当前位置:文档之家› 高中物理必修2课后习题答案(精心整理)

高中物理必修2课后习题答案(精心整理)

高中物理必修2课后习题答案(精心整理)
高中物理必修2课后习题答案(精心整理)

人教版高中物理Ⅱ课后习题答案

第五章:曲线运动

第1节曲线运动

1.答:如图6-12所示,在A、C位置头部的速

度与入水时速度v方向相同;在B、D位置头

部的速度与入水时速度v方向相反。

图6-12

2.答:汽车行驶半周速度方向改变180°。汽车

每行驶10s,速度方向改变30°,速度矢量示

意图如图6-13所示。

图6-13

3.答:如图6-14所示,AB段是曲线运动、BC

段是直线运动、CD段是曲线运动。

图6-14

第2节质点在平面内的运动

1.解:炮弹在水平方向的分速度是v x=800×

cos60°=400m/s;炮弹在竖直方向的分速度

是v y=800×sin60°=692m/s。如图6-15。

图6-15

2.解:根据题意,无风时跳伞员着地的速度为v2,

风的作用使他获得向东的速度v1,落地速度v

为v2、v1的合速度(图略),即:

6.4/

v m s

===,速度与竖直方向的夹角为θ,tanθ=0.8,θ=

38.7°

3.答:应该偏西一些。如图6-16所示,因为炮

弹有与船相同的由西向东的速度v1,击中目标的速度v是v1与炮弹射出速度v2的合速度,所以炮弹射出速度v2应该偏西一些。

4.答:如图6-17所示。

图6-17

第3节抛体运动的规律

1.解:(1

)摩托车能越过壕沟。摩托车做平抛运

动,在竖直方向位移为y=1.5m=2

1

2

gt经历

时间0.55

t s

==在水平方向位

移x=v t=40×0.55m=22m>20m所以摩托车

能越过壕沟。一般情况下,摩托车在空中飞行

时,总是前轮高于后轮,在着地时,后轮先着

地。(2)摩托车落地时在竖直方向的速度为v y

=gt=9.8×0.55m/s=5.39m/s摩托车落地时

在水平方向的速度为v x=v=40m/s摩托车落

地时的速度:

/40.36/

v s m s

===

摩托车落地时的速度与竖直方向的夹角为θ,

tanθ=vx/v y=405.39=7.42

2.解:该车已经超速。零件做平抛运动,在竖直

方向位移为y=2.45m=2

1

2

gt经历时间B

D

1

v

D

y

v

x

v

v

2 4.90.719.8

y t s s g =

==,在水平方向位移x =v t =13.3m ,零件做平抛运动的初速度为:v =x /t =13.3/0.71m/s =18.7m/s =67.4km/h

>60km/h 所以该车已经超速。 3. 答:(1)让小球从斜面上某一位置A 无初速释

放;测量小球在地面上的落点P 与桌子边沿的水平距离x ;测量小球在地面上的落点P 与小球静止在水平桌面上时球心的竖直距离y 。小

球离开桌面的初速度为2g v x y

=。 第4节 1. 答:还需要的器材是刻度尺。 实验步骤:

(1)调节木板高度,使木板上表面与小球离开水平桌面时的球心的距离为某一确定值y ;

(2)让小球从斜面上某一位置A 无初速释放; (3)测量小球在木板上的落点P1与重垂线之间的距离x 1;

(4)调节木板高度,使木板上表面与小球离开水平桌面时的球心的距离为某一确定值4y ; (5)让小球从斜面上同一位置A 无初速释放; (6)测量小球在木板上的落点P 2与重垂线之间的距离x 2;

(7)比较x 1、x 2,若2x 1=x 2,则说明小球在水平方向做匀速直线运动。

改变墙与重垂线之间的距离x ,测量落点与抛出点之间的竖直距离y ,若2x 1=x 2,有4y 1=y 2,则说明小球在水平方向做匀速直线运动。 第5节 圆周运动

1. 解:位于赤道和位于北京的两个物体随地球自转做匀速圆周运动的角速度相等,都是

622 3.14/7.2710/243600

rad s rad s T πω-?===??。

位于赤道的物体随地球自转做匀速圆周运动的线速度v 1=ωR =465.28m/s 位于北京的物体随地球自转做匀速圆周运动的角速度v 2=ωRcos40°=356.43m/s

2. 解:分针的周期为T 1=1h ,时针的周期为T2

=12h

(1)分针与时针的角速度之比为ω1∶ω2=T 2∶T 1=12∶1 (2)分针针尖与时针针尖的线速度之比为v 1∶v 2=ω1r 1∶ω2r 2=14.4∶1

3. 答:(1)A 、B 两点线速度相等,角速度与半

径成反比

(2)A 、C 两点角速度相等,线速度与半径成正比

(3)B 、C 两点半径相等,线速度与角速度成正比

说明:该题的目的是让学生理解线速度、角速度、半径之间的关系:v =ωr ;同时理解传动装置不打滑的物理意义是接触点之间线速度相等。 4. 需要测量大、小齿轮及后轮的半径r 1、r 2、

r 3。自行车前进的速度大小1

3

22r v r Tr π=

说明:本题的用意是让学生结合实际情况来理解匀速圆周运动以及传动装置之间线速度、角速度、半径之间的关系。但是,车轮上任意一点的运动都不是圆周运动,其轨迹都是滚轮线。所以在处理这个问题时,应该以轮轴为参照物,地面与轮接触而不打滑,所以地面向右运动的速度等于后轮上一点的线速度。

5. 解:磁盘转动的周期为T =0.2s

(1)扫描每个扇区的时间t =T/18=1/90s 。 (2)每个扇区的字节数为512个,1s 内读取的字节数为90×512=46080个。

说明:本题的用意是让学生结合实际情况来理解匀速圆周运动。 第6节 向心加速度

1. 答:A .甲、乙线速度相等时,利用2n v a r

=,半径小的向心加速度大。所以乙的向心加速度大;B .甲、乙周期相等时,利用

224n a r T

π=,半径大的向心加速度大。所以甲的向心加速度大;

C .甲、乙角速度相等时,利用a n =v ω,线速度大的向心加速度大。所以乙的向心加速度小;

D .甲、乙线速度相等时,利用a n =v ω,角速度大的向心加速度大。由于在相等时间内甲与圆心的连线扫过的角度比乙大,所以甲的角速度大,甲的向心加速度大。

说明:本题的目的是让同学们理解做匀速圆周运动物体的向心加速度的不同表达式的物理意义。 2. 解:月球公转周期为T =27.3×24×3600s

=2.36×106s 。月球公转的向心加速度为

3. 解:A 、B 两个快艇做匀速圆周运动,由于在

相等时间内,它们通过的路程之比是4∶3,所以它们的线速度之比为4∶3;由于在相等时间内,它们运动方向改变的角度之比是3∶2,所以它们的角速度之比为3∶2。由于

1

x 2

3y

y

向心加速度an =v ω,所以它们的向心加速度之比为2∶1。说明:本题的用意是让学生理解向心加速度与线速度和角速度的关系a n =v ω。

4. 解:(1)由于皮带与两轮之间不发生滑动,

所以两轮边缘上各点的线速度大小相等,设电动机皮带轮与机器皮带轮边缘上质点的线速度大小分别为v 1、v 2,角速度大小分别为ω1、ω2,边缘上质点运动的半径分别为r 1、r 2,则v 1=v 2 v 1=ω1r 1 v 2=ω2r 2又ω=2πn 所以n 1∶n 2=ω1∶ω2=r 2∶r 1=3∶1 (2)A 点的向心加速度为

2222

210.01/0.05/22nA r a m s m s ω=?

=?=

(3)电动机皮带轮边缘上质点的向心加速度为

7节 向心力

解:地球在太阳的引力作用下做匀速圆周运动,设引力为F ;地球运动周期为T =365×24×3600s =

3.15×107s 。根据牛顿第二运动定律得:

说明:本题的目的是让学生理解向心力的产

生,同时为下一章知识做准备。 1. 答:小球在漏斗壁上的受力如图6-19所示。 小球所受重力G 、漏斗壁对小球的支持力F N 合力提供了小球做圆周运动的向心力。 2. 答:(1)根据牛顿第二运动定律得: F =m ω2r =0.1×42

×0.1N =0.16N (2)甲的意见是正确的。

静摩擦力的方向是与物体相对接触面运动的趋势方向相反。设想一下,如果在运动过程中,转

盘突然变得光滑了,物体将沿轨迹切线方向滑动。这就如同在光滑的水平面上,一根细绳一端固定在

竖直立柱上,一端系一小球,让小球做匀速圆周运

动,突然剪断细绳一样,小球将沿轨迹切线方向飞

出。这说明物体在随转盘匀速转动的过程中,相对

转盘有沿半径向外的运动趋势。

说明:本题的目的是让学生综合运用做匀速圆周运动的物体的受力和运动之间的关系。 3. 解:设小球的质量为m ,钉子A 与小球的距离为r 。根据机械能守恒定律可知,小球从一定

高度下落时,通过最低点的速度为定值,设为

v 。小球通过最低点时做半径为r 的圆周运动,

绳子的拉力FT 和重力G 的合力提供了向心力,

即:

2T v F G m r -=得2

T v F G m r

=+在G ,m ,v

一定的情况下,r 越小,F T 越大,即绳子承受的拉

力越大,绳子越容易断。

4. 答:汽车在行驶中速度越来越小,所以汽车在

轨迹的切线方向做减速运动,切线方向所受合外力方向如图F t 所示;同时汽车做曲线运动,必有向心加速度,向心力如图F n 所示。汽车所受合外力F 为F t 、F t 的合力,如图6-20所示。丙图正确。

说明:本题的意图是让学生理解做一般曲线运动的物体的受力情况。 第8节 生活中的圆周运动

1. 解:小螺丝钉做匀速圆周运动所需要的向心力

F 由转盘提供,根据牛顿第三运动定律,小螺丝钉将给转盘向外的作用力,转盘在这个力的作用下,将对转轴产生作用力,大小也是F 。

22(2)0.01(2 3.141000)0.278

F m r m n r N ωπ===????= 2(2)0.01(2 3.141000)0.278876.8F m r m n r N N ωπ===????= 说明:本题的意图在于让学生联系生活实

际,理解匀速圆周运动。 2. 解:这个题有两种思考方式。 第一种,假设汽车不发生侧滑,由于静摩擦力提供的向心力,所以向心力有最大值,根据牛顿第二运动定律得2v F ma m r

==,所以一定对应有最大拐弯速度,设为v m ,则

4

31.410/18.71/67.35/2.010fm m F r

v m s m s km h m ?==

==

44202.010 1.610 1.41050m v v m N N N r ==??

=?>? 22

344202.010 1.610 1.41050m

v v m N N N r ==??=?>?

所以静摩擦力不足以提供相应的向心力,汽车以72km/h 的速度拐弯时,将会发生侧滑。 3. 解:(1)汽车在桥顶部做圆周运动,重力G 和支持力FN 的合力提供向心力,即 2

N v G F m r -=汽车所受支持力

22

5(8009.8800)744050

N v F G m N N r =-=?-?=

根据牛顿第三定律得,汽车对桥顶的压力大小

也是7440N 。

(2)根据题意,当汽车对桥顶没有压力时,即

FN =0,对应的速度为v ,

(3)汽车在桥顶部做圆周运动,重力G 和支持力FN 的合力提供向心力,即2

N

v G F

m r

-=

汽车所受支持力2

N v F G m r

=-,对于相同的

行驶速度,拱桥圆弧半径越大,桥面所受压力越大,

汽车行驶越安全。

(4)根据第二问的结论,对应的速度为v 0,

第六章

万有引力与航天 第1

节 行星的运动

1.

解:行星绕太阳的运动按圆轨道处理,根据开

普勒第三定律有:

2. 答:根据开普勒第二定律,卫星在近地点速度

较大、在远地点速度较小。

3. 解:设通信卫星离地心的距离为r 1、运行周期

为T 1,月心离地心的距离为r 2,月球绕地球运行的周期为T 2,根据开普勒第三定律,

4. 解:根据开普勒第三定律

得到:

则哈雷彗星下次出现的时间是:1986+76=2062年。

第2节 太阳与行星间的引力

1. 答:这节的讨论属于根据物体的运动探究它受

的力。前一章平抛运动的研究属于根据物体的受力探究它的运动,而圆周运动的研究属于根据物体的运动探究它受的力。

2. 答:这个无法在实验室验证的规律就是开普勒

第三定律3

2r k T

=,是开普勒根据研究天文学家

第谷的行星观测记录发现的。 第3节 万有引力定律

1. 答:假设两个人的质量都为60kg ,相距1m ,

则它们之间的万有引力可估算:

这样小的力我们是无法察觉的,所以我们通常分

析物体受力时不需要考虑物体间的万有引力。 说明:两个人相距1m 时不能把人看成质点,简单套用万有引力公式。上面的计算是一种估算。 2. 解:根据万有引力定律 4030

11122482

2.010 2.0106.6710(510

3.010*********)m m F G

N r -???==??=?????? 4030

11261224822.010 2.0106.6710 1.1910(510 3.010*********)

m m F G

N r -???==??=???????1126

122482

2.010 2.0106.6710 1.1910(510

3.010*********)m m F G N N

r -???==??=??????? 可见天体之间的万有引力是很大的。

3. 解:

3

11

122162

(7.110)6.6710 3.410(1.010)m m F G N r ----?==??=?? 第4节 万有引力理论的成就

1. 解:在月球表面有:M m

G

mg R =月月月

得到: 22

1122

332

7.3106.6710/ 1.68/1.71010M g G

m s m s R ???=??-月月月==()22332

7.310/ 1.68/1010m s m s ?=??) g 月约为地球表面重力加速度的1/6。在月球上人感觉很轻。习惯在地球表面行走的人,在月球表面行走时是跳跃前进的。

2. 答:在地球表面,对于质量为m 的物体有:

M m G mg R =地地,得:M g G R 地

对于质量不同的物体,得到的结果是相同的,即这个结果与物体本身的质量m 无关。 又根据万有引力定律:M m

G

mg r

=地高山的r 较大,所以在高山上的重力加速度g 值就较小。 3. 解:卫星绕地球做圆周运动的向心力由地球对

卫星的万有引力提供,有:22

2()Mm G m r T r

π= 得地球质量:

263232421132

4(6.810)4 5.9106.6710(5.610)

r M kg GT ππ-??===???? 4. 解:对于绕木星运行的卫星m ,有:

222()Mm G m r T r

π=,得:23

24r M GT π=木,需要测量的量为:木星卫星的公转周期T 和木星卫星的公转轨道半径r 。 第5节 宇宙航行

1. 解:“神舟”5号绕地球运动的向心力由其受到

的地球万有引力提供。22

2()Mm G m r T

r

π=

r = 其中周期T =[24×60-(2×60+37)]/14min

=91.64min ,则:

66.710r m ==? 其距地面的高度为h =r -R =6.7×106m -6.4×106m =3×105

m =300km 。

说明:前面“神舟”5号周期的计算是一种近

似的计算,教师还可以根据“神舟”5号绕地球运行时离地面的高度的准确数据,让学生计算并验证一下其周期的准确值。

已知:“神舟”5号绕地球运行时离地面的高度为343km 。根据牛顿第二定律有:2

2

24Mm G m r r T

π= 在地面附近有:2

Mm G mg R

=,r =R+h 根据以上各式得:

(

2290.6min R h T R π+===

2. 解:环绕地球表面匀速圆周运动的人造卫星需

要的向心力,由地球对卫星的万有引力提供,

即:2

2Mm v G m R R =,

得:v = ⑴

在地面附近有:2

Mm G mg R

=,得:2

GM R g = 将其带入(1

)式:v =

3. 解:(1)设金星质量为M 1、半经为R 1、金星表

面自由落体加速度为g 1。 在金星表面:112

1M m

G

mg R = 设地球质量为M 2、半径为2、地球表面自由落体加速度为g 2。 在地球表面有:222

2M m

G

mg R = 由以上两式得:

2121

222

1M R g M g R ?=,则

2222121222

210.8219.8/8.9/10.95

M R g g m s m s M R =??=??= (2)212

11M m v G

m

R R =

,v =第七章 机械能守恒定律 第1节 追寻守恒量

1. 答:做自由落体运动的物体在下落过程中,势

能不断减少,动能不断增加,在转化的过程中,动能和势能的总和不变。 第2节 功

1. 解:甲图:W =F scos(180°-150°)=10×2

=17.32J

图乙:W =F scos(180°-30°)=-10×2

×

J =-17.32J 图丙:W =F scos30°=10×2

=17.32J 2. 解:重物被匀速提升时,合力为零,钢绳对重

物的拉力的大小等于重物所受的重力,即 F =G =2×104

N .钢绳拉力所做的功为:W 1=

F scos0°=2×104×5J =1×105J

重力做的功为:W 2=Gscos180°=-2×104

×5J =-1×105

J

物体克服重力所做的功为1×105

J ,这些力做的总功为零。

3. 解:如图5-14所示,滑雪运动员受到重力、

支持力和阻力的作用,运动员的位移为:s =h /sin30°=20m ,方向沿斜坡向下。

所以,重力做功:W G =mgscos60°=60×10×20×12

J =6.0×103

J

支持力所做的功:W N =F N scos90°=0 阻力所做的功:W f =F scos180°=-50×20J =-1.0×103

J

这些力所做的总功W 总=W g +W N +W f =5.0×103

J 。 4. 解:在这两种情况下,物体所受拉力相同,移

动的距离也相同,所以拉力所做的功也相同,为7.5J 。拉力做的功与是否有其他力作用在物体上没有关系,与物体的运动状态也没有关系。光滑水平面上,各个力对物体做的总功为7.5J 。粗糙水平面上,各个力对物体做的总功为6.5N 。 第3节 功率

1. 解:在货物匀速上升时,电动机对货物的作用

力大小为:F =G =2.7×105

N

由P =Fv 可得:

3

25

1010/ 3.710/2.710

P v m s m s F -?===?? 2. 解:这台抽水机的输出功率为

3301010

3101

mgh W P W t t ??====?

它半小时能做功W =Pt =3×103

×1800J =5.4×106

J 。

3. 答:此人推导的前提不明确。当F 增大,根据

P =Fv 推出,P 增大的前提应是v 不变,从

P v F

=推出,P 增大则v 增大的前提是F 不变,从P F v

=推出,v 增大F 减小的前提是P 不变。

说明:对这类物理问题的方向,应注意联系实际,有时机械是以一定功率运行的,这时P 一定,则F 与v 成反比。有时机械是以恒定牵引力工作的,这时P 与v 成正比。

4. 解:(1)汽车的加速度减小,速度增大。因为,

此时开始发动机在额定功率下运动,即P =F 牵v 。v 增大则F 牵减小,而F F

a m

-=

牵,所以加速度减小。(2)当加速度减小到零时,汽车做匀速直线运动,F 牵=F ,所以P v F

=,此为汽车在功率P 下行驶的最大速度。 第4节 重力势能

1. 证明:设斜面高度为h ,对应于倾角为θ1、θ

2

、θ3的斜面长分别为l 1、l 2、l 3。

由功的公式可知,在倾角为θ1的斜面,重力与位移的夹角为(12

πθ-),重力所做的功为:WG =

mg l 1cos (12

πθ-)=mg l 1sin θ1=mgh 。同理可证,

在倾角为θ2、θ3的斜面上,重力所做的功都等于mgh ,与斜面倾角无关。

2. 答:(1)足球由位置1运动到位置2时,重力

所做的功为-mgh ,足球克服重力所做的功为mgh ,足球的重力势能增加了mgh 。

(2)足球由位置2运动到位置3时,重力做的功为mgh ,足球的重力势能减少了mgh 。 (3)足球由位置1运动到位置3时,重力做功为零,重力势能变化为零。

说明:本题的意图是使学生体会,重力势能的变化是与重力做功相对应的。重力做了多少功,重力势能就变化多少。重力做正功重力势能减少,重力做负功重力势能增加。 3. 答:(1)

(2)如果下落过程中有空气阻力,表格中的

数据不变。

说明:本题的意图是使学生认识,重力势能跟零势面的选取有关,而重力势能的变化跟重力的功相对应,与零势能面的选取无关。重力做的功只跟物体位置的变化有关,与是否存在其他力无关。 4. 答:A 正确。例如:物体在向上的拉力作用下,

如果做匀加速直线运动,这时拉力的功大于重力势能的增加量。如果物体做匀减速直线运动,这时拉力的功小于重力势能的减少量。 B 错误。物体匀速上升,拉力的大小等于重力,拉力的功一定等于重力势能的增加量。

C 错误。根据W G =E p1-E p2可知,重力做-1J 的功,物体势能的增加量为1J 。

D 错误。重力做功只与起点和终点的位置有关,与路径无关,A 、B 两点的位置不变,从A 点到B 点的过程中,无论经过什么路径,重力的功都是相同的。

第7节 动能和动能定理

1. 答:a .动能是原来的4倍。b .动能是原来的

2倍。c .动能是原来的8倍。d .动能不变。 2. 解:由动能定理W =E k2-E k1=2

2

211()2

m v v -可

知,在题目所述的两种情况下,()较大的,需要做的功较多。

速度由10km/h 加速到20km/h 的情况下: 0=(202

-102

)(km/s )2

=300(km/s )2

速度由50km/h 加快到60km/h 情况下:

(2221v v -)=(602-502)(km/s )2=1100(km/s )

2

可见,后一种情况所做的功比较多。 3. 解:设平均阻力为f ,根据动能定理W =

2221

1122mv mv - ,有 f scos180°=

2221

1122mv mv - f =1.6×103

N ,子弹在木板中运动5cm 时,

所受木板的阻力各处不同,题目所说的平均阻力是对这5cm 说的。

4. 解:人在下滑过程中,重力和阻力做功,设人

受到的阻力为f ,根据动能定理W =ΔE k , W G +W f =2

10

2t mv - ,mgh -f s =2

12

t mv .解方

程得:v t =m/s ≈5.66m/s

5.解:设人将足球踢出的过程中,人对球做的功为W ,根据动能定理可从人踢球到球上升至最

大高度的过程中:W G +W =2

12

t mv -0,即:-mgh+W

=2

12

t mv W = ×0.5×202

J+0.5×10×10J =150J 第8节 机械能守恒定律

1. 解:(1)小球在从A 点下落至B 点的过程中,

根据动能定理W =ΔE k , mg(h 1-h 2)=2

2

211122

mv mv -

(2)由mg(h 1-h 2)=22

211122

mv mv -,得:

mgh 1+2112mv =mgh 2+2

212

mv

等式左边表示物体在A 点时的机械能,等式右边表示物体在B 点时的机械能,小球从A 点运动到B 点的过程中,机械能守恒。

2. A .飞船升空的阶段,动力对飞船做功,飞船

的机械能增加。

B .飞船在椭圆轨道上绕地球运行的阶段,只有引力对飞船做功,机械能守恒。

C .飞船在空中减速后,返回舱与轨道分离,然后在大气层以外向着地球做无动力飞行的过程中,只有引力做功,机械能守恒。

D .进入大气层并运动一段时间后,降落伞张开,返回舱下降的过程中,空气阻力做功,机械能减少。

3. 解:(1)石块从抛出到落地的过程中,只有重

力做功,所以机械能守恒。设地面为零势能面,

据机械能守恒定律:

2201122t

mv mgh mv +=,得

根据动能定理:W =E kt -

E k0,即mgh =

220

1122t mv mv -,v t =

v t =15m/s

(2)由v t 大小与石块初速度大小和石块抛出时的高度有关,与石块的质量和石块初速度的仰角无关。 4. 解:根据题意,切断电动机电源的列车,假定

在运动中机械能守恒,要列车冲上站台,此时列车的动能E k 至少要等于列车在站台上的重力势能E p 。

列车冲上站台时的重力势能:Ep =mgh =20mm 2

/s 2

列车在A 点时动能:E k =2

12

mv ×m ×72m 2

/s

2

=24.5mm 2/s 2

可见E k >E p ,所以列车能冲上站台。 设列车冲上站台后的速度为v 1。根据机械能守恒定律,有:E k =E p +2

12

mv

2

112

mv =E k -E p =24.5mm 2/s 2-20mm 2/s 2=

4.5mm 2/s 2

,可得v 1=3m/s

第9节 实验:验证机械能守恒定律

1. 答:(1)从状态甲至状态丙过程中,弹性势能逐渐减少,动能和重力势能逐渐增大,当弹簧对小球向上的弹力大小与小球所受重力大小相等时,小球动能最大。之后,弹性势能和动能逐渐减小,重力势能逐渐增大,当弹簧恢复到自然长度时,弹性势能为0。之后,重力势能仍然逐渐增大,动能逐渐减小,到达C 点时,动能减少到0,重力势能达到最大。

小球从状态甲运动到状态丙的过程中,机械能守恒。故状态甲中,弹簧的弹性势能

()()0.2100.10.20.6p AB BC E mg h h =+=??+= J

(2)小球从状态乙到状态丙的过程中,动能逐渐减少,重力势能逐渐增大。

小球从状态乙到状态丙的过程中,机械能守恒,所以小球在B 点的动能与小球在C 点的势能相等。故小球在状态乙中的动能

0.2100.20.4k BC E mgh ==??= J 2. 解:设小球的质量为m ,小球运动到圆轨道最

高点B 时的速度为v ,受到圆轨道的压力为F N 。小球从A 点下滑至最高点B 的过程中,由于只有重力做功,机械能守恒。设在圆轨道最低点为重力势能的零参考平面,则在这个过程中,根据机械能守恒定律,有

()21

22

mg R mv mgh +=

在圆轨道的最高点B 处,根据牛顿第二定律,有

2

N v F mg m R

+=

欲使小球顺利地通过圆轨道在最高点,则小球在最高点B 处时,必须满足条件F N ≥0

即2

v mg m R

联立以上两式,可得52

h R ≥

可见,为了使小球顺利通过圆轨道的最高点,h 至少应为

52

R 3. 答:用平抛运动的知识测出的小球离开桌面时的速度要略大于小球从斜面上滚下的过程中用机械能守恒定律算出的速度,这是由于小球从斜面与桌面上运动时受到的摩擦阻力远大于小球做平抛运动时所受的空气阻力。 第10节 能量守恒定律与能源

1.答:家用电饭锅是把电能转化为内能;洗衣机是把电能转化为动能,等等。

2.解:(1)依题意可知,三峡水库第二期蓄水后,用于发电的水流量每秒为: 1.35×104m 3

-3500m 3

=10000m 3

/s , 每秒钟转化为电能是:

mgh ×20%=ρV gh ×20%=1.0×103

×1.0×104

×10×135×20%J/s =2.7×109

J/s 发电功率最大是2.7×109

W =2.7×106

kW 。 (2)设三口之家每户的家庭生活用电功率为

1kW ,考虑到不是每家同时用1kW 的电,我们平均每家同时用电0.5kW ,则三峡发电站能供给 =5.8×106

户用电,人口数为3×5.8×106

=17×106

人,即可供17个百万人口城市的生活用电。

人教版-高中生物必修2课后习题参考-答案~

人教版高中生物必修2《遗传与进化》 课本练习答案 第一章遗传因子的发现 第1节孟德尔的豌豆杂交实验(一) 练习 基础题 1.B 2.B 3.(1)在F1水稻细胞中含有一个控制合成支链淀粉的遗传因子和一个控制合成直链淀粉的遗传因子。在F1形成配子时,两个遗传因子分离,分别进入不同配子中,含支链淀粉遗传因子的配子合成支链淀粉,遇碘变橙红色;含直链淀粉遗传因子的配子合成直链淀粉,遇碘变蓝黑色,其比例为1∶1。 (2)孟德尔的分离定律。即在F1形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中。(3)2。 4.(1)白色;黑色。(2)性状分离;白毛羊为杂合子,杂合子在自交时会产生性状分离现象。 拓展题 1.(1)将被鉴定的栗色公马与多匹白色母马配种,这样可在一个季节里产生多匹杂交后代。 (2)杂交后代可能有两种结果:一是杂交后代全部为栗色马,此结果说明被鉴定的栗色公马很可能是纯合子;二是杂交后代中既有白色马,又有栗色马,此结果说明被鉴定的栗色公马为杂合子。 2.提示:选择适宜的实验材料是确保实验成功的条件之一。孟德尔在遗传杂交实验中,曾使用多种植物如豌豆、玉米、山柳菊做杂交实验,其中豌豆的杂交实验最为成功,因此发现了遗传的基本规律。这是因为豌豆具有适于研究杂交实验的特点,例如,豌豆严格自花受粉,在自然状态下是纯种,这样确保了通过杂交实验可以获得真正的杂种;豌豆花大,易于做人工杂交实验;豌豆具有稳定的可以区分的性状,易于区分、统计实验结果。 3.提示:凯库勒提出苯分子的环状结构、原子核中含有中子和质子的发现过程等,都是通过假说—演绎法得出结论的。19世纪以前科学家对遗传学的研究,多采用从实验结果出发提出某种理论或学说。而假说—演绎法,是从客观现象或实验结果出发,提出问题,作出假设,然后设计实验验证假说的研究方法,这种方法的运用促进了生物科学的研究,使遗传学由描述性研究进入理性推导和实验验证的研究阶段。 第2节孟德尔的豌豆杂交实验(二) 练习 基础题 1.(1)×(2)× 2.C 拓展题 (1)YyRr;yyRr。(2)黄色皱粒,绿色皱粒;1∶1;1/4。(3)YyRR或YyRr;4;如果是YyRR与yyrr杂交,比值为黄色圆粒∶绿色圆粒=1∶1;如果是YyRr与yyrr杂交,比值为黄色圆粒∶绿色圆粒∶黄色皱粒∶绿色皱粒=1∶1∶1∶1。 自我检测的答案和提示 一、概念检测 判断题 1.×2.×3.× 选择题 1.D 2.C 3.D 4.B。 二、知识迁移 因为控制非甜玉米性状的是显性基因,控制甜玉米性状的是隐性基因。当甜玉米接受非甜玉米的花粉时,非甜玉米花粉产生的精子中含有显性基因,而甜玉米的胚珠中的极核含有隐性基因,极核受精后发育成胚乳,胚乳细胞中显性基因对隐性基因有显性作用,故在甜玉米植株上结出非甜玉米;当非甜玉米接受甜玉米的花粉时,甜玉米花粉产生的精子中含有隐性基因,而非甜玉米的胚珠中的极核含有显性基因,故在非甜玉米植株上结出的仍是非甜玉米。 三、技能应用 由于显性基因对隐性基因有显性作用,所以在生物长期的进化过程中,如果没有自然选择的作用,一般在一个群体中显性个体数多于隐性个体数。根据图中提供的信息可知,蝴蝶的绿眼个体数多,并且绿眼∶白眼接近于3∶1;同样蝴蝶的紫翅个体数多,并且紫翅∶黄翅接近于3∶1,所以判断蝴蝶的绿眼和紫翅是显性性状,白眼和黄翅是隐性性状。

人教版高中物理必修课后习题答案

人教版高中物理Ⅰ课后习题答案 第一章:运动的描述 第1节:质点 参考系和坐标系 1、“一江春水向东流”是水相对地面(岸)的运动,“地球的公转”是说地球相对太阳的运动,“钟表时、分、秒针都在运动”是说时、分、秒针相对钟表表面的运动,“太阳东升西落”是太阳相对地面的运动。 2、诗中描写船的运动,前两句诗写景,诗人在船上,卧看云动是以船为参考系。云与我俱东是说以两岸为参考系,云与船均向东运动,可认为云相对船不动。 3、x A =-0.44 m ,x B =0.36 m 第2节:时间和位移 1.A .8点42分指时刻,8分钟指一段时间。 B .“早”指时刻,“等了很久”指一段时间。 C .“前3秒钟”、“最后3秒钟”、“第3秒钟”指一段时间,“3秒末”指时刻。 2.公里指的是路程,汽车的行驶路线一般不是直线。 3.(1)路程是100 m ,位移大小是100 m 。 (2)路程是800 m ,对起跑点和终点相同的运动员,位移大小为0;其他运动员起跑点各不相同而终点相同,他们的位移大小、方向也不同。 第1.(1)1光年=365×24×3600×3.0×108 m=9.5×1015 m 。 (2)需要时间为16 15 4.010 4.29.510?=?年 2.(1)前1 s 平均速度v 1=9 m/s 前2 s 平均速度v 2=8 m/s 前3 s 平均速度v 3=7 m/s 前4 s 平均速度v 4=6 m/s 全程的平均速度 v 5=5 m/s v 1最接近汽车关闭油门时的瞬时速度, v 1小 于关闭油门时的瞬时速度。 (2)1 m/s ,0 3.(1)24.9 m/s ,(2)36.6 m/s ,(3) 第 4节:实验:用打点计时器测速度 1.电磁打点记时器引起的误差较大。因为电磁打点记时器打点瞬时要阻碍纸带的运动。 2.(1)纸带左端与重物相连。(2)A 点和右方邻近一点的距离Δx =7.0×10-3 m ,时间Δt=0.02 s ,Δt 很小,可以认为A 点速度v =x t ??=0.35 m/s 3.解(1)甲物体有一定的初速度,乙物体初速度 为0。 (2)甲物体速度大小不变,乙物体先匀加速、匀速、最后匀减速运动。 (3)甲、乙物体运动方向都不改变。 4.纸带速度越大,相邻两点的距离也越大。纸带速度与相邻两点时间无关。 第5节:速度变化快慢的描述——加速度 1.100 km/h=27.8 m/s 2.A .汽车做匀速直线运动时。 B .列车启动慢慢到达最大速度50 m/s ,速度变化量较大,但加速时间较长,如经过2 min ,则加速度为0.42 m/s 2,比汽车启动时的加速度小。 C 、汽车向西行驶,汽车减速时加速度方向向东。 D .汽车启动加速到达最大速度的过程中,后一阶段加速度比前一阶段小,但速度却比前一阶段大。 3.A 的斜率最大,加速度最大。 a A =0.63 m/s 2,a B =0.083 m/s 2,a C =-0.25 m/s 2 a A 、a B 与速度方向相同,a C 与速度方向相反。 4.解答滑块通过第一个光电门的速度 1 3.0/10/0.29 v cm s cm s == 滑块通过第二个光电门的速度 2 3.0/27/0.11 v cm s cm s == 滑块加速度2 2710/3.57 v a cm s t ?-==? 第二章:匀变速直线运动的描述 第1节:实验:探究小车速度随时间变化的规律 1.(1)15,16,18,19,21,23,24; (2)如图所示;

(人教版)高中物理必修二(全册)精品分层同步练习汇总

(人教版)高中物理必修二(全册)精品同步练习汇总 分层训练·进阶冲关 A组基础练(建议用时20分钟) 1.(2018·泉州高一检测)关于运动的合成和分解,下列说法中正确的是 (C) A.合运动的速度大小等于分运动的速度大小之和 B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动 C.合运动和分运动具有等时性 D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动

2.(2018·汕头高一检测)质点在水平面内从P运动到Q,如果用v、a、F分别表示质点运动过程中的速度、加速度和受到的合外力,下列选项正确的是(D) 3.一只小船渡河,运动轨迹如图所示。水流速度各处相同且恒定不变,方向平行于河岸;小船相对于静水分别做匀加速、匀减速、匀速直线运动,船相对于静水的初速度大小均相同、方向垂直于河岸,且船在渡河过程中船头方向始终不变。由此可以确定 (D) A.船沿AD轨迹运动时,船相对于静水做匀加速直线运动 B.船沿三条不同路径渡河的时间相同 C.船沿AB轨迹渡河所用的时间最短 D.船沿AC轨迹到达对岸前瞬间的速度最大 4.如图所示,某人用绳通过定滑轮拉小船,设人匀速拉绳的速度为v0,绳某时刻与水平方向夹角为α,则小船的运动性质及此时刻小船的水平速度v x为(A)

A.小船做变速运动,v x= B.小船做变速运动,v x=v0cos α C.小船做匀速直线运动,v x= D.小船做匀速直线运动,v x=v0cosα B组提升练(建议用时20分钟) 5.(2018·汕头高一检测)质量为1 kg的物体在水平面内做曲线运动,已知该物体在互相垂直方向上两分运动的速度-时间图象分别如图所示,则下列说法正确的是(D) A.2 s末质点速度大小为7 m/s B.质点所受的合外力大小为3 N C.质点的初速度大小为5 m/s D.质点初速度的方向与合外力方向垂直 6.(多选)在杂技表演中,猴子沿竖直杆向上做初速度为零、加速度为a的匀加速运动,同时人顶着直杆以速度v0水平匀速移动,经过时间t,猴子沿杆向上移动的高度为h,人顶杆沿水平地面移动的距离为x,如图所示。关于猴子的运动情况,下列说法中正确的是( B、D )

关于人教版生物生物必修二教材课后习题答案

人教版生物生物必修二教材课后习题答案 第1 章遗传因子的发现 第1 节《孟德尔的豌豆杂交实验(一)》 (一)问题探讨 1.粉色。因为按照融合遗传的观点,双亲遗传物质在子代体内混合,子代呈现双亲的中介性状,即红色和白色的混合色——粉色。 2.提示:此问题是开放性问题,目的是引导学生观察、分析身边的生物遗传现象,学生通过对遗传实例的分析,辨析融合遗传观点是否正确。有些学生可能举出的实例是多个遗传因子控制生物性状的现象(如人体的高度等),从而产生诸多疑惑,教师对此可以不做过多的解释。只要引导学生能认真思索,积极探讨,投入学习状态即可。 (二)实验 1.与每个小组的实验结果相比,全班实验的总结果更接近预期的结果,即彩球组合类型数量比DD : Dd : dd=1 : 2 : 1,彩球代表的显性与隐性类型的数值比为3 : 1。因为实验个体数量越大,越接近统计规律。 如果孟德尔当时只统计10 株豌豆杂交的结果,则很难正确地解释性状分离现象,因为实验统计的样本数目足够多,是孟德尔能够正确分析实验结果的前提条件之一。当对10 株豌豆的个体做统计时,会出现较大的误差。 2.模拟实验的结果与孟德尔的假说是相吻合的。因为甲、乙小桶内的彩球代表孟德尔实验中的雌、雄配子,从两个桶内分别随机抓取一个彩球进行组合,实际上模拟雌、雄配子的随机组合,统计的数量也足够大,出现了3: 1 的结果。但证明某一假说还需实验验证。 (三)技能训练提示:将获得的紫色花连续几代自交,即将每次自交后代的紫色花选育再进行自交,直至自交后代不再出现白色花为止。 (四)旁栏思考题不会。因为满足孟德尔实验条件之一是雌、雄配子结合机会相等,即任何一个雄配子(或雌配子)与任何一个雌配子(或雄配子)的结合机会相等,这样才能出现3: 1 的性状分离比。 (五)练习 基础题1.B。2.B。 3.(1)在F1 水稻细胞中含有一个控制合成支链淀粉的遗传因子和一个控制合成直链淀粉的遗传因子。在F1 形成配子时,两个遗传因子分离,分别进入不同配子中,含支链淀粉遗传因子的配子合成支链淀粉,遇碘变橙红色;含直链淀粉遗传因子的配子合成直链淀粉,遇碘变蓝黑色,其比例为1: 1。 (2)孟德尔的分离定律。即在F1 形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中。 3)2。 4.(1 )白色;黑色。 (2)性状分离;白毛羊为杂合子,杂合子在自交时会产生性状分离现象。拓展题 1.(1)将被鉴定的栗色公马与多匹白色母马配种,这样可在一个季节里产生多匹杂交后代。(2)杂交 后代可能有两种结果:一是杂交后代全部为栗色马,此结果说明被鉴定的栗色公马很 可能是纯合子;二是杂交后代中既有白色马,又有栗色马,此结果说明被鉴定的栗色公马为杂合子。 2.提示:选择适宜的实验材料是确保实验成功的条件之一。孟德尔在遗传杂交实验中,曾使用多种植物如豌豆、玉米、山柳菊做杂交实验,其中豌豆的杂交实验最为成功,因此发现了遗传的基本规律。这是因为豌豆具有适于研究杂交实验的特点,例如,豌豆严格自花受粉, 在自然状态下是纯种,这样确保了通过杂交实验可以获得真正的杂种;豌豆花大,易于做人工 杂交实验;豌豆具有稳定的可以区分的性状,易于区分、统计实验结果。 3.提示:凯库勒提出苯分子的环状结构、原子核中含有中子和质子的发现过程等,都是通过假说—演绎法得出结论的。19 世纪以前科学家对遗传学的研究,多采用从实验结果出发提出某种理论或学说。而假说—演绎法,是从客观现象或实验结果出发,提出问题,作出假设,然后设计实验验证假说的研究方法,这种方法的运用促进了生物科学的研究,使遗传学由描述性研究进入理性推导和实验验证的研究阶段。 第2 节《孟德尔的豌豆杂交实验(二) 》

人教版高中物理必修1课后习题答案

人教版高中物理Ⅰ课后习题答案 第一章:运动的描述 第1节:质点参考系和坐标系 1、“一江春水向东流”是水相对地面(岸)的运动,“地球的公转”是说地球相对太阳的运动,“钟表时、分、秒针都在运动”是说时、分、秒针相对钟表表面的运动,“太阳东升西落”是太阳相对地面的运动。 2、诗中描写船的运动,前两句诗写景,诗人在船上,卧看云动是以船为参考系。云与我俱东是说以两岸为参考系,云与船均向东运动,可认为云相对船不动。 3、x A=-0.44 m,x B=0.36 m 第2节:时间和位移 1.A.8点42分指时刻,8分钟指一段时间。B.“早”指时刻,“等了很久”指一段时间。C.“前3秒钟”、“最后3秒钟”、“第3秒钟”指一段时间,“3秒末”指时刻。 2.公里指的是路程,汽车的行驶路线一般不是直线。 3.(1)路程是100 m,位移大小是100 m。 (2)路程是800 m,对起跑点和终点相同的运动员,位移大小为0;其他运动员起跑点各不相同而终点相同,他们的位移大小、方向也不同。 第3节:运动快慢的描述——速度 1.(1)1光年=365×24×3600×3.0×108 m=9.5×1015 m。 (2)需要时间为 16 15 4.010 4.2 9.510 ?= ? 年 2.(1)前1 s平均速度v1=9 m/s 前2 s平均速度v2=8 m/s 前3 s平均速度v3=7 m/s 前4 s平均速度v4=6 m/s 全程的平均速度v5=5 m/s v1最接近汽车关闭油门时的瞬时速度,v1小于关闭油门时的瞬时速度。 (2)1 m/s,0 3.(1)24.9 m/s,(2)36.6 m/s,( 3) 第 4节:实验:用打点计时器测速度 1.电磁打点记时器引起的误差较大。因为电磁打点记时器打点瞬时要阻碍纸带的运动。2.(1)纸带左端与重物相连。(2)A点和右方邻近一点的距离Δx=7.0×10-3 m,时间Δt=0.02 s,Δt很小,可以认为A点速度v=x t ? ?=0.35 m/s 3.解(1)甲物体有一定的初速度,乙物体初速度为0。 (2)甲物体速度大小不变,乙物体先匀加速、匀速、最后匀减速运动。 (3)甲、乙物体运动方向都不改变。 4.纸带速度越大,相邻两点的距离也越大。纸带速度与相邻两点时间无关。 第5节:速度变化快慢的描述——加速度 1.100 km/h=27.8 m/s 2.A.汽车做匀速直线运动时。 B.列车启动慢慢到达最大速度50 m/s,速度变化量较大,但加速时间较长,如经过2 min,则加速度为0.42 m/s2,比汽车启动时的加速度小。 C、汽车向西行驶,汽车减速时加速度方向向东。D.汽车启动加速到达最大速度的过程中,后一阶段加速度比前一阶段小,但速度却比前一阶段大。3.A的斜率最大,加速度最大。 a A=0.63 m/s2,a B=0.083 m/s2,a C=-0.25 m/s2 a A、a B与速度方向相同,a C与速度方向相反。4.解答滑块通过第一个光电门的速度 1 3.0/10/ 0.29 v cm s cm s == 滑块通过第二个光电门的速度 2 3.0/27/ 0.11 v cm s cm s == 滑块加速度2 2710/ 3.57 v a cm s t ?- == ? 第二章:匀变速直线运动的描述 第1节:实验:探究小车速度随时间变化的规律1.(1)15,16,18,19,21,23,24; (2)如图所示;

人教版生物生物必修二教材课后习题答案

人教版生物生物必修二教材课后习题答案第1章遗传因子的发现 第1节《孟德尔的豌豆杂交实验(一)》 (一)问题探讨 1. 粉色。因为按照融合遗传的观点,双亲遗传物质在子代体内混合,子代呈现双亲的中介性状,即红色和白色的混合色——粉色。 2. 提示:此问题是开放性问题,目的是引导学生观察、分析身边的生物遗传现象,学生通过对遗传实例的分析,辨析融合遗传观点是否正确。有些学生可能举出的实例是多个遗传因子控制生物性状的现象(如人体的高度等),从而产生诸多疑惑,教师对此可以不做过多的解释。只要引导学生能认真思索,积极探讨,投入学习状态即可。 (二)实验 1. 与每个小组的实验结果相比,全班实验的总结果更接近预期的结果,即彩球组合类型数量比DD ∶Dd ∶dd=1∶2∶1,彩球代表的显性与隐性类型的数值比为3∶1。因为实验个体数量越大,越接近统计规律。 如果孟德尔当时只统计10株豌豆杂交的结果,则很难正确地解释性状分离现象,因为实验统计的样本数目足够多,是孟德尔能够正确分析实验结果的前提条件之一。当对10株豌豆的个体做统计时,会出现较大的误差。 2. 模拟实验的结果与孟德尔的假说是相吻合的。因为甲、乙小桶内的彩球代表孟德尔实验中的雌、雄配子,从两个桶内分别随机抓取一个彩球进行组合,实际上模拟雌、雄配子的随机组合,统计的数量也足够大,出现了3∶1的结果。但证明某一假说还需实验验证。 (三)技能训练 提示:将获得的紫色花连续几代自交,即将每次自交后代的紫色花选育再进行自交,直至自交后代不再出现白色花为止。 (四)旁栏思考题 不会。因为满足孟德尔实验条件之一是雌、雄配子结合机会相等,即任何一个雄配子(或雌配子)与任何一个雌配子(或雄配子)的结合机会相等,这样才能出现3∶1的性状分离比。 (五)练习 基础题1.B。2.B。 3. (1)在F1水稻细胞中含有一个控制合成支链淀粉的遗传因子和一个控制合成直链淀粉的遗

高中物理3.1课后习题答案

第一章 第一节 1. 答:在天气干躁的季节,脱掉外衣时,由于摩擦,外衣和身体各自带了等量、异号的电荷。 接着用手去摸金属门把手时,身体放电,于是产生电击的感觉。 2. 答:由于A 、B 都是金属导体,可移动的电荷是自由电子,所以,A 带上的是负电荷,这是 电子由B 移动到A 的结果。其中,A 得到的电子数为8 1019 10 6.25101.610 n --= =??,与B 失去的电子数相等。 3. 答:图1-4是此问题的示意图。导体B 中的一部分自由受A 的正电荷吸引积聚在B 的左端,右端会因失去电子而带正电。A 对B 左端的吸引力大于对右端的排斥力,A 、B 之间产生吸引力。 4. 答:此现象并不是说明制造出了永动机,也没有违背能量守恒定律。因为,在把A 、B 分开 的过程中要克服A 、B 之间的静电力做功。这是把机械转化为电能的过程。 第二节 1. 答:根据库仑的发现,两个相同的带电金属球接触后所带的电荷量相等。所以,先把A 球 与B 球接触,此时,B 球带电 2q ;再把B 球与C 球接触,则B 、C 球分别带电4 q ;最后,B 球再次与A 球接触,B 球带电3()2248 B q q q q =+÷=。 2. 答:192291222152 (1.610)9.010230.4(10)q q e F k k N N r r --?===??=(注意,原子核中的质子间 的静电力可以使质子产生292 1.410/m s ?的加速度!) 3. 答:设A 、B 两球的电荷量分别为q 、q -,距离为r ,则2 2kq F r =-。当用C 接触A 时, A 的电荷量变为2A q q = ,C 的电荷量也是2 c q q =;C 再与接触后,B 的电荷量变为224 B q q q q -+ ==-;此时,A 、B 间的静电力变为:2222112288 A B q q q q q F k k k F r r r ? '==-=-=。在此情况下,若再使A 、B 间距增大为原来的2倍,则它们之间的静电力变为2 11232 F F F "='= 。 4. 答:第四个点电荷受到其余三个点电荷的排斥力如图 1-6所示。4q 共受三个力的作用,,由于1234q q q q q ====, 相互间距离分别为a 、a ,所以2122q F F k a ==,2 222q F k a =。根据平行四 边形定则,合力沿对角线的连线向外,且大小是 2 1222cos 45q F F F k a =?+=。由于对称性, 每个电荷受到其他三个电荷的静电力的合力的大小 都相等,且都沿对角线的连线向外。 5. 答:带电小球受重力、静电斥力和线的拉力作用而平衡, 它的受力示意图见图1-7。静电斥力tan F mg θ= 5tan 12 θ==,又,2 2tan q F k mg r θ==, 所 以 , 8 . 6 1 n 5.310q C -==? 第三节 1. 答:A 、B 两处电场强度之比为1A B F E q nF E n q ==。A 、C 两处电场强度之比为A C F E q n F E nq ==。 2. 答:电子所在处的电场强度为19 9112112 1.6109.010/ 5.110/(5.310) e E k N C N C r --?==??=??,方向沿着半径指向外。电子受到的电场力为 111985.110 1.6108.210F eE N N --==???=?,方向沿着半径指向质子。 3 q 1 3

人教版高一物理必修2全册教案

课题 5.2运动的合成和分解课型新授课课时 1 教学目标 (一)知识教学点 1.知道合运动、分运动、知道合运动和分运动是同时发生的,并且互不影响,能在具体的问题中分析和判断. 2.理解运动的合成、运动的分解的具体意义.理解运动的合成和分解遵循平行四边形定则. 3.会用图示方法和教学方法求解位移,速度合成、分解的问题. (二)能力训练点 培养观察和推理的能力、分析和综合的能力. (三)教育渗透点 辩证地看待问题 (四)美育渗透点 学生在学习过程运用概念进行推理、判断,能体会到物理学科中所渗透出的逻辑美. 教学重点难点1.重点 明确一个复杂的运动可以等效为两个简单的运动的合成或等效分解为两个简单的运动,理解运动合成、分解的意义和方法. 2.难点 认识分运动和分运动相互独立、互不相干;分运动和合运动的同时性.理解两个直线运动的合运动可以是直线运动,也可以是曲线运动. 教学准备教材实验装置 课件:运动的合成和分解多媒体设备 教学过程 (一)明确目标 (略) (二)整体感知 本节的地位比较特殊.为知识的学习,涉及到许多基本概念和基本规律;作为方法的介绍,体会把较复杂的运动看作是几个简单运动的合成;作为能力的培养,提高观察和推理能力,分析和综合的能力. (三)重点、难点的学习与目标完成过程 1.什么是分运动、合运动? 演示实验(具体操作见课本) 学生观察蜡块的运动:由A到B沿玻璃管竖直向上匀速直线运动;由A到D随玻璃管向右匀速直线运动;蜡块实际的运动是上述两个运动的合成.即由A到C的匀速直线运动,如图5-2所示.

②定量分析,在 x 方向有x = 2 1a 2 t ,在y 方向有y =y v t ,约去时间t 得 k y a v x y y 2 22= 故2y =kx .此为抛物线型方程,表明合运动是曲线运动.(定量分析可结合学生情况留给学生课后思考) (2)一个曲线运动可以分解为两个方向上的直线运动 既然两个直线运动的合运动可以是曲线运动,反过来,一个曲线运动可以用两个方向上的直线运动来等效替代.也就是说,分别研究这两个方向上的受力情况和运动情况,弄清楚分运动是直线运动的规律,就可以知道作为合运动的曲线运动的规律. 作 业 布 置 练习二 (1)(2)(3)(4) 课堂总结 1.在进行运动的合成和分解时,一定要明确合运动是物体实际的运动.分运动是假想的,这与力的合成和分解是有区别的,如图5-3所示.通过一定滑轮拉一物体,使物体在水平面上运动,如果是讨论运动的合成和分解,物体实际运动即合运动的速度方向是水平的,沿绳方向的速度是分运动的速度;如果是讨论力的合成和分解,沿绳方向的拉力是物体实际受到的力,沿水平方向的力是拉力的分力. 图5-3 2.合成和分解的精髓是“等效”的思想.学习时要深刻体会,可以结合课本“思考和讨论”进一步说明.

人教版高中物理必修2课后习题参考答案

人教版高中物理必修2课后习题参考答案 第五章 第1节 曲线运动 1. 答:如图6-12所示,在A 、C 位置头部的速度与入水时速度v 方向相同;在B 、D 位置头部的速度与入水时速度v 方向相反。 2. 答:汽车行驶半周速度方向改变180°。汽车每行驶10s ,速度方向改变30°,速度矢量示意图如图6-13所示。 3. 答:如图6-14所示,AB 段是曲线运动、BC 段是直线运动、CD 段是曲线运动。 第2节 质点在平面内的运动 1. 解:炮弹在水平方向的分速度是v x =800×cos60°=400m/s;炮弹在竖直方向的分速度是v y =800×sin60°=692m/s 。如图6-15。 2. 解:根据题意,无风时跳伞员着地的速度为v 2,风的作用使他获得向东的速度v 1,落地速度v 为v 2、v 1的合速度,如图6-15 所示, 6.4/v m s ===,与竖直方向的夹角为θ,tanθ=0.8,θ=38.7° 3. 答:应该偏西一些。如图6-16所示,因为炮弹有与船相同的由西向东的速度v 1,击中目标的速度v 是v 1与炮弹射出速度v 2的合速度,所以炮弹射出速度v 2应该偏西一些。 4. 答:如图6-17所示。 第3节 抛体运动的规律 1. 解:(1)摩托车能越过壕沟。摩托车做平抛运动,在竖直方向位移为y =1.5m =2 12 gt 2 v 1v B y v x v

经历时间0.55t s ===在水平方向位移x =v t =40×0.55m =22m >20m 所以摩托车能越过壕沟。一般情况下,摩托车在空中飞行时,总是前轮高于后轮,在着地时,后轮先着地。(2)摩托车落地时在竖直方向的速度为v y =gt =9.8×0.55m/s = 5.39m/s 摩托车落地时在水平方向的速度为v x =v =40m/s 摩托车落地时的速度/40.36/v s m s === 摩托车落地时的速度与竖直方向的夹角为θ,tanθ=vx /v y =405.39=7.42 2. 解:该车已经超速。零件做平抛运动,在竖直方向位移为y =2.45m =2 12 gt 经历时间0.71t s === ,在水平方向位移x =v t =13.3m ,零件做平抛运动的初速度为:v =x /t =13.3/0.71m/s =18.7m/s =67.4km/h >60km/h 所以该车已经超速。 答:(1)让小球从斜面上某一位置A 无初速释放;测量小球在地面上的落点P 与桌子边沿的水平距离x ;测量小球在地面上的落点P 与小球静止在水平桌面上时球心的竖直距离y 。小球离开桌面的初速度为v =。 第4节 实验:研究平抛运动 1. 答:还需要的器材是刻度尺。 实验步骤: (1)调节木板高度,使木板上表面与小球离开水平桌面时的球心的距离为某一确定值y ; (2)让小球从斜面上某一位置A 无初速释放; (3)测量小球在木板上的落点P1与重垂线之间的距离x 1; (4)调节木板高度,使木板上表面与小球离开水平桌面时的球心的距离为某一确定值4y ; (5)让小球从斜面上同一位置A 无初速释放; (6)测量小球在木板上的落点P 2与重垂线之间的距离x 2; (7)比较x 1、x 2,若2x 1=x 2,则说明小球在水平方向做匀速直线运动。 改变墙与重垂线之间的距离x ,测量落点与抛出点之间的竖直距离y ,若2x 1=x 2,有4y 1=y 2,则说明小球在水平方向做匀速直线运动。 第5节 圆周运动 1. 解:位于赤道和位于北京的两个物体随地球自转做匀速圆周运动的角速度相等,都2

2021新人教版高中物理必修2全册复习教学案

高中物理必修2(新人教版)全册复习教学案 内容简介:包括第五章曲线运动、第六章万有引力与航天和第七章机械能守恒定律,具体可以分为,知识网络、高考常考点的分析和指导和常考模型规律示例总结,是高一高三复习比较好的资料。 一、 第五章 曲线运动 (一)、知识网络 (二)重点内容讲解 1、物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两个角度来理解:(1)从运动学角度来理解;物体的加速度方向不在同一条直线上;(2)从动力学角度来理解:物体所受合力的方向与物体的速度方向不在一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动是一种变速运动。 曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成与分解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循曲线运动

平等四边形定则。 2、平抛运动 平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:(1)水平方向:a x =0,v x =v 0,x= v 0t 。 (2)竖直方向:a y =g ,v y =gt ,y= gt 2 /2。 (3)合运动:a=g ,2 2y x t v v v += ,22y x s +=。v t 与v 0方向夹角为θ,tan θ= gt/ v 0, s 与x 方向夹角为α,tan α= gt/ 2v 0。 平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即g h t 2= ,与v 0无关。水平射程s= v 0 g h 2。 3、匀速圆周运动、描述匀速圆周运动的几个物理量、匀速圆周运动的实例分析。 正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向心加速度、向心力的概念及物理意义,并掌握相关公式。 圆周运动与其他知识相结合时,关键找出向心力,再利用向心力公式F=mv 2/r=mr ω2 列式求解。向心力可以由某一个力来提供,也可以由某个力的分力提供,还可以由合外力来提供,在匀速圆周运动中,合外力即为向心力,始终指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小,在非匀速圆周运动中,物体所受的合外力一般不指向圆心,各力沿半径方向的分量的合力指向圆心,此合力提供向心力,大小和方向均发生变化;与半径垂直的各分力的合力改变速度大小,在中学阶段不做研究。 对匀速圆周运动的实例分析应结合受力分析,找准圆心的位置,结合牛顿第二定律和向心力公式列方程求解,要注意绳类的约束条件为v 临=gR ,杆类的约束条件为v 临=0。 (三)常考模型规律示例总结 1.渡河问题分析 小船过河的问题,可以 小船渡河运动分解为他同时参与的两个运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(水冲船的运动,等于水流的运动),船的实际运动为合运动. 例1:设河宽为d,船在静水中的速度为v 1,河水流速为v 2 ①船头正对河岸行驶,渡河时间最短,t 短= 1 v d ②当 v 1> v 2时,且合速度垂直于河岸,航程最短x 1=d 当 v 1< v 2时,合速度不可能垂直河岸,确定方法如下: 如图所示,以 v 2矢量末端为圆心;以 v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则 合速度沿此切线航程最短, 由图知: sin θ=2 1v v

人教版A版高中数学必修2课后习题解答

第一章空间几何体 1.1 空间几何体的结构 练习(第7 页) 1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体; (4)由一个六棱柱挖去一个圆柱体而得到的组合体。 2.(1)五棱柱;(2)圆锥 3.略 习题1.1 A组 1.(1) C;(2)C;(3)D;(4) C 2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面平面截得的几何体。 3.(1)由圆锥和圆台组合而成的简单组合体; (2)由四棱柱和四棱锥组合而成简单组合体。 4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。 5.制作过程略。制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。 B组 1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。 2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。 1.2 空间几何体的三视图和直观图 练习(第15 页) 1.略 2.(1)四棱柱(图略); (2)圆锥与半球组成的简单组合体(图略); (3)四棱柱与球组成的简单组合体(图略); (4)两台圆台组合而成的简单组合体(图略)。 3.(1)五棱柱(三视图略); (2)四个圆柱组成的简单组合体(三视图略); 4.三棱柱 练习(第19 页) 1.略。 2.(1)√(2)×(3)×(4)√ 3.A 4.略 5.略 习题1.2 A组 1.略 2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体 3~5.略 B组 1~2.略 3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。 1.3 空间几何体的表面积与体积

人教版高中生物必修2课后习题参考答案

人教版高中生物必修2《遗传与进化》课本练习答案与提示 第一章遗传因子的发现第1节孟德尔的豌豆杂交实验(一) (五)练习基础题 1.B 2.B 3.(1)在F1水稻细胞中含有一个控制合成支链淀粉的遗传因子和一个控制合成直链淀粉的遗传因子。在F1形成配子时,两个遗传因子分离,分别进入不同配子中,含支链淀粉遗传因子的配子合成支链淀粉,遇碘变橙红色;含直链淀粉遗传因子的配子合成直链淀粉,遇碘变蓝黑色,其比例为1∶1。 (2)孟德尔的分离定律。即在F1形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中。(3)2。 4.(1)白色;黑色。(2)性状分离;白毛羊为杂合子,杂合子在自交时会产生性状分离现象。 拓展题 1.(1)将被鉴定的栗色公马与多匹白色母马配种,这样可在一个季节里产生多匹杂交后代。 (2)杂交后代可能有两种结果:一是杂交后代全部为栗色马,此结果说明被鉴定的栗色公马很可能是纯合子;二是杂交后代中既有白色马,又有栗色马,此结果说明被鉴定的栗色公马为杂合子。 2.提示:选择适宜的实验材料是确保实验成功的条件之一。孟德尔在遗传杂交实验中,曾使用多种植物如豌豆、玉米、山柳菊做杂交实验,其中豌豆的杂交实验最为成功,因此发现了遗传的基本规律。这是因为豌豆具有适于研究杂交实验的特点,例如,豌豆严格自花受粉,在自然状态下是纯种,这样确保了通过杂交实验可以获得真正的杂种;豌豆花大,易于做人工杂交实验;豌豆具有稳定的可以区分的性状,易于区分、统计实验结果。 3.提示:凯库勒提出苯分子的环状结构、原子核中含有中子和质子的发现过程等,都是通过假说—演绎法得出结论的。19世纪以前科学家对遗传学的研究,多采用从实验结果出发提出某种理论或学说。而假说—演绎法,是从客观现象或实验结果出发,提出问题,作出假设,然后设计实验验证假说的研究方法,这种方法的运用促进了生物科学的研究,使遗传学由描述性研究进入理性推导和实验验证的研究阶段。 第2节孟德尔的豌豆杂交实验(二)

高中物理选修3-1课后习题答案

创作编号:GB8878185555334563BT9125XW 创作者: 凤呜大王* 第一章 第一节 1. 答:在天气干躁的季节,脱掉外衣时,由于摩擦,外衣和身体各自带了等量、异号的 电荷。接着用手去摸金属门把手时,身体放电,于是产生电击的感觉。 2. 答:由于A 、B 都是金属导体,可移动的电荷是自由电子,所以,A 带上的是负电荷, 这是电子由B 移动到A 的结果。其中,A 得到的电子数为 8101910 6.25101.610 n --==??,与B 失去的电子数相等。 3. 答:图1-4是此问题的示意图。导体B 中 的一部分自由受A 的正电荷吸引积聚在B 的左端,右端会因失去电子而带正电。A 对B 左端的吸引力大于对右端的排斥力,A 、B 之间产生吸引力。 4. 答:此现象并不是说明制造出了永动机,也没有违背能量守恒定律。因为,在把A 、 B 分开的过程中要克服A 、B 之间的静电力做功。这是把机械转化为电能的过程。 第二节 1. 答:根据库仑的发现,两个相同的带电金属球接触后所带的电荷量相等。所以,先把 A 球与 B 球接触,此时,B 球带电 2q ;再把B 球与C 球接触,则B 、C 球分别带电4 q ;最后,B 球再次与A 球接触,B 球带电3()2248 B q q q q =+÷=。 2. 答:192291222152 (1.610)9.010230.4(10) q q e F k k N N r r --?===??=(注意,原子核中的质子间的静电力可以使质子产生292 1.410/m s ?的加速度!) 3. 答:设 A 、B 两球的电荷量分别为q 、q -,距离 为r ,则22kq F r =-。当用C 接触A 时,A 的电荷量变为2 A q q =,C 的电荷量也是 2 c q q = ;C 再与接触后,B 的电荷量变为224 B q q q q -+ ==-;此时,A 、B 间的静电力变为:2222112288A B q q q q q F k k k F r r r ?'==-=-=。在此情况下,若再使A 、B 间距增大为原来的2倍,则它们之间的静电力变为2 11232F F F "='= 。 4. 答:第四个点电荷受到其余三个点电荷的排斥力如图 1-6所示。4q 共受三个力的作用,,由于 1234q q q q q ====,相互间距离分别为a 、 、a ,所以2 122q F F k a ==, 2 222q F k a =。根据平行四边形定则,合力沿 对角线的连线向外,且大小 是 21222cos 45q F F F a =?+=。由于对称性, 每个电荷受到其他三个电荷的静电力的合力的大小都相等,且都沿对角线的连线向 外。 5. 答:带电小球受重力、静电斥力和线的拉力作用而平衡, 它的受力示意图见图1-7。静电斥力tan F mg θ= 5tan 12 θ==,又,2 2tan q F k mg r θ==, 3 q 1 3

最新人教版高中物理选修3-1课后习题参考答案

第一章 第一节 1.答:在天气干躁的季节,脱掉外衣时,由于摩擦,外衣和身体各自带了等量、异号的电荷。接着用手去摸金属门把手时,身体放电,于是产生电击的感觉。2.答:由于A、B都是金属导体,可移动的电荷是自由电子,所以,A带上的是负电荷,这是电子由B移动到A的结果。其中,A得到的电子数为,与B失去的电子数相等。 3.答:图1-4是此问题的示意图。导体B中的一部分自由受A的正电荷吸引积聚在B的左端,右端会因失去电子而带正电。A对B左端的吸引力大于对右端的排斥力,A、B之间产生吸引力。 4.答:此现象并不是说明制造出了永动机,也没有违背能量守恒定律。因为,在把A、B分开的过程中要克服A、B之间的静电力做功。这是把机械转化为电能的过程。 第二节 1.答:根据库仑的发现,两个相同的带电金属球接触后所带的电荷量相等。所以,先把A球与B球接触,此时,B球带电;再把B球与C球接触,则B、C球分别带电;最后,B球再次与A球接触,B球带电。 2.答:(注意,原子核中的质子间的静电力可以使质子产生的加速度!)3.答:设A、B两球的电荷量分别为、,距 离 为,则。当用C接触A时,A的电荷量变为,C的电荷量也是;C再与接触后,B的电荷量变为;此时,A、B间的静电力变为:。在此情况下,若再使A、B间距增大为原来的2倍,则它们之间的静电力变为。 4.答:第四个点电荷受到其余三个点电荷的排斥力如图1-6所示。共受三个力的作用,,由于,相互间距离分别为、、,所以,。根据平行四边形定则,合力沿对角线的连线向外,且大小是。由于对称性,每个电荷受到其他三个电荷的静电力的合力的大小都相等,且都沿对角线的连线向外。 5.答:带电小球受重力、静电斥力和线的拉力作用而平衡,它的受力示意图见图1-7。静电斥力,又,,所以, 第三节 1.答:A、B两处电场强度之比为。A、C两处电场强度之比为。 2.答:电子所在处的电场强度为,方向沿着半径指向外。电子受到的电场力为,方向沿着半径指向质子。 3.答:重力场的场强强度等于重力与质量的比值,即,单位是牛顿每千克,方向竖直向下。 4.答:这种说法是错误的。例如,如图1-9所示,有一带电粒子以平行于金属板的初速度射入电场,它沿电场线的方向做匀加速运动,而沿初速度方向做匀速运动,它的运动轨迹是曲线。也就是说,它的运动轨迹与电场线不重合。 5.(1)因为电场线的疏密程度反映电场强度的强弱,所以,B点的电场最强,C 点的电场最弱。 (2)A、B、C三点的电场强度的方向如图1-10所示。 (3)负电荷在A、B、C三点时的受力方向如图1-10所示。

人教高中物理必修2课后习题答案

第五章 第1节 曲线运动 1. 答:如图6-12所示,在A 、C 位置头部的速度与入水时速度v 方向相同;在B 、D 位置头 部的速度与入水时速度v 方向相反。 2. 答:汽车行驶半周速度方向改变180°。汽车每行驶10s ,速度方向改变30°,速度矢量示 意图如图6-13所示。 3. 答:如图6-14所示,AB 段是曲线运动、BC 段是直线运动、CD 段是曲线运动。 第2节 质点在平面内的运动 1. 解:炮弹在水平方向的分速度是v x =800×cos60°=400m/s;炮弹在竖直方向的分速度是v y =800×sin60°=692m/s 。如图6-15。 2. 解:根据题意,无风时跳伞员着地的速度为v 2,风的作用使他获得向东的速度v 1,落地速 度v 为v 2、v 1的合速度,如图6-15 所示, 6.4/v m s == =,与竖直 方向的夹角为θ,tanθ=,θ=° 3. 答:应该偏西一些。如图6-16所示,因为炮弹有与船相同的由西向东的速度v 1,击中目 标的速度v 是v 1与炮弹射出速度v 2的合速度,所以炮弹射出速度v 2应该偏西一些。 4. 答:如图6-17所示。 第3节 抛体运动的规律 1. 解:(1)摩托车能越过壕沟。摩托车做平抛运动,在竖直方向位移为y =1.5m =2 12 gt 经 历时间0.55t s = ==在水平方向位移x =v t =40×0.55m =22m >20m 所以摩托车能越过壕沟。一般情况下,摩托车在空中飞行时,总是前轮高于后轮,在着地时,后轮 先着地。(2)摩托车落地时在竖直方向的速度为v y =gt =×0.55m/s =5.39m/s 摩托车落地时在水平方向的速度为v x =v =40m/s 摩托车落地时的速 度 /40.36/v s m s === 摩托车落地时的速度与竖直方向的夹角 为θ,tanθ=vx /v y == 2. 解:该车已经超速。零件做平抛运动,在竖直方向位移为y =2.45m =2 12 gt 经历时间 0.71t s = == ,在水平方向位移x =v t =13.3m ,零件做平抛运动的初速度为:v =x /t =/0.71m/s =18.7m/s =67.4km/h >60km/h 所以该车已经超速。 答:(1)让小球从斜面上某一位置A 无初速释放;测量小球在地面上的落点P 与桌子边沿 的水平距离x ;测量小球在地面上的落点P 与小球静止在水平桌面上时球心的竖直距离y 。小球 离开桌面的初速度为v = 第4节 实验:研究平抛运动 1. 答:还需要的器材是刻度尺。 实验步骤: (1)调节木板高度,使木板上表面与小球离开水平桌面时的球心的距离为某一确定值y ; (2)让小球从斜面上某一位置A 无初速释放; (3 )测量小球在木板上的落点P1与重垂线之间的距离x 1; 2 2 v 1 v B v x v

相关主题
文本预览
相关文档 最新文档