当前位置:文档之家› 高等数学(二重积分与微分练习)

高等数学(二重积分与微分练习)

高等数学(二重积分与微分练习)
高等数学(二重积分与微分练习)

一、 微分学计算题

1、设二元函数)ln(y x x z +=,则y

x z ???2=_________. 2、函数y x z =在点(2, 1)处的全微分d z =____________________.

3、三元函数zx yz xy u ++=的全微分为 。

4、设),(t s f 可微,),(2322y x y x f u

-=,求x u ??、y u ??。 5、设),(y x f z =由方程y z z x ln =所确定,求偏导数.,y

z x z ???? 6、设)(22xy x

y z ?+=,?为可微的函数,求证02322=+??-??y y z xy x z x 7、求函数x y x y x z 9332233-++-=的极值。

8、已知 2242(3),x y Z Z Z x y x y +??=+??设求

和 二、积分学计算题

1、交换二次积分??x x dy y x f dx 2),(10的顺序,??x x dy y x f dx 2

),(10= 2、二次积分的顺序,??-=x dy y x f dx 1010),(

3、计算二重积分dxdy y x D ??22,其中D 是曲线x y =、1=xy 及2=x 围成。

4、计算2d d D

xy x y ??,其中D 是由直线y =x , x =1及y =0围成的区域.

5、求由曲线轴轴和及 3,4,2y x x y x y ===围成的平面图形的面积.

6、求抛物线y x 22=与直线4-=y x 所围成的平面图形的面积。

7、已知生产某产品x 单位的边际收入为x x R 2100)(-='(元/单位),求生产40单位时的总收入及平均收入,并求再多生产10单位时所增加的总收入。

三、1、求方程2/5)1(12+=+-x x y dx dy 的通解及满足条件00==x y 的特解.

2、求微分方程x xy dx dy 42=+,满足条件1)0(=y 的特解。

二重积分学习总结

高等数学论文 《二重积分学习总结》 姓名:徐琛豪 班级:安全工程02班 学号:1201050221 完成时间:2013年6月2日

二重积分 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 1 二重积分的概念与性质 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。

高等数学知识点总结 (1)

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111C B A n =ρ,),,(2222C B A n =ρ, ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程 1、 一般式方程:?????=+++=+++0 022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=-

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

高等数学公式汇总(大全)

高等数学公式汇总(大全) 一 导数公式: 二 基本积分表: 三 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学二重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ??? 的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

高等数学微积分总结

积 分 整个高数课本,我们一共学习了不定积分,定积分,重积分(二重,三重),曲线积分(两类),曲面积分(两类).在此,我们对 积分总结,比较,以期同学们对积分有一个整体的认识. 一、不定积分 不定积分是微分的逆运算,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种 方法(两类换元,分部积分,有理函数积分等) 二、定积分 1.定义式: ()b a f x dx ? 2.定义域:一维区间,例如[,]a b 3.性质:见课本P 229-P 232 特殊:若 1f =,则()b a f x dx b a =-?,即区间长度. 4.积分技巧:奇偶对称性. 注意:定积分中积分变量可以任意替换即()()b b a a f x dx f y dy =? ?,而不定积分不具有这种性质. 5.积分方法:与不定积分的方法相同. 6.几何应用: 定积分的几何意义: ()b a f x dx ? 表示以()f x 为顶与x 轴所夹区域面积的代数和(注意如()0f x <,则面积为负); 其他应用:如 ()f x 表示截面积,则积分为体积;平面弧长 (b a f x ? 等. 三、二重积分 1.定义式: (,)xy D f x y d σ ?? 2.定义域:二维平面区域 3.性质:见下册课本P 77 特殊: 若 1f =,则(,)xy D f x y dxdy S =?? ,即S 为xy D 的面积. 4.坐标系: ①直角坐标系: X 型区域,Y 型区域 ②极坐标系:适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定θ的范围,再确定r 的范围. 5.积分技巧:奇偶对称性(见后),质心; 6.几何应用: 二重积分的几何意义:若(,)0f x y ≥,则(,)xy D f x y dxdy ?? 表示以(,)f x y 为顶以xy D 为底的曲顶柱体体积; 其他应用:求曲面(,)z z x y =的面积xy D ?? 四、三重积分 1.定义式 (,,)f x y z dv Ω??? 2.定义域:三维空间区域; 3.性质:与二重积分类似; 特殊: 若 1f =,则(,,)f x y z dv V Ω =???,其中V 表示Ω的体积. 4.坐标系: ①直角坐标系:投影法,截面法(一般被积函数有一个自变量,而当该变量固定时所得截面 积易求时采用) ②柱坐标系:积分区域为柱形区域,锥形区域,抛物面所围区域时可采用; ③球坐标系:积分区域为球域或与球面相关的区域时,确定自变量范围时,先θ,后?,最后 r . 5.积分技巧:奇偶对称性,变量对称性(见后),质心等. 6.应用: (,,)f x y z 表示密度,则(,,)f x y z dv Ω ???为物体质量.(不考虑几何意义) 五、第一类曲线积分

高等数学习题详解-第8章二重积分

习题8-1 1. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)D m x y d μσ=??. 2. 试比较下列二重积分的大小: (1) 2()D x y d σ+??与3()D x y d σ+??,其中D 由x 轴、y 轴及直线x +y =1 围成; (2) ln()D x y d σ+??与2 ln()D x y d σ+??????,其中D 是以A (1,0),B (1,1), C (2,0)为顶点的三角形闭区域. 解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()D D x y d x y d σσ+≥+????. (2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2 ln()[ln()]D D x y d x y d σσ+≥+???? 习题8-2 1. 画出积分区域,并计算下列二重积分: (1) ()D x y d σ+??,其中D 为矩形闭区域:1,1x y ≤≤; (2) (32)D x y d σ+??,其中D 是由两坐标轴及直线x +y =2所围成的闭

区域; (3) 22()D x y x d σ+-??,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区 域; (4) 2 D x y d σ??,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0; (5) ln D x y d σ??,其中D 为:0≤x ≤4,1≤y ≤e ; (6) 22D x d σy ??其中D 是由曲线11,,2 xy x y x ===所围成的闭区域. 解:(1) 111 111()()20.D x y d dx x y dy xdx σ---+=+==????? (2) 222 200 (32)(32)[3(2)(2)]x D x y d dx x y dy x x x dx σ-+=+=-+-????? 2232022 20[224]4.33 0x x dx x x x =-++=-++=? (3) 32 2 2 2 2 2 2 002193()()()248y y D y x y x d dy x y x dx y dy σ+-=+-=-????? 43219113 .9686 0y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称, 所以20.D x yd σ=?? (5) 44 201041ln ln (ln ln )2(1)2110 e D e e e x yd dx x ydy x y y y dx x e σ-==-==-?????.

高数微积分公式大全

微積分公式 sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x – cot x | + C sin -1(-x) = -sin -1 x cos -1(-x) = - cos -1 x tan -1(-x) = -tan -1 x cot -1(-x) = - cot -1 x sec -1(-x) = - sec -1 x csc -1(-x) = - csc -1 x sin -1 x dx = x sin -1 x+21x -+C cos -1 x dx = x cos -1 x-21x -+C tan -1 x dx = x tan -1 x-?ln (1+x 2)+C cot -1 x dx = x cot -1 x+?ln (1+x 2)+C sec -1 x dx = x sec -1 x- ln |x+12-x |+C csc -1 x dx = x csc -1 x+ ln |x+12-x |+C sinh x dx = cosh x + C cosh x dx = sinh x + C tanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan -1 (e -x ) + C csch x dx = 2 ln | x x e e 211---+| + C d uv = u d v + v d u d uv = uv = u d v + v d u → u d v = uv - v d u cos 2θ-sin 2θ=cos2θ cos 2θ+ sin 2θ=1 cosh 2θ-sinh 2θ=1 cosh 2θ+sinh 2θ=cosh2θ sinh -1 x dx = x sinh -1 x-21x ++ C cosh -1 x dx = x cosh -1 x-12-x + C tanh -1 x dx = x tanh -1 x+ ? ln | 1-x 2|+ C coth -1 x dx = x coth -1 x- ? ln | 1-x 2|+ C sech -1 x dx = x sech -1 x- sin -1 x + C csch -1 x dx = x csch -1 x+ sinh -1 x + C a b c α β γ R

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? = 1ln ax b C a ++ 2.()d ax b x μ+?=1 1() (1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?= 2 1(ln )ax b b ax b C a +-++ 4.2 d x x ax b +? = 22 311()2()ln 2ax b b ax b b ax b C a ??+-++++???? 5.d () x x ax b +? =1ln ax b C b x +-+ 6.2 d () x x ax b +? =2 1ln a ax b C bx b x +- ++ 7.2 d () x x ax b +? =2 1(ln )b ax b C a ax b ++ ++ 8.2 2 d () x x ax b +? = 2 3 1(2ln )b ax b b ax b C a ax b +-+- ++ 9.2 d () x x ax b +? = 2 11ln () ax b C b ax b b x +- ++ 的积分 10.x ? = C 11.x ?=2 2(3215ax b C a -+ 12.x x ?= 2 2 2 3 2(15128105a x abx b C a -+ 13.x ? = 2 2(23ax b C a -+

14 .2 x ? = 222 3 2(34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>?的积分 22.2 d x ax b +? =(0) (0) C b C b ? +>? ? ?+< 23.2 d x x ax b +? = 2 1 ln 2ax b C a ++

高等数学导数与微分练习题

作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin = ; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1(+=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程???-=-=) cos 1()sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二阶导数 2 2dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2sin cos )sin ( x x x x x x y -='='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。

高数微积分公式大全 ()

高等数学微积分公式大全 一、基本导数公式 ⑴()0c '=⑵1x x μμμ-=⑶()sin cos x x '= ⑷()cos sin x x '=-⑸()2tan sec x x '=⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=?⑻()csc csc cot x x x '=-? ⑼()x x e e '=⑽()ln x x a a a '=⑾()1ln x x '= ⑿()1 log ln x a x a '= ⒀( )arcsin x '=⒁( )arccos x '= ⒂()21arctan 1x x '= +⒃()2 1arccot 1x x '=-+⒄()1x '= ⒅ '=二、导数的四则运算法则 三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±????(2)()() () ()n n cu x cu x =???? (3)()() () ()n n n u ax b a u ax b +=+???? (4)()()() ()()()() n n n k k k n k u x v x c u x v x -=?=????∑ 四、基本初等函数的n 阶导数公式 (1)()()!n n x n =(2)()()n ax b n ax b e a e ++=?(3)()() ln n x x n a a a = (4)()()sin sin 2n n ax b a ax b n π??+=++??? ?????(5)()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6)() () () 1 1! 1n n n n a n ax b ax b +???=- ? +?? +(7)()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-????+ 五、微分公式与微分运算法则 ⑴()0d c =⑵()1d x x dx μμμ-=⑶()sin cos d x xdx = ⑷()cos sin d x xdx =-⑸()2tan sec d x xdx =⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =?⑻()csc csc cot d x x xdx =-?

高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()()00,x f x f y x x x -=?-=?则 ()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增 量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不 存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

工程力学公式微积分公式高等数学公式汇总

工程力学公式微积分公 式高等数学公式汇总 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρ ρτρ= ,最大切应力:max P P T T R I W τ==, 4 4 (1)32 P d I πα= -,3 4(1)16 P d W πα= -,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ= ≤,长度为l 的 一段轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式: ()(/min) 9549 KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα+-= + -,sin 2cos 22 x y x ασστατα-= + 9、平面应力状态三个主应力: '2 x y σσσ+= ,''2 x y σσσ+= '''0σ= 最大切应力max ''' 2 σστ-=± =最大正应力方位 02tan 2x x y τασσ=- -

高等数学重积分总结

第九章 二重积分 【本章逻辑框架】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???的分法要任意,二是在每个小区域i σ?上的点 (,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各 小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。

(1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以(,)f x y 为曲 顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分 (,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上 的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。 【主要概念梳理】 1.二重积分的定义 设二元函数f(x,y)在闭区域D 上有定义且有界. 分割 用任意两组曲线分割D 成n 个小区域12,,,n σσσ???,同时用i σ?表示它们的面积,1,2,,.i n =其中任意两小块i σ?和()j i j σ?≠除边界外无公共点。 i σ?既表示第i 小块,又表示第i 小块的面积. 近似、求和 对任意点(,)i i i ξησ∈? ,作和式1 (,).n i i i i f ξησ=?∑ 取极限 若i λ为i σ?的直径,记12max{,,,}n λλλλ=,若极限0 1 lim (,)n i i i i f λξησ→=?∑ 存在,且它不依赖于区域D 的分法,也不依赖于点(,)i i ξη的取法,称此极限为f (x,y )在D 上的二重积分. 记为

高等数学(复旦大学版)第九章 多元函数微分学的应用

第九章 多元函数微分法的应用 在高数上册中,我们讨论的函数都只有一个自变量,这种函数称为一元函数. 但在许多实际应用问题中,我们往往要考虑多个变量之间的关系,反映到数学上,就是要考虑一个变量(因变量)与另外多个变量(自变量)的相互依赖关系. 由此引入了多元函数以及多元函数的微积分问题. 本章将在一元函数微积分学的基础上,进一步讨论多元函数的微积分学. 讨论中将以二元函数为主要对象,这不仅因为有关的概念和方法大都有比较直观的解释,便于理解,而且这些概念和方法大都能自然推广到二元以上的多元函数. 第一节 空间曲线的切线与法平面 教学目的: 1、理解空间曲线的切线与法平面的概念; 2、掌握空间曲线的切线与法平面的计算 教学重点:空间曲线的切线与法平面的计算 教学难点:空间曲线的切线与法平面的计算 教学内容: 设曲线Γ的参数方程为 )(),(),(t z z t y y t x x === 其中[,]t a b ?,(),(),()x t y t z t 在区间[,]a b 上可导。 曲线Γ在点0P 处的切线方程为 .) ()()(00 0000t z z z t y y y t x x x '-='-='- 切线的方向向量000('(),'(),'())x t y t z t 称为曲线在点0P 的切向量. 过点0P 且与切线垂直的平面称为曲线Γ在点0P 处的法平面. 曲线的切向量就是法平面的法向量,因此法平面的方程为 0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x 如果曲线Γ的方程为 ? ??==0),,(0 ),,(z y x G z y x F 的情形; 曲线Γ在点0P 处的切线方程为 00 00 (,)(,)(,)(,)(,)(,)P P P x x y y z z F G F G F G y z z x x y ---= =抖?抖?

(完整版)高等数学公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

高等数学二重积分总结.讲解学习

高等数学二重积分总 结.

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的

质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。 在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12, , , n σσσ??? 的分法要任意,二是在每个 小区域i σ?上的点(, i i i ξησ∈?的取法也要任意。有了这两个“任意”, 如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(, f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1 若在D 上(, f x y ≥0,则(, d D f x y σ??表示以区域D 为底,以 (, f x y 为曲顶的曲顶柱体的体积。特别地,当(, f x y =1时,(, d D f x y σ ??表示平面区域D 的面积。 (2 若在D 上(, f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(, d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3若(, f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(, d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积.

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概 念,掌握多元函数的连续性定理,能够判断多元函数的 连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念与极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 就是xoy 平面上的一个点,δ就是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 就是平面上的一个点集,P 就是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都就是内点,则称E 为开集。例如,集合

}41),{(221<+<=y x y x E 中每个点都就是E 1的内点,因此E 1为开集。 如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称 为E 的边界。例如上例中,E 1的边界就是圆周12 2=+y x 与 22y x +=4。 设D 就是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 就是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}就是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 与它的底半径r 、高h 之间具有关系 h r V 2π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

微积分及其应用

§定积分的应用 一、几何意义 1、定积分()b a f x dx ?表示介于曲线()y f x =、x 轴及直线,x a x b ==之间各 部分面积的代数和... ; 2、定积分()b a f x dx ?表示介于曲线()y f x =、x 轴及直线,x a x b ==之间各部分面积的和; 二、物理意义 1、定积分()b a v t dt ?表示物体在时间[],a b 作变速直线运动的位移; 2、定积分()b a v t dt ?表示物体在时间[],a b 作变速直线运动的路程; 3、定积分()b a F x dx ?表示物体沿与变力()F x 相同的方向从位置a 到位置b 所做的功; 三、求定积分的方法 例、一点在直线上从时刻()0t s =开始以速度()243/v t t m s =-+运动,求 (1)在()4t s =时运动的位移; (2)在()4t s =时运动的路程; 例、做直线运动的质点在任意位置x 处,所受的力()1x F x e =+,则质点沿着()F x 相同的方向,从点10x =处运动到点21x =处,力()F x 所做的功是_____________________。

四、定积分的应用 例、已知函数()cos f x x =,记()11,2,3,...,22k k S f k n n n π π-??=?= ???,若12...n n T S S S =+++,则( ) A. 数列{}n T 是递减数列,且各项的值均小于1 B. 数列{}n T 是递减数列,且各项的值均大于1 C. 数列{}n T 是递增数列,且各项的值均小于1 D. 数列{}n T 是递增数列,且各项的值均大于1

相关主题
文本预览
相关文档 最新文档