当前位置:文档之家› 1.1-1概述及半导体材料基础知识同步练

1.1-1概述及半导体材料基础知识同步练

1.1-1概述及半导体材料基础知识同步练
1.1-1概述及半导体材料基础知识同步练

课题1:概述及半导体材料基础知识

【任务一】概述

1.电子技术中所说的“信号”是指变化的或,称为电信号。

2.电信号可以分为两类,即振幅随时间呈连续变化的信号,称为信号;振幅在时间上是离散的信号,称为信号。

3.向信号(或数据)处理系统送入的信号称为,处理后得到的信号称为。4.集成电路(IC)又叫,它是把和一体化的电路系统,在集成电路中,把大量的元器件,如、、及它们之间的,全部集中制作在一小块半导体硅片上。

5.集成电路的特点有:、、、,而且电路工作的可靠性,组装和调试。

6.识别下列信号是模拟信号还是数字信号

()()

【任务二】半导体器件基础知识

1.自然界中物质,按导电能力的不同,可分为____________ 、和。2.半导体是一种导电能力介于与之间的物质,它的导电能力会随着、____________ 、和的不同而发生很大的变化。

3.半导体按导电类型分为型半导体和型半导体;按材料分为半导体和半导体。

4.PN结具有__________ 性,即加正向压降时,PN结_________,加反向压降时,PN结________ 。5.PN结的正向接法指的是P区接电源的极,N区接电源的极。

6.P型半导体的多数载流子是,少数载流子是;N型半导体的多数载流子是,少数载流子是。

7.PN结两端外加的反向电压增加到一定值时,反向电流急剧增大,称为PN结的。

8.PN结中存在着电容,该电容称为。

9.不掺杂任何杂质的纯净半导体称为()

A.N型半导体B.P型半导体C.电子型半导体D.本证半导体

10.N型半导体是指在本征半导体中掺入微量的()

A.硅元素B.硼元素C.磷元素D.锂元素

11.当PN结两端加正向电压时,那么参加导电的是()

A.多数载流子B.少数载流子C.既有多数载流子又有少数载流子

12.什么是PN结?PN结具有什么特性?

【任务拓展】

1.扩散电流是由载流子运动而形成的,漂移电流是由载流子在作用下运动而形成的。

2.PN结反向击穿中,什么称为电击穿?什么称为热击穿?

3.N型半导体中的多数载流子是电子,P型半导体中的多数载流子是空穴,那么能否说N型半导体带负电,P型半导体带正电?为什么?

白玻半导体材料

一.半导体材料的简介及种类 自然界的物质、材料按导电能力大小可分为导体、半导体、和绝缘体三大类。半导体的电导率在10-3~109欧·厘米范围。在一般情况下,半导体电导率随温度的升高而增大,这与金属导体恰半导体材料好相反,凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。元素半导体在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、

(整理)半导体基础知识.

1.1 半导体基础知识概念归纳 本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。 电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。 绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。 绝缘体导电性:极差。如惰性气体和橡胶。 半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧。 半导体导电性能:介于半导体与绝缘体之间。 半导体的特点: ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,

半导体材料导论结课复习题

半导体材料复习题 1、半导体材料有哪些特征? 答:半导体在其电的传导性方面,其电导率低于导体,而高于绝缘体。 (1)在室温下,它的电导率在103~10-9S/cm之间,S为西门子,电导单位,S=1/ρ(Ω. cm) ;一般金属为107~104S/cm,而绝缘体则<10-10,最低可达10-17。同时,同一种半导体材料,因其掺入的杂质量不同,可使其电导率在几个到十几个数量级的范围内变化,也可因光照和射线辐照明显地改变其电导率;而金属的导电性受杂质的影响,一般只在百分之几十的范围内变化,不受光照的影响。 (2)当其纯度较高时,其电导率的温度系数为正值,即随着温度升高,它的电导率增大;而金属导体则相反,其电导率的温度系数为负值。 (3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子和负离子同时导电。 2、简述半导体材料的分类。 答:对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、化合物半导体和固溶半导体三大类。 3、化合物半导体和固溶体半导体有哪些区别。 答:由两个或两个以上的元素构成的具有足够的含量的固体溶液,如果具有半导体性质,就称为固溶半导体,简称固溶体或混晶。固溶半导体又区别于化合物半导体,因后者是靠其价键按一定化学配比所构成的。固溶体则在其固溶度范围内,其组成元素的含量可连续变化,其半导体及有关性质也随之变化。 4、简述半导体材料的电导率与载流子浓度和迁移率的关系。 答:s = nem 其中: n为载流子浓度,单位为个/cm3; e 为电子的电荷,单位为C(库仑),e对所有材料都是一样,e=1.6×10-19C 。 m为载流子的迁移率,它是在单位电场强度下载流子的运动速度,单位为cm2/V.s; 电导率s的单位为S/cm(S为西门子)。 5、简述霍尔效应。 答:将一块矩形样品在一个方向通过电流,在与电流的垂直方向加上磁场(H),那么在样品的第三个方向就可以出现电动势,称霍尔电动势,此效应称霍尔效应。 6、用能带理论阐述导体、半导体和绝缘体的机理。 答:按固体能带理论,物质的核外电子有不同的能量。根据核外电子能级的不同,把它们的能级划分为三种能带:导带、禁带和价带(满带)。 在禁带里,是不允许有电子存在的。禁带把导带和价带分开,对于导体,它的大量电子处于导带,能自由移动。在电场作用下,成为载流子。因此,导体载流子的浓度很大。 对绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量价带中的电子越过禁带,跃迁到导带上去成为载流子。 绝缘体和半导体的区别主要是禁的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小。导电性能很弱。实际绝缘体里,导带里的电子

半导体材料(精)

半导体材料 概要 半导体材料(semiconductor material) 导电能力介于导体与绝缘体之间的物质称为半导体。半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电阻率在10(U-3)~10(U-9)欧姆/厘米范围内。半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。半导体材料按化学成分和内部结构,大致可分为以下几类。1.元素半导体有锗、硅、硒、硼、碲、锑等。50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用硅材料制造的。2.化合物半导体由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。3.无定形半导体材料用作半导体的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。4.有机增导体材料已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。 特性和参数半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。杂质半导体靠导带电子导电的称N型半导体,靠价带空穴导电的称P型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。利

半导体基础知识学习

我们知道,电子电路是由晶体管组成,而晶体管是由半导体制成的。所以我们在学习电子电路之前, 一定要了解半导体的一些基本知识。 这一章我们主要学习二极管和三极管的一些基本知识,它是本课程的基础,我们要掌握好在学习时我们把它的内容分为三节,它们分别是: 1、1 半导体的基础知识 1、2 PN结 1、3 半导体三极管 1、1 半导体的基础知识 我们这一章要了解的概念有:本征半导体、P型半导体、N型半导体及它们各自的特征。一:本征半导体 纯净晶体结构的半导体我们称之为本征半导体。常用的半导体材料有:硅和锗。它们都是四价元素,原子结构的最外层轨道上有四个价电子,当把硅或锗制成晶体时,它们是靠共价键的作用而紧密联系在一起。 共价键中的一些价电子由于热运动获得一些能量,从而摆脱共价键的约束成为自由电子,同时在共价键上留下空位,我们称这些空位为空穴,它带正电。我们用晶体结构示意图来描述一下;如图(1)所示:图中的虚线代表共价键。 在外电场作用下,自由电子产生定向移动,形成电子电流; 同时价电子也按一定的方向一次填补空穴,从而使空穴产生定向移动,形成空穴电流。 因此,在晶体中存在两种载流子,即带负电自由电子和带正电空穴,它们是成对出现的。二:杂质半导体 在本征半导体中两种载流子的浓度很低,因此导电性很差。我们向晶体中有控制的掺入特定的杂质来改变它的导电性,这种半导体被称为杂质半导体。 1.N型半导体 在本征半导体中,掺入5价元素,使晶体中某些原子被杂质原子所代替,因为杂质原子最外层有5各价电子,它与周围原子形成共价键后,还多余一个自由电子,因此使其中的空穴的浓度远小于自由电子的浓度。但是,电子的浓度与空穴的浓度的乘积是一个常数,与掺杂无关。在N型半导体中自由电子是多数载流子,空穴是少数载流子。 2.P型半导体 在本征半导体中,掺入3价元素,晶体中的某些原子被杂质原子代替,但是杂质原子的最外层只有3个价电子,它与周围的原子形成共价键后,还多余一个空穴,因此使其中的空穴浓度远大于自由电子的浓度。在P型半导体中,自由电子是少数载流子,空穴使多数载流子。 1、2 P—N结

模块六常用半导体材料测试卷

模块六常用半导体材料测试卷 卷Ⅰ(客观题) 一、单项选择题:(本大题共85个小题,每小题2分,共170分) 1.在焊接过程中要使用助焊剂,关于助焊剂的作用,下列说法错误的是A.去除氧化物B.使焊点不出现尖角 C.防止工件和焊料加热时氧化 D.减小焊料熔化后的表面张力,增加其流动性,有利于浸润 2.钎焊分离电子元器件最合适选用的电烙铁是 A.25W B.75W C.100W D.150W 3.共晶焊锡的熔点为 A.327℃B.232℃C.183℃D.212℃ 4.焊接中焊点凝固前被焊元件移动容易形成 A.虚焊B.夹生焊C.漏焊D.预焊 5.焊接电子元件最适合的焊剂是 A.焊锡膏B.松香C.稀盐酸D.氯化锌 6.下面关于虚焊的说法错误的是 A.虚焊就是假焊B.焊料与被焊物的表面没有互相扩散 C.虚焊主要是由于焊件金属表面不干净和焊剂用量过少造成的 D.虚焊主要由于烙铁温度不够高和留焊时间太短造成的 7.下面关于镀锡的说法错误的是 A.上锡B.预焊C.搪锡D.焊件表面处理 8.下列关于焊接说法错误的是 A.电烙铁烧死是指焊头因氧化而不吃锡的现象 B.焊接时不能甩动电烙铁,以免锡液伤人 C.电烙铁的金属外壳必须接地 D.焊锡膏适用于电子器件的焊接 9.关于手工焊接,下列说法不正确的是 A.常用的焊锡丝的材料是锡铅合金 B.焊剂的作用是焊接时去除氧化物并防止金属表面两次氧化 C.焊接中要避免虚焊和夹生焊现象的发生 D.焊接时,先用烙铁头加热工件,然后把焊锡丝放在烙铁头上熔化 10.信号发生器的输出幅度每衰减20dB,输出信号的电压值即变为原来的A.0.5 B.0.1 C.31.6% D.1211.信号发生器输出信号时,输出衰减选40dB,当电压表示数值为5V 时,则输出为 A.5V B.0.5V C.0.05V D.50V 12.信号发生器的输出衰减有20dB和40dB,当按下20dB时,输出相对衰减10倍,当按下40dB 时,输出相对衰减为 A.10 B.100 C.20 D.40 13.用示波器观察某标准正弦波的电压波形,若一个周期的距离为4div,示波器的扫描时间选择开关置于50ms/div,且使用了“扩展×10”,则该电压的频率是 A.5Hz B.20Hz C.50Hz D.500Hz 14.要使示波器的显示波形向上移动,应调节旋钮 A.Y轴移位B.Y轴增幅C.X轴移位D.X轴增幅 15.要使示波器显示波形亮度适中,应调节旋钮 A.聚焦B.辉度C.辅助聚焦D.X轴衰减 16.若Y轴输入信号频率为200Hz,要在荧光屏上看到4个完整的波形,则扫描频率范围要置于A.10――100Hz B.1kHz C.10 kHz D.100 kHz 17.用示波器观察一正弦电压的波形,现屏中测出正弦波电压峰峰值为4div,档位为5V/div,探头不衰减,则正弦波电压的有效值为 A.20V B.10V C.52V D.102V 18.下列关于示波器的说法错误的是 A.调整示波器的辉度钮,光点亮度不能太亮 B.调节聚焦钮,使示波器的光点成为小圆点,如果不行,可用辅助聚焦钮配合 C.示波器长期不用时,会导致内部的电解电容器失效 D.为调整示波器的亮度和清晰度,可以让光点长时间停在屏幕中央 19.使示波器的显示波形稳定,只显示两个完整波形,除调整垂直方向之外,还要调整 A.扫描范围B.X轴衰减C.扫描范围和X轴衰减D.X轴位移 20.用示波器观察两个正弦信号如图1所示,已知X轴偏转因数置于0.5μs/div,Y轴偏转因数置于0.1V/div,则两信号的相位差 A.30o B.90o C.60o D.45o

常用的半导体材料有哪些

常用的半导体材料有哪些? 晶圆 初入半导体行业为了尽快入门,我们必须对这个行业的主要物料做一个详细的了解,因为制造业的结构框架是人机料法环测。物料是非常关键的一部分,特别是对于半导体这类被人家卡脖子的行业更要牢记于心,尽快摆脱西方的围堵,但是基础材料这块需要长时间的积累,短期我们很难扭转当下这种憋屈的局面。 在半导体产业中,材料和设备是基石,是推动集成电路技术创新的引擎。半导体材料在产业链中处于上游环节,和半导体设备一样,也是芯片制造的支撑性行业,所有的制造和封测工艺都会用到不同的半导体材料。 半导体材料一般均具有技术门槛高、客户认证周期长、供应链上下游联系紧密、行业集中度高、技术门槛高和产品更新换代快的特点,目前高端产品市场份额多为海外企业垄断,国产化率较低,寡头垄断格局一定程度制约

了国内企业快速发展。华为事件的发生发展告诉我们半导体材料国产替代已经非常紧迫了。 半导体材料细分行业多,芯片制造工序中各单项工艺均配套相应材料。按应用环节划分,半导体材料主要可分为制造材料和封装材料。在晶圆制造材料中,硅片及硅基材料占比最高,约占31%,其次依次为光掩模板14%,电子气体14%,光刻胶及其配套试剂12%,CMP抛光材料7%,靶材3%,以及其他材料占13%。 在半导体封装材料中,封装基板占比最高,占40%。其次依次为引线框架15%、键合丝15%、包封材料13%、陶瓷基板11%、芯片粘合材料4%、以及其他封装材料2%。封装材料中的基板的作用是保护芯片、物理支撑、连接芯片与电路板、散热。陶瓷封装体用于绝缘打包。包封树脂粘接封装载体、同时起到绝缘、保护作用。芯片粘贴材料用于粘结芯片与电路板。封装方面相对难度要低一点,所以我们国家的半导体企业主要集中在封测这一后工艺领域。 半导体材料中前端材料市场增速远高于后端材料,前端材料的增长归功于各种前端技术的积极使用,如极紫外(EUV)曝光,原子层沉积(ALD)和等离子体化学气相沉积(PECVD)等。

第一章半导体基础知识(精)

第一章半导体基础知识 〖本章主要内容〗 本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。 首先介绍构成PN结的半导体材料、PN结的形成及其特点。其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。〖本章学时分配〗 本章分为4讲,每讲2学时。 第一讲常用半导体器件 一、主要内容 1、半导体及其导电性能 根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。 2、本征半导体的结构及其导电性能 本征半导体是纯净的、没有结构缺陷的半导体单晶。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。在热力学温度零度和没有外界激发时,本征半导体不导电。 3、半导体的本征激发与复合现象 当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。 游离的部分自由电子也可能回到空穴中去,称为复合。 在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。 4、半导体的导电机理 自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。

半导体材料的分类及应用

半导体材料的分类及应用

————————————————————————————————作者: ————————————————————————————————日期: ?

半导体材料的分类及应用 能源、材料与信息被认为是当今正在兴起的新技术革命的三大支柱。材料方面, 电子材料的进展尤其引人注目。以大规模和超大规模集成电路为核心的电脑的问世极大地推动了现代科学技术各个方面的发展,一个又一个划时代意义的半导体生产新工艺、新材料和新仪器不断涌现, 并迅速变成生产力和生产工具,极大地推动了集成电路工业的高速发展。半导体数字集成电路、模拟集成电路、存储器、专用集成电路和微处理器,无论是在集成度和稳定可靠性的提高方面, 还是在生产成本不断降低方面都上了一个又一个新台阶,有力地促进了人类在生物工程、航空航天、工业、农业、商业、科技、教育、卫生等领域的全面发展, 也大大地方便和丰富了人们的日常生活。半导体集成电路的发展水平, 是衡量一个国家的经济实力和科技进步的主要标志之一, 然而半导体材料又是集成电路发展的一个重要基石。“半体体材料”作为电子材料的代表,在生产实践的客观需求刺激下, 科技工作者已经发现了数以千计的具有半导体特性的材料, 并正在卓有成效在研究、开发和利用各种具有特殊性能的材料。 1 元素半导体 周期表中有12 种具有半导体性质的元素( 见下表) 。但其中S、P、As、Sb 和I 不稳定,易发挥; 灰Sn在室温下转变为白Sn, 已金属;B、C的熔点太高, 不易制成单晶; T e 十分稀缺。这样只剩下Se、Ge 和Si 可供实用。半导体技术的早期( 50 年代以前) 。

常用半导体器件

《模拟电子技术基础》 (教案与讲稿) 任课教师:谭华 院系:桂林电子科技大学信息科技学院电子工程系 授课班级:2008电子信息专业本科1、2班 授课时间:2009年9月21日------2009年12月23日每周学时:4学时 授课教材:《模拟电子技术基础》(第4版) 清华大学电子学教研组童诗白华成英主编 高教出版社 2009

第一章常用半导体器件 本章内容简介 半导体二极管是由一个PN结构成的半导体器件,在电子电路有广泛的应用。本章在简要地介绍半导体的基本知识后,主要讨论了半导体器件的核心环节——PN 结。在此基础上,还将介绍半导体二极管的结构、工作原理,特性曲线、主要参数以及二极管基本电路及其分析方法与应用。最后对齐纳二极管、变容二极管和光电子器件的特性与应用也给予简要的介绍。 (一)主要内容: ?半导体的基本知识 ?PN结的形成及特点,半导体二极管的结构、特性、参数、模型及应用电 路 (二)基本要求: ?了解半导体材料的基本结构及PN结的形成 ?掌握PN结的单向导电工作原理 ?了解二极管(包括稳压管)的V-I特性及主要性能指标 (三)教学要点: ?从半导体材料的基本结构及PN结的形成入手,重点介绍PN结的单向导 电工作原理、 ?二极管的V-I特性及主要性能指标 1.1 半导体的基本知识 1.1.1 半导体材料 根据物体导电能力(电阻率)的不同,来划分导体、绝缘体和半导体。导电性能介于导体与绝缘体之间材料,我们称之为半导体。在电子器件中,常用的半导体材料有:元素半导体,如硅(Si)、锗(Ge)等;化合物半导体,如砷化镓(GaAs)等;以及掺杂或制成其它化合物半导体材料,如硼(B)、磷(P)、锢(In)和锑(Sb)等。其中硅是最常用的一种半导体材料。 半导体有以下特点: 1.半导体的导电能力介于导体与绝缘体之间 2.半导体受外界光和热的刺激时,其导电能力将会有显著变化。 3.在纯净半导体中,加入微量的杂质,其导电能力会急剧增强。

半导体材料硅基本性质

半导体材料硅的基本性质 一.半导体材料 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下: 图1 典型绝缘体、半导体及导体的电导率范围 半导体又可以分为元素半导体和化合物半导体,它们的定义如下: 元素半导体:由一种材料形成的半导体物质,如硅和锗。 化合物半导体:由两种或两种以上元素形成的物质。 1)二元化合物 GaAs —砷化镓 SiC —碳化硅 2)三元化合物 As —砷化镓铝 AlGa 11 AlIn As —砷化铟铝 11 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。 非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。如磷、砷就是硅的施主。 受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂

质称为受主。如硼、铝就是硅的受主。 图(a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅 掺入施主的半导体称为N型半导体,如掺磷的硅。 由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。如图所示。 掺入受主的半导体称为P型半导体,如掺硼的硅。 由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。如图所示。 二.硅的基本性质 硅的基本物理化学性质 硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。 性质符号单位硅(Si) 原子序数Z 14 原子量M 原子密度个/cm3 ×1022 晶体结构金刚石型 晶格常数 a ? 熔点Tm ℃1420 密度(固/液) ρg/ cm3 介电常数ε0 个/ cm3×1010本征载流子浓度n i 本征电阻率ρi Ω·cm ×105

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图:

电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触

附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。

2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低

半导体材料

半导体材料应用前景调研报告 1.前言 随着科技的进步,半导体材料的研究与发展越来越受到人们的重视与青睐,从小小的光伏电池与LED灯,到雷达与红外探测器,无论是我们日常的生活中,还是包含国际顶尖技术的设备中,都有着半导体材料的影子。在材料领域里,半导体材料作为科学家们重点研究的对象,在现代社会中不断散发着光和热,使这个世界变得更加美好。 2.半导体材料的应用 (1)半导体照明技术 发光二极管,是一种半导体固体发光器件,是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。半导体照明产品就是利用LED作为光源制造出来的照明器具。半导体照明具有高效、节能、环保、易维护等显著特点,是实现节能减排的有效途径,已逐渐成为照明史上继白炽灯、荧光灯之后的又一场照明光源的革命。目前LED已广泛用于大屏幕显示、交通信号灯、手机背光源等,开始应用于城市夜景美化亮化、景观灯、地灯、手电筒、指示牌等,随着单个LED亮度和发光效率的提高,即将进入普通室内照明、台灯、笔记本电脑背光源、LCD显示器背光源等,因而具有广阔的应用前景和巨大的商机。 (2)光伏电池 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应

工作的薄膜式太阳能电池为主流,而以光化学效应原理工作的太阳能电池则还处于萌芽阶段。太阳光照在半导体p-n结上,形成新的空穴--电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。无枯竭危险;绝对干净(无污染,除蓄电池外);不受资源分布地域的限制;可在用电处就近发电;能源质量高;使用者从感情上容易接受;获取能源花费的时间短;供电系统工作可靠等优点。但是太阳能电池成本还很高:比许多绿色/再生能源高很多,无法以合理成本提供大量需求。未来可以期待科学家及工程师们不断的研究,再加上半导体产业技术的进步,太阳能电池的效率也逐渐增加,而且发电系统的单位成本也正逐年下降。因此,随着太阳能电池效率的增加、成本的降低以及环保意识的高涨,太阳能电池的成本可望大幅降低。也可以利用便宜的镜子将阳光反射至昂贵的高效能太阳能电池(需注意散热),可以发电降低成本。 (3)集成电路 材料构成的PN结的单向导电性质,可以用其作出具有一定大小的逻辑电路。集成电路是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗、智能化和高可靠性方面迈进了一大步。它在电路中用字母“IC”表示。集成电路发明者为杰克·基尔比和罗伯特·诺伊思。 有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

半导体材料有哪些

半导体材料有哪些 半导体材料有哪些 半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物(硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。 延伸 半导体材料是什么? 半导体材料(semiconductor material)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。 自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。 凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体半导体材料内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。 半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿

半导体材料

1、半导体材料定义 我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体(semiconductor material),电阻率约在1mΩ·cm~1GΩ·cm范围内与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。 反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 2、半导体材料的发展历史 半导体的发现实际上可以追溯到很久以前,1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。 不久,1839年法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特。 1873年,英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体又一个特有的性质。半导体的这四个效应虽在1880年以前就先后被发现了,但半导体这个名

化合物半导体项目申报材料

化合物半导体项目申报材料 规划设计/投资分析/实施方案

承诺书 申请人郑重承诺如下: “化合物半导体项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx集团(盖章) xxx年xx月xx日

项目概要 化合物半导体多指晶态无机化合物半导体,即是指由两种或两种以上 元素以确定的原子配比形成的化合物,并具有确定的禁带宽度和能带结构 等半导体性质。化合物半导体包括晶态无机化合物(如III-V族、II-VI族 化合物半导体)及其固溶体、非晶态无机化合物(如玻璃半导体)、有机化合 物(如有机半导体)和氧化物半导体等。通常所说的化合物半导体多指晶态 无机化合物半导体。 该化合物半导体项目计划总投资9251.41万元,其中:固定资产 投资7208.97万元,占项目总投资的77.92%;流动资金2042.44万元,占项目总投资的22.08%。 达产年营业收入20082.00万元,总成本费用15699.03万元,税 金及附加173.72万元,利润总额4382.97万元,利税总额5161.24万元,税后净利润3287.23万元,达产年纳税总额1874.01万元;达产 年投资利润率47.38%,投资利税率55.79%,投资回报率35.53%,全部投资回收期4.31年,提供就业职位359个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济 评价方法与参数(第三版)》为标准进行测算形成,是基于一个动态 的环境和对未来预测的不确定性,因此,可能会因时间或其他因素的 变化而导致与未来发生的事实不完全一致,所以,相关的预测将会随

(完整版)半导体材料及特性

地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。 半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。 元素半导体:在元素周期表的ⅢA族至ⅦA族分布着11种具有半导性的元素,下表的黑框中即这11种元素半导体,其中C表示金刚石。C、P、Se具有绝缘体与半导体两种形态;B、Si、Ge、Te具有半导性;Sn、As、Sb具有半导体与金属两种形态。P的熔点与沸点太低,Ⅰ的蒸汽压太高、容易分解,所以它们的实用价值不大。As、Sb、Sn的稳定态是金属,半导体是不稳定的形态。B、C、Te也因制备工艺上的困难和性能方面的局限性而尚未被利用。因此这11种元素半导体中只有Ge、Si、Se 3种元素已得到利用。Ge、Si仍是所有半导体材料中应用最广的两种材料。 无机化合物半导体: 四元系等。二元系包括:①Ⅳ-Ⅳ族:SiC 和Ge-Si合金都具有闪锌矿的结构。②Ⅲ -Ⅴ族:由周期表中Ⅲ族元素Al、Ga、In 和V族元素P、As、Sb组成,典型的代表 为GaAs。它们都具有闪锌矿结构,它们在 应用方面仅次于Ge、Si,有很大的发展前 途。③Ⅱ-Ⅵ族:Ⅱ族元素Zn、Cd、Hg和 Ⅵ族元素S、Se、Te形成的化合物,是一 些重要的光电材料。ZnS、CdTe、HgTe具 有闪锌矿结构。④Ⅰ-Ⅶ族:Ⅰ族元素C u、Ag、Au和Ⅶ族元素Cl、Br、I形成的 化合物,其中CuBr、CuI具有闪锌矿结构。 半导体材料 ⑤Ⅴ-Ⅵ族:Ⅴ族元素As、Sb、Bi和Ⅵ族

半导体材料

第一章元素半导体§1.1 目前发现的元素半导体材料有Si、Ge、C(金刚石)、Se、α-Sn(灰锡)、P(磷)、Te(碲)和B(硼)这8种。曾认为As、Sb和I是半导体,但对它们的深入研究表明: As、Sb是半金属, I是绝缘体。 Si 硅的化学性质硅在元素周期表中也处于ⅥA族位置,元素符号为Si,原子序数14,原子量28.08,具有金刚石晶体结构。硅的地球储量仅次于氧,高达25.8%,主要以二氧化硅或金属的硅酸盐形式存在,最纯的硅矿物是石英和硅石。Si有三种稳定的同位素,28Si(92.23%),29Si(4.67%)和30Si(3.10%)。Si 的价电子组态是3s23p2,其原子半径为0.01175nm,Si+4半径为0.039nm。Si的化学键为共价键、每个原子与最近邻4个原子组成正四面体,每个原子周围都有8个电子(4个来自最近邻)。这种结构与惰性气体类似,因此,在常温下,硅是稳定的。室温时,Si晶体总是覆盖一层SiO2,650℃时开始更完全的氧化。Si 的这种表面自钝化、易于形成本征SiO2层,是使Si成为当今最重要的固态器件材料的独特性能之一。Si在常温下不溶于单一的强酸,易溶于碱。常温下,除氟外,Si不与其他元素发生作用。高温时,Si除与氧和水蒸气发生反应外,还可与H2、卤素、N2、S和熔融金属发生反应,分别生成SiH4、SiCl4、Si3N4、SiS2等和多种金属硅化合物。Si与Ge 可以任意比例形成SiGe固溶体而与C则形成共价化合物。 2、硅的晶体结构和能带结构Si的晶体结构为金刚石结构,晶格常数为0.5431nm。 3、硅的电学性质(1)在200~500K温度范围内,Si的带隙Eg、导带态密度常数Nc和价带态密度常数Nv与温度T的关系可分别表示为: Si的本征载流子浓度: 4. 硅的光学性质:Si对近红外光透明,对可见光不透明;Si对光的反射较强(30%)! Si是半导体行业最重要的材料!(1)资源丰富,且易于提高到极纯的纯度。(2)较易生长出(3)易于对Si进行可控掺杂,可达到很宽的掺杂浓度范围从(1014~1021 );大直径无位错单晶。 其主要掺杂剂B、As、P的离化能都较小(<50meV)使它们在室温下可全部电离。(4)易于通过沉积工艺制备出单晶Si、多晶Si和非晶Si薄层材料,它们在IC中发挥各自的作用。(5)易于进行腐蚀加工,包括湿化学腐蚀(如用KOH进行腐蚀)或干腐蚀(如用CF6进行反应离子腐蚀)。(6)带隙大小“适中”,在一般使用条件下,不致因本征激发而影响器件性能。(7)Si有相当好的力学性能,其硬度较高,为不锈钢的两倍;抗屈强度为7×1010达因/cm2,为钨的1.8倍;较易于进行机械加工,使大直径晶体可以切出较薄的晶片(从而可提高材料的利用率)。也有相当好的加工稳定性;8)Si本身是一种稳定的“绿色”材料,没有毒性(9)可利用多种金属和掺杂条件在Si材料上(易于)制作低阻欧姆接触,从而降低所制器件的寄生电阻。(10)截断或解理Si晶体,不会使Si片表面造成大的损伤,与此相关的“界面态”问题也不严重,而且易于进行可控钝化;(11)最重要的也许是在Si表面上很容易制备高质量的介电层——SiO2层。(它是自然的、“完美”的绝缘层,界面陷阱密度低,很方便地用于器件中的电气绝缘和表面钝化。SiO2对于杂质扩散、离子注入又是很好的阻挡层,因而是良好的(层与层之间)掩膜材料。) Ge 锗的化学性质:Ge属于元素周期表中的ⅥA族,原子序数32,原子量为72.61。它的价电子组态为4s24p2;原子价有- 4、+2、+4;共价半径0.122nm;电负性1.6(+2价),1.8(±4价)。Ge有5个稳定的同位素。室温时,Ge在空气、水和氧气中稳定,不与盐酸、稀硫酸、浓氢氟酸和浓NaOH溶液发生反应。受热时,Ge的化学性质变得活泼;400℃时在空气与氧气中开始氧化,600℃以上氧化加快生成GeO2。Ge与卤素反应形成Ge的4价卤化物。室温下,在氯(Cl2)、氟(F2)气氛中,粉末状Ge会“着火”。Ge可溶于热的浓硫酸,浓硝酸和王水.在碱中加入H2O2,可使Ge与碱的反应急剧加快。Ge可溶解在3%H2O2溶液中并形成GeO2沉淀。 Ge不与碳起反应,因而可使用石墨坩埚进行单晶生长。

相关主题
文本预览
相关文档 最新文档