时,反相器A 的5VQ 关断,6VQ 导通,输出为正,这使得3VS 开通;反相器B 中7VQ 导通,8VQ 关断,输出为零,从而4VS 关断。在死区时间中,控制电路输出使2TX 的输出电压0V 为零,两个主开关管都是关断的,这时反相器A 的5VQ 关断,6VQ 导通,输出为正,这使得3VS 开通;反相器B 中7VQ 关断,8VQ 导通,输出为正,从而4VS 也导通。

以上分析表明,用图4-4的控制电路能产生与理想的驱动波形和时序相一致的控制驱动信号。即在T 的初级两个开关管都关断的死区时间,次级0V 为零,在理想情况下两个整流管应同时导通;而且由于2TX 的电感效应和反相器的延时作用,控制电路能在该T 的次级短路电流出现之前就计时关断其中一个整流管,可避免T 的次级出现短路现象。另外,因同步整流管驱动信号的可控制性,可调整同步整流管的驱动信号与主功率开关管驱动信号之间的延时及其配合,因而在实验中将反复尝试使效率达到最优。

综上所述:本课题预计选用原边对称半桥副边倍流电路拓扑,驱动方式原理图如图4-4,做为实验电路,技术指标为:

输入电压:48V

开关频率:50k

输出电压:2V

最大输出电流:30A

期望达到效率:85%

输出电压纹波要求:小于1%

五、课题研究进展计划:

2005.9 ――2006.1 查阅文献资料

2006.3 ――2006.4 计算机建模、仿真

2006.5――2006.7 实验、调试,得出结论

2006.7 ――2006.9 完成论文、答辩

六、现有的条件、人员(姓名、职称)及主要设备情况:

1.人员情况:

2.设备情况:

七、需要增添的主要设备、仪器(用途、名称、规格、型号、数量、价格)和材料:

八.经费概算和来源:

自筹

九.承担单位和主要协作单位及分工:

十.指导教师评语:

参考文献

[1] Huang-Jen Chiu . A high-efficiency soft-switched ACDC converter with current-doubler synchronous rectification, Proceedings of IEEE,2005(6),709-718

[2] 张占松,蔡宣三开关电源的原理与设计,电子工业出版社,2004,(9),177-185

[3] F.Dong Tan . extension to include synchronous rectifiers and current doublers,Proceedings of IEEE,2002,40-47

[4] 陈坚高等电力电子技术,高等教育出版社,2004,(12),93-95

[5] H.Visairo,E.Rodriguez . Multi-output half-bridge converter with self-driven synchronous rectification,Proceedings of IEEE,2002,145-150

[6] 徐九玲倍流同步整流全桥变换器的研究,华南理工大学,20030515

[7] H.J.Chiu . A soft switched DCDC converter with current-doubler synchronous rectification,Proceedings of IEEE,2000,526-531

[8] 任光同步整流和软开关技术在小功率直流开关电源中的应用研究,华南理工大学,20040501

[9] James Blanc. Practical application of MOSFET synchronous rectifiers.INTELED'91. IEEE1991. Page(s) 495-501.

[10] 蔡拥军,叶欣倍流同步整流在DC/DC变换器中工作原理分析,电源技术应用,2005(8),15-18

[11] Fred C.Lee and Xunwei zhou , Investigation of Power Management Issues for Future Generation Miroprocessors , CPES

[12] 钱照明等,“从美国电源工业发展计划看我国电源工业的发展趋势”,电源技术应用,2004(4)

[13] Neil J.Barabas , “A High Density DC-DC Converter Using Surface Mount Technology” Power Conversion International Conf . pp253-262,Oct,1989

[14] 丁道宏,《电力电子技术》,航空工业出版社,北京,1995

[15] G.Suranyi , “The Value of Distributed Power,” IEEE APEC’96,pp104-110

[16] 严仰光,《航空航天器供电系统》,航空工业出版社

[17] Cart Blake , Dan Kinzer , “Synchronous Rectifiers Versus Schottky Diodes”APEC’94,PP17-23

[18] 刘军,“有源箝位同步整流多路输出正激变换器的研究”,硕士论文,2000.2

[19] J.A.Cobos , New driving schene for Self Driver Synchronous Rectifers,APEC’99

[20] 吴波,“半桥变换器的研究”,硕士论文,1998.3

指导教师签字 ________________ 教研室主任签字________________ 院(系)主任签字________________

年月日

倍流同步整流在DCDC变换器中工作原理分析

倍流同步整流在DC/DC变换器中工作原理分析 在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。就其工作原理进行了详细的分析说明,并给出了相应的实验和实验结果。 关键词:倍流整流;同步整流;直流/直流变换器;拓扑 0 引言 随着微处理器和数字信号处理器的不断发展,对芯片的供电电源的要求越来越高了。不论是功率密度、效率和动态响应等方面都有了新要求,特别是要求输出电压越来越低,电流却越来越大。输出电压会从过去的3.3V降低到1.1~1.8 V之间,甚至更低[1]。从电源的角度来看,微处理器和数字信号处理器等都是电源的负载,而且它们都是动态的负载,这就意味着负载电流会在瞬间变化很大,从过去的13A/μs到将来的30A/μs~50A/μs[2]。这就要求有能够输出电压低、电流大、动态响应好的变换器拓扑。而对称半桥加倍流同步整流结构的DC/DC变 换器是最能够满足上面的要求的[3]。 本文对这种拓扑结构的变换器的工作原理作出了详细的分析说明,实验结果 证明了它的合理性。 1 主电路拓扑结构 主电路拓扑如图1中所示。由图1可以看出,输入级的拓扑为半桥电路,而输出级是倍流整流加同步整流结构。由于要求电路输出低压大电流,则倍流同步 整流结构是最合适的,这是因为: 图1 主电路拓扑 1)变压器副边只需一个绕组,与中间抽头结构相比较,它的副边绕组数只有中间抽头结构的一半,所以损耗在副边的功率相对较小; 2)输出有两个滤波电感,两个滤波电感上的电流相加后得到输出负载电流,而这两个电感上的电流纹波有相互抵消的作用,所以,最终得到了很小的输出电 流纹波;

3)流过每个滤波电感的平均电流只有输出电流的一半,与中间抽头结构相比较,在输出滤波电感上的损耗明显减小了; 4)较少的大电流连接线(high current inter-connection),在倍流整流拓扑中,它的副边大电流连接线只有2路,而在中间抽头的拓扑中有3路; 5)动态响应很好。 它唯一的缺点就是需要两个输出滤波电感,在体积上相对要大些。但是,有一种叫集成磁(integrated magnetic)的方法,可以将它的两个输出滤波电感和变压器都集成到同一个磁芯内,这样可以大大地减小变换器的体积。 2 电路基本工作原理 电路在一个周期内可分为4个不同的工作模式,如图2所示,理想的波形图 如图3所示。 (a) 模式1[t0-t1] (b) 模式2[t1-t2]

同步整流技术分享

江苏宏微科技股份有限公司 Power for the Better
同步整流技术及主要拓扑电路
宏微科技市场部
2015-9-16

Contents
? 同步整流电路概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
1 CONFIDENTIAL





Contents
? 同步整流技术概述 ? 典型电路及其特点 ? 损耗分析 ? 同步整流电路中常见问题 ? MOSFET选型设计参考
Power for the Better
2 CONFIDENTIAL





同步整流技术概述
由于中低压MOSFET具有很小的导通电阻,在有电流通过时产生的电压降很 小,可以替代二极管作为整流器件,可以提高变换器的效率。
diode
MOSFET
MOSFET作整流器时,栅源极间电压必须与被整流电压的相位保持同步关系才 能完成整流功能,故称同步整流技术。 MOSFET是电压控制型开关器件,且没有反向阻断能力,必须在其栅-源之 间加上驱动电压来控制器漏-源极之间的导通和关断。这是同步整流设计的难 点和重点。 根据其控制方式,同步整流的驱动电路分为 ?自驱动方式; ? 独立控制电路他驱方式; ? 部分自驱+部分他驱方式结合;
Power for the Better
3 CONFIDENTIAL





同步整流技术最新

同步整流技术
电源网第20届技术交流会
邹超洋
2012.11

内 容 简 介
?同步整流简介。 ?同步整流的分类。 。 ?同步整流的驱动方式 ?同步整流的 MOSFET

同步整流简介
z 高速超大规模集成电路的尺寸的不断减小,功耗的不断降低,要求
供电电压也越来越低,而输出电流则越来越大。 z 电源本身的高输出电流、低成本、高频化(500kHz~1MHz)高 功率密度、高可靠性、高效率的方向发展。 z 在低电压、大电流输出DC-DC变换器的整流管,其功耗占变换器 全部功耗的50~60%。 z用低导通电阻MOSFET代替常规肖特基整流/续流二极管,可以大大 降低整流部分的功耗,提高变换器的性能,实现电源的高效率,高功 率密度。

同步整流简介
diode
=
MOSFET 代替diode
MOSFET
D
相当于二极管的功能 ?电流从S流向D ?V/I特性,工作于3rd 象限
G S
z 用MOSFET来代替二极管在电路中的整流功能
z 相对于二极管的开关算好极小 g 控制,可以根据系统的需要, z 整流的时序受到MOSFET的Vgs 把整流的损耗做到最小

同步整流简介
? 例如:一个5V?30A输出的电源
Diode
Vf=0.45V Ploss=0.45*30=13.5W Ploss/Po=13.5/45=30% /Po=13 5/45=30% Rdson=1.2m? Ploss=0.0012*30 0 0012*302=1.08W 1 08W Ploss/Po=1.08/45=2.4%
Mosfet
MBR8040(R)
SC010N04LS

移相全桥参数计算

1、 2、 介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是| |因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC2895移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏 情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表1设计规范 描述最小值典型值最大值输入电压370V390V410V 输出电压11.4V12V12.6V 允许输出电压瞬变]600mV 加载步骤90% 输出电压600W 满负荷效率93% 电感器切换频率200kHz 3、功能示意图 4、功率预算 为满足效率的目标,一组功率预算需要设定。 ^BUOGET =^OUT X 1 =45,2W V H J 5、原边变压器计算T1 变压器匝比(al): VREF GNU UPD OUTA CQMP QUIT HI WTC UL L AB oyrr&1* DC LCD DUTE瞽 QELEF OUTF TT TMiNl S-VNC M mr GS15 RSUV WC1 □ cm ADELEF口 -jWTF I s srrec

估计场效应晶体管电压降(VRDSON ): V RDSON ~ 0*3 V 基于最小指定的输入电压时 70%的占空比选择变压器。 基于平均输入电压计算典型工作周期 (DTYP ) ("OUT 彳力整座N 0 66 (V|N - 2 兀 ) 输岀电感纹波电流设置为输岀电流的 20% 需要注意在选择变压器磁化电感的正确数值 (LMAG )。下列方程计算主变 压器 器运行在电流型控制。 如果LMA 太小,磁化电流会导致变换器运行在电压模式控制代替 peak-current 模式 这是因为磁化电流太大,它将作为PW 坡道淹没RS!的电流传感信号。 ^2.76mH 图2显示了 T1原边电流(IPRIMARY )和同步整流器Q 罰QF 电流对同步整流栅驱动电流的反应。注意 l (QE ) l (QF ) 也是T1的次级绕组电流。变量 D 是转换器占空比。 a1 = N P N s 3[二(¥N 和忡)x 口叱 =21 M OUT P OUT X °隈 V OUT = 10A 仃1)的最低磁化电感,确保变频

倍流同步整流在高压48VVRM中的应用

参考文献王硕[基于三电平ZVS半桥倍流电压调节模块(VRM)的研究] 燕山大学2010 硕士论文 倍流同步整流在高压48VVRM中的应用 设计中原边通常选用的拓扑主要有半桥、全桥、正激和推挽电路;副边拓扑方式有桥式整流、半波整流、全波整流及倍流整流四种。一副边整流电路拓扑的选择 由于VRM输出为低压大电流,因此副边整流电路的选用尤为重要,不但要求磁性器件制作简单,更需要关注的是各部分的损耗,如变压器副边绕组损耗、整流管损耗等。在常用的四种副边拓扑结构中,全桥整流电路由于所用整流管数量是其它拓扑的两倍,在大电流输出的VRM中就会产生更多的开关管的损耗,在设计中显然不宜采用,因此不再对其进行分析比较。主要对另外三种电路的导通损耗、磁性器件及驱动方式进行了比较,总结见下表所示。

半波整流 中心抽头全波 整流 倍流整流 占空比D= o n s t T D<0.5 0

同步整流电路

随着现代电子技术向高速度高频率发展的趋势,电源模块的发展趋势必然是朝着更低电压、更大电流的方向发展,电源整流器的开关损耗及导通压降损耗也就成为电源功率损耗的重要因素。而在传统的次级整流电路中,肖特基二极管是低电压、大电流应用的首选。其导通压降基本上都大于0.4V,当电源模块的输出电压随着现代电子技术发展继续降低时,电源模块的效率就低得惊人了,例如在输出电压为3.3V时效率降为80%,1.5V输出时效率不到70%,这时再采用肖特基二极管整流方式就变得不太可能了。 为了提高效率降低损耗,采用同步整流技术已成为低电压、大电流电源模块的一种必然手段。同步整流技术大体上可以分为自驱动(selfdriven)和他驱动(controldriven)两种方式。本文介绍了一种具有预测时间和超低导通电阻(低至2.8mΩ/25℃)的他驱动同步整流技术,既达到了同步整流的目的,降低了开关损耗和导通损耗,又解决了交叉导通问题,使同步整流的效率高达95%,从而使整个电源的效率也高达90%以上。 1SRM4010同步整流模块功能简介 SRM4010是一种高效率他激式同步整流模块,它直接和变压器的次级相连,可提供40A的输出电流,输出电压范围在1∽5V之间。它能够在200∽400kHz 工作频率范围内调整,且整流效率高达95%。如果需要更大的电流,还可以直接并联使用,使设计变得非常简单。 SRM4010模块是一种9脚表面封装器件,模块被封装在一个高强电流接口装置包里,感应系数极低,接线端功能强大,具有大电流低噪声等优异特性。 SRM4010引脚功能及应用方式一览表 引脚号引脚名称引脚功能应用方式 1CTCHCatch功率MOSFET漏极接滤波电感和变压器次级正端 2FWDForward功率MOSFET漏极接变压器次级负端 3SGND外控信号参考地外围控制电路公共地 4REGin内部线性调整器输入可以外接辅助绕组或悬空 5REGout5V基准输出可为次级反馈控制电路提供电压 6PGND同步整流MOSFET功率地Catch和Forward功率MOSFET公共地 7CDLY轻载复位电容端设置变压器轻载时的复位时间 8CPDT同步整流预测时间电容端Catch同步整流管设置预置时间

德州仪器-具有同步整流功能的移相全桥控制器UCC28950使用说明

- + -V S UCC28950 https://www.doczj.com/doc/7812279804.html, SLUSA16A–MARCH2010–REVISED JULY2010 Green Phase-Shifted Full-Bridge Controller With Synchronous Rectification Check for Samples:UCC28950 FEATURES APPLICATIONS ?Phase-Shifted Full-Bridge Converters ?Enhanced Wide Range Resonant Zero Voltage Switching(ZVS)Capability?Server,Telecom Power Supplies ?Industrial Power Systems ?Direct Synchronous Rectifier(SR)Control ?High-Density Power Architectures ?Light-Load Efficiency Management Including ?Solar Inverters,and Electric Vehicles –Burst Mode Operation –Discontinuous Conduction Mode(DCM),DESCRIPTION Dynamic SR On/Off Control with Programmable Threshold The UCC28950enhanced phase-shifted controller builds upon Texas Instrument’s industry standard –Programmable Adaptive Delay UCCx895phase-shifted controller family with ?Average or Peak Current Mode Control with enhancements that offer best in class efficiency in Programmable Slope Compensation and today’s high performance power systems.The Voltage Mode Control UCC28950implements advanced control of the full-bridge along with active control of the ?Closed Loop Soft Start and Enable Function synchronous rectifier output stage.?Programmable Switching Frequency up to1 MHz with Bi-Directional Synchronization The primary-side signals allow programmable delays to ensure ZVS operation over wide-load current and ?(+/-3%)Cycle-by-Cycle Current Limit input voltage range,while the load current naturally Protection with Hiccup Mode Support tunes the secondary-side synchronous rectifiers ?150-μA Start-Up Current switching delays,maximizing overall system ?V DD Under Voltage Lockout efficiency. ?Wide Temperature Range-40°C to125°C UCC28950Typical Application Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date.Copyright?2010,Texas Instruments Incorporated Products conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.

48V50A开关电源整流模块主电路设计

48V/50A开关电源整流模块主电路设计 高频开关电源系统具有体积小,重量轻,高效节能,输出纹波小,输出杂音电压小和动态响应性能好等很多优点,现已开始逐步地取代整流式电源而成为现代通讯设备的新型基础电源系统。随着电子技术,电力电子技术,自动控制技术和计算机控制技术的发展,高频开关电源系统的性能也越来越好。通信用开关电源系统作为开关式稳压电源的一种形式,它的设计内容和设计方法都具有自己的特殊性。 要设计一套通信用开关电源系统,首先要明白对它的全面要求,然后再设计系统的各个部分。高频开关电源主回路和控制回路所用的电路形式,元器件,控制方式都发展很快。它们的设计具有特殊的内容和方法。 1设计要求和具体电路设计 通信基础开关电源系统的关键部分是开关电源整流模块。整流模块的规格很多,结合在工 作中遇到的实际情况,提出该模块设计的硬指标如下: 1) 电网允许的电压波动范围 单相交流输入,有效值波动范围:220 V±20%,即176~264 V;频率:45~65 Hz。 2) 直流输出电压,电流 输出电压:标称-48V,调节范围:浮充,43~56?5V;均充,45~58V。 输出电流:额定值:50A。 3) 保护和告警性能 ①当输入电压低到170 VAC或高到270 VAC,或散热器温度高到75 ℃时,自动关机。 ②当模块直流输出电压高到60 V,或输出电流高到58~60 A时,自动关机。 ③当输出电流高到53~55 A时,自动限流,负载继续加大时,调低输出电压。

4) 效率和功率因数 模块的效率不低于88%,功率因数不低于0.99。 5) 其他指标 模块的其他性能指标都要满足“YD/T731”和“入网检验实施细则”等行业标准。 由于模块的输出功率不大,可采用如下的基本方案来设计主电路: 1) 单相交流输入,采用高频有源功率因数校正技术,以提高功率因数; 2) 采用双正激变换电路拓扑形式,工作可靠性高; 3) 主开关管采用 V MOSFET,逆变开关频率取为50 kHz; 4) 采用复合隔离的逆变压器,一只变压器双端工作; 5) 采用倍流整流电路,便于绕制变压器。 依照上述方案,即可设计出主电路的基本形式如图1。 图1 48V/50A整流模块DC/DC主电路基本形式 以下即可按照模块设计的要求来确定主电路中各元器件的基本参数。 1) 输出整流管的选择 输出整流二极管的工作波形如图2所示。

应用同步整流技术实现双向DC/DC变换

应用同步整流技术实现双向DC/DC变换 [日期:2006-11-9] 来源:电源技术应用作者:浙江大学姜德来吕征宇[字体:大中小] 摘要:在Buck同步整流技术的基础上,充分利用其电路的特点,提出了双向直流变换器,并分析了其可行性。针对双向恒压和双向恒流两种控制方式,分析了各自的开关管驱动脉冲要求,并给出了相应控制脉冲的实现方法。通过实验加以验证。 关键词:双向;同步整流;恒压;恒流 0 引言 同步整流技术是近几年研究的热点,主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。 此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC/DC变换提供了可能。在需要单向升降压且能量可以双向流动的场合,很有应用价值,如应用于混合动力电动汽车时,辅以三相可控全桥电路,可以实现蓄电池的充放电。 l 工作原理 1 1 电路拓扑 双向同步整流电路拓扑如图1所示。当电路工作于正向Buck时,Sw作为主开关管,当Sw导通时,SⅡ关断,电感L储能;当Sw关断时,SR导通续流,电感L释能给输出负载供电。当电路工作于反向Boost升压电路时,SR作为主开关管,当SR导通时,Sw关断,电感L储能;当SR关断时,Sw导通续流,电感L释能给输出负载供电。

1.2 参数设计 设置电感L是为了抑制电流脉动,因此其设计依据是电流纹波要求。电容C1主要是为了在Boost电路Sw关断时,维持输出电压恒定,而电容C2主要是为了抑制Buck输出电压脉动,其设计依据是电压纹波要求,因此两个电容的参数设计并不一致。具体算式如下。 式中:Vg为Buck电路输入电压; Vo为Boost电路输入电压; D为Sw管的占空比: △Q为对应输出电压纹波的电荷增量; △Vo为Buck电路输出电压纹波要求; △Vg为Boost电路输出电压纹波要求; △lmin为Buck和Boost电路电流纹波要求的较小值; I为电感电流。 1.3双向恒流型控制 1)当电路工作在Buck模式时,被控制的是电感电流,目的是为了维持电感电流恒定。电路参数方程为

同步整流技术总结

同步整流总结 1概述 近年来,为了适应微处理器的发展,模块电源的发展呈现两个明显的发展趋势:低 压和快速动态响应,在过去的10年中,模块电源大大改善了分布式供电系统的面貌。即使是在对成本敏感器件如线路卡,单板安装,模块电源也提供了诱人的解决方案。然而,高速处理器持续降低的工作电压需要一个全新的,适应未来的电压方案,尤其考虑到肖特级二极管整流模块不能令人满意的效率。同步整流电路正是为了适应低压输出要求应运而生的。由于一般的肖特基二极管的正向压降为0.3V以上,在低压输出时模块的效率 就不能做的很高,有资料表明采用肖特基二极管的隔离式DC-DC模块电源的效率可以 按照下式进行估算: V out V out (0.1 V out V cu V f) 0.1 V out—原边和控制电路损耗 V cu —印制板的线路损耗 V f —整流管导通压降损耗 我们假设采用0.4V的肖特基整流二极管,印制板的线路损耗为0.1V,则1.8V的模 块最大的估算效率为 72%。这意味着28%的能量被模块内部损耗了。其中由于二极管导通压降造成的损耗占了约15%。随着半导体工艺的发展,低压功率MOS管的的有着越 来越小的通态电阻,越来越低的开关损耗,现在IR公司最新的技术可以制作30V/2.5m Q的MOS管,在电流为15A时,导通压降为0.0375,比采用肖特基二极管低了一个数量级。所以近年来对同步整流电路的研究已经引起了人们的极大关注。在中大功率低压输出的DC-DC变换器的产品开发中,采用低压功率MOSFET替代肖特基二极管的方案 得到了广泛的认同。今天,采用同步整流技术的ON-BOARD 模块已经广泛应用于通讯 的所有领域。 2同步整流电路的工作原理 图1采用同步整流的正激电路示意图(无复位绕组)

倍流整流电路

基于DSP的移相全桥倍流整流电路的研究 2009-8-25 来源:本站阅读数: 2 次文字选择: 摘要:本文分析了倍流整流的工作原理,并将DSP应用于此电路中,采用数字控制来取代传统的模拟控制方法,取得较好的效果。 叙词:倍流、DSP Abstract:The operation theory is analyzed is the paper. A new kind of DSP is applied in the circuit. Its control arithmetic is implemented completely by DSP instead of the traditional analog control strategy, which achieves favorable effect. Keyword:Current Doubler、DSP 一、引言 在中大功率场合下,由于开关管电压应力低、易于实现软开关等优点,移相全桥电路得到比较广泛的应用。其副边的整流电路形式主要有:全桥、全波、倍流等方式。全桥方式应用于输出电压较高的场合。对于输出电压不高的场合,全波电路由于其元件少,结构简单等优点得到广泛应用。但它也存在一些问题,诸如占空比丢失、整流二极管的反向恢复引起的电压尖峰以及两桥臂实现ZVS(零电压开关)的差异。倍流整流方式则可以克服上述缺点。本文详细分析了倍流电路的工作原理,并将数字控制应用于此电路中,从而克服了模拟控制的一些缺点,取得了较好的控制效果。 二、电路分析 电路及其主要工作波形图1所示:

图1 (a) 图1(b) 可以看到其一个周期分为12个工作模态,由于下半周期的六个工作模态和上半周期类似,所以,只分析上半周期的工作情况。为便于分析,首先做如下假设: (1)各开关管为理想开关管; (2)输出滤波电感Lf1=Lf2; (3)输出电容Coss1=Coss2=Clead、Coss3=Coss4=Clag; (4)电容Cb上的电压Vcb<

半桥同步整流设计报告

\ 半桥倍流同步整流电源的设计 摘要:现如今,微处理器要求更低的供电电压,以降低功耗,这就要求供电系统能提供更大的输出电流,低压大电流技术越发引起人们的广泛关注。本电源系统以对称半桥为主要拓扑,结合倍流整流和同步整流的结构,并且使用MSP430单片机控制和采样显示,实现了5V,15A大电流的供电系统。效率较高,输出纹波小。 关键词:对称半桥,倍流整流,同步整流,SG3525 一、方案论证与比较 1 电源变换拓扑方案论证 方案一:(如下图)此电路为传统的半桥拓扑。由于MOS管只承受一倍电源电压,而不像单端类的承受两倍电源电压,且较之全桥拓扑少了两个昂贵的MOS 管,因此得到很大的应用。但在低压大电流的设计中,输出整流管的损耗无疑会大大降低效率,而且电感的设计也会变得困难,因此不适合大电流的设计。

方案二:传统半桥+同步整流。将上图半桥的输出整流管改为低导通阻的MOSFET。如此可大大减小输出整流的损耗,提高效率。比较适合大电流的整流方案,但变压器的绕制和电感的设计较麻烦。 方案三:(如下图)半桥倍流同步整流。倍流整流很早就被人提出,它的特点是变压器输出没有中心抽头,这就大大简化了变压器的设计,并且提高了变压器的利用率。而流过变压器和输出电感的电流仅有输出电流的一半,这使得变压器和电感的制作变得简单。并且由波形分析可以知道,输出电流的纹波是互相抵消的。该电路的不足是电路时序有要求,控制稍显复杂。由上分析我们选择方案三。

2 控制方案选择 方案一:由于控制芯片SG3525输出两路互补对称的PWM信号,则可将控制信号做如下设置(如下图)。 将驱动Q1的信号与Q4同步起来,Q2和Q3的信号同步,则可以实现倍流同步整流的时序同步,方案简单易行,但由于SG3525在输出较小占空比时有较大的死区,则输出MOSFET的续流二极管会产生较大的损耗。 方案二:。。。。。反激变换。。。。将SG3525的驱动信号反向后送入输出整流MOS管,如此可以极大的减少低占空比时的损耗,且仅需一对反向驱动,故选

UCC28950移相全桥设计指南设计

UCC28950移相全桥设计指南 一,拓扑结构及工作原理 (1) 主电路拓扑 本设计采用ZVZCS PWM移相全桥变换器,采用增加辅助电路的方法复位变压器原边电流,实现了超前桥臂的零电压开关(ZVS)和滞后桥臂的零电流开关(ZCS)。电路拓扑如图3.6所示。 图3.6 全桥ZVZCS电路拓扑 当1S、4S导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容Cc充电。当关断1S时,电源对1C C通过变压器初级绕组放电。由于1C的存在,1S为零电压关断,此时变压器漏感k L和输出滤波电感o L串联,共同提供能量,由于充电,2 Cc的存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于k L,加速了2C的放电,为2S的零电压开通提供条件。当Cc放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段4S,开通3S,由于漏感k L两边电流不能突变, S为零电流关断,3S为零电流开通。 所以4 (2) 主电路工作过程分析[7] 半个周期内将全桥变换器的工作状态分为8种模式。 ①模式1 图1模式1主电路简化图及等效电路图 ②模式2 图2模式2简化电路图 ③模式3

图3模式3简化电路图 ④模式4 图4模式4主电路简化图及等效电路图⑤模式5 图5模式5 主电路简化图及等效电路图⑥模式6 图6模式6主电路简化图及等效电路图⑦模式7

图7模式7主电路简化电路图 ⑧模式8 图8模式8主电路简化电路图 二,关键问题 1:滞后臂较难实现ZVS 原因:滞后臂谐振的时候,次级绕组短路被钳位,所以副边电感无法反射到原边参加谐振,导致谐振的能量只能由谐振电感提供,如果能量不够,就会出现无法将滞后臂管子并联的谐振电容电压谐振到0V. 解决方法: ①、增大励磁电流。但会增大器件与变压器损耗。 ②、增大谐振电感。但会造成副边占空比丢失更严重。 ③、增加辅助谐振网络。但会增加成本与体积。 2,副边占空比的丢失 原因:移相全桥的原边电流存在着一个剧烈的换流过程,此时原边电流不足以提供副边的负载电流,因此副边电感就会导通另一个二极管续流,即副边处于近似短路状态; Dloss与谐振电感量大小以及负载RL大小成正比,与输入电压大小成反比。 解决方法: ①、减少原副边的匝比。但会造成次级整流管的耐压增大的后果。

一种全桥同步整流器的设计及其应用

一种全桥同步整流器的设计及其应用 2012-10-24 22:01:37 来源:21IC 关键字:全桥同步整流器 由于现代高速超大规模集成电路的尺寸不断减小,同时又对功率要求的不断增加。因此必须提高供电电源的功率密度,在有限的散热空间里增加功率密度,就必须提高电源的工作效率。近年来,通过增加输出级同步整流、引入软开关技术等,使得开关电源的效率得到了大幅提高。如何进行一步提高其工作效率,笔者从输入级的一次整流入手进行了相应分析和研究。 1 原理与设计 1.1 桥式整流与桥式同步整流分析 一般开关电源中一次整流电路结构如图1所示。因为图中电源V1由电网提供,要采用高压二极管对其进行整流,所以D1,D2,D3,D4的压降约为1 V。当输出电流为I时,将在整个整流桥上产生P(VD)=1×2×I的功率损耗。 桥式同步整流电路结构如图2所示,图中M1、M2、M3、M4为n沟道增强型功率MOS 管,其中D1、D2、D3、D4为其寄生体二极管。图中左半部分为其驱动信号产生模块。 为进一步提高电源变换器的效率,降低一次整流部分的损耗是提高电源变换器工作效率的一种有效途径。采用P-MOSFET管来实现整流功能的整流电路称为同步整流电路,P-MOSFET管不像二极管那样能自动截止反向电流,需要用P-MOSFET管来实现同步整流,必须控制P-MOSFET管的导通和关断,而P-MOSFET管的导通和关断又取决于它的栅极驱

动信号。因此,在设计同步整流P-MOSFET管栅极驱动信号的大小和时序,要确保同步整流电路的正常工作。图3为相应开关管M1、M2、M3、M4控制信号S1、S2、S3、S4波形图。 为防止开关管发生直通的现象,在上下桥臂的波形切换之间加入了死区时间Tdeadtime。 因为工作频率在50 Hz,所以无需考虑其开关损耗。桥式同步整流电路中功率损耗主要发生在其导通的直流电阻RDS上,即P=(RDS×2)I2,图4给出了相应损耗功耗曲线。 设全桥整流时整流桥的损耗功率P(VD)=2×I。设全桥同步整流时开关管的损耗功率P(VT)=Ron×I2。与全桥整流相比全桥同步整流所节省的功率损耗P(D)=P(VD)-P(VT)=2×I-Ron×I2。根据函数的增减性,当I=1/Ron时,P(D)可取得最大值。 1.2 相应参数计算 此部分主要考虑将输入正弦波变为与之同步的方波,相应电路如图5所示。为防止整流开关管发生直通的现象,在上下桥臂波形切换之间加入了死区时间。引死区时间由过零比较电压时行设定,即电阻R1与电阻R2、R3与电阻R4的比值来确定。死区时间Tdeadtime 在整个周期中所占的时间为 其中,V1-1为同步交流信号的幅值;T为输入交流信号的周期。

移相全桥全参数计算

1、介绍 在大功率服务器件中,为满足高效和绿色标准,一些供电设计师们发现使用移相全桥转换器更容易。这是因为移相全桥变换器可以在转换器原边获得零切换。这个应用程序的目的是设计报告审查的600W移相全桥变换器在电力系统中,利用TI的新UCC28950移相全桥控制器,并基于典型值。在生产设计需要修改的值最坏情况的条件。希望这些信息将帮助其他电源设计者的努力设计一个有效的移相全桥变换器。 表 1 设计规 描述最小值典型值最大值 输入电压370V 390V 410V 输出电压11.4V 12V 12.6V 允许输出电压瞬变600mV 加载步骤90% 输出电压600W 满负荷效率93% 电感器切换频率200kHz 2、功能示意图

3、功率预算 为满足效率的目标,一组功率预算需要设定。 4、原边变压器计算T1 变压器匝比(a1): 估计场效应晶体管电压降(VRDSON): 基于最小指定的输入电压时70%的占空比选择变压器。 基于平均输入电压计算典型工作周期(DTYP) 输出电感纹波电流设置为输出电流的20%。 需要注意在选择变压器磁化电感的正确数值(LMAG)。下列方程计算主变压器(T1)的最低磁化电感,确保变频器运行在电流型控制。如果LMAG太小,磁化电流会导致变换器运行在电压模式控制代替peak-current模式。这是因为磁化电流太大,它将作为PWM坡道淹没RS上的电流传感信号。

图2显示了T1原边电流(IPRIMARY)和同步整流器QE和QF电流对同步整流栅驱动电流的反应。注意I(QE) I(QF)也是T1的次级绕组电流。变量D是转换器占空比。 计算T1次级均方根电流(ISRMS):

同步整流电路分析

同步整流电路分析作者gyf2000 日期2007-4-22 20:21:00 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

l 全波整流和倍流整流

l 全波整流和倍流整流 传统上,通信电源变压器副边整流电路大多采用图1(a)所示带中心抽头的全波整流电路,该电路拓扑结构简单.器件总数少,二极管通态损耗小,但是变压器副边绕组的利用率较低。随着开关电源技术的迅速发展,通信电源要求更大的输出电流和更小的输出电压纹波。对低压大电流输出的变压器而言,中心抽头不仅给变压器的没计和制造带来很大困难,而且外部引线的安装和焊接也很难处理。 常用的倍流整流电路拓扑如图l(b)所示,与传统的变压器副边带中心抽头的全波整流电路相比,倍流整流电路有以下优点:减小了变压器副边绕组的电流有效值;变压器利用率较高,无需中心抽头,结构简单;输出电感纹波电流抵消可以减小输 2 工作原理 倍流整流电路可以被看成是由传统的全桥整流电路演变而来。如图2所示,将图2(a)中全桥整流电路中的两个下方二极管用两个电感取代,即可获得图2(b),经过整理后即可得到如图2(c)所示的倍流整流电路。

实际上倍流整流电路也可以由全波整流电路通过拓扑变换得来。在图3(a)中,输出电感与输出电容和负载电阻串联,而串联连接的兀件可以互换位置,因此将输出电感换到输出负母线,可得图3(b);将变压器的副边绕组看成电压源,而把输出电感看成电流源,可得图3(c);由虚线框内三端口网络的Y/△变换,可得图3(d);再将电流源恢复成输出电感,将电压源恢复成变压器的副边绕组,可得图3(e)所示的倍流整流电路。

倍流整流电路的原理图如图4所示,对中、大功率的通信电源而言,移相全桥电路是较为常见的电路拓扑形式,在原边电路处于续流状态时,变压器的原边绕组和副边绕组都被短路。因此倍流整流电路在稳态运行时,每个开关周期有4种工作模式。为便于分析作如F假设:高频变压器原副边匝比为n=N1/N2,忽略高频变压器原副边漏感,所有器件均为理想器件。可得关键波形如图5所示。 与全波整流电路相比,倍流整流器的高频变压器的副边绕组仅需一个单一绕组,不用中心抽头;与全桥整流电路相比,倍流整流电路使用的二极管数量少一半。因此,倍流整流电路结合了全波整流电路和全桥整流电路两者的优点。当然,倍流整流电路要多使用一个输出滤波电感,结构略显复杂。但此电感的工作频率及输送电流均为全波整流电路所用电感的一半,

同步整流电路分析

同步整流电路分析 一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用3.3V甚至1.8V或1.5V的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC/DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路

2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的功率损耗主要包括V1及V2的导通损耗及栅极驱动损耗。当开关频率低于1MHz时,导通损耗占主导地位;开关频率高于1MHz时,以栅极驱动损耗为主。 3、半桥他激、倍流式同步整流电路

同步整流电路分析

一、传统二极管整流电路面临的问题 近年来,电子技术的发展,使得电路的工作电压越来越低、电流越来越大。低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。 开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。快恢复二极管(FRD)或超快恢复二极管(SRD)可达~,即使采用低压降的肖特基二极管(SBD),也会产生大约的压降,这就导致整流损耗增大,电源效率降低。 举例说明,目前笔记本电脑普遍采用甚至或的供电电压,所消耗的电流可达20A。此时超快恢复二极管的整流损耗已接近甚至超过电源输出功率的50%。即使采用肖特基二极管,整流管上的损耗也会达到(18%~40%)P O,占电源总损耗的60%以上。因此,传统的二极管整流电路已无法满足实现低电压、大电流开关电源高效率及小体积的需要,成为制约DC /DC变换器提高效率的瓶颈。 二、同步整流的基本电路结构 同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。 1、基本的变压器抽头方式双端自激、隔离式降压同步整流电路 2、单端自激、隔离式降压同步整流电路 图1 单端降压式同步整流器的基本原理图 基本原理如图1所示,V1及V2为功率MOSFET,在次级电压的正半周,V1导通,V2关断,V1起整流作用;在次级电压的负半周,V1关断,V2导通,V2起到续流作用。同步整流电路的

相关主题
文本预览
相关文档 最新文档