当前位置:文档之家› 城市轨道交通盾构隧道的横向抗震设计

城市轨道交通盾构隧道的横向抗震设计

城市轨道交通盾构隧道的横向抗震设计
城市轨道交通盾构隧道的横向抗震设计

隧道支护结构设计方案

第一部分支护结构设计方案 一、设计依据 1、甲方提供的本工程的岩土工程报告。 2、甲方提供的建筑总平面图、地形图、地下管线图、主体框架平面图和剖面图等。 3、有关设计计算规范和规程: (1)、《南京市地基基础设计规范》DB32/112-95 (2)、《建筑基坑支护技术规程》(JGJ120-99) 二、工程概况 拟建的安仁街地下通道北侧副通道位于南京市鼓楼市民广场东侧安仁街路上,过街通道全长55.67m(中线长度),宽14m,南北各建地下人行通道一条,本次为对北侧安仁街地下人行通道进行设计。根据资料,基坑实际开挖深度按如下考虑:基坑西侧小半部分实际开挖深度5.95m,东侧大半部分实际开挖深度7.30m,靠近最东侧局部开挖深度7.05m。 三、周边情况 该地下通道横穿安仁街,其南侧为北京东路和安仁街、丹凤街四叉路口,该通道东侧为正在施工的北极阁地下商场基础,目前已施工至地面,该基坑为地面下-11m,采用的是人工挖孔桩加一层钢支撑的支护结构,本通道将和其相连接,通道东侧还有一个向北的人行出口,基坑西侧为市民广场,有两个出口,一个出口向北,另一个出口向西。在基坑中部,有一连接横穿北京东路的主通道接口,本次支护暂不考虑,沿安仁街中部路面下和东侧路面下分布有较为密集的地下管线。 四、工程地质情况 1、地形地貌 本工程位于南京鼓楼市民广场东侧安仁街上,根据《南京城区地貌类型图》划分,本施工区域地貌属二级阶地及坳沟地貌单元。地形平坦,地面标高在12.0m左右。 2、岩土层分布 经勘探查明,基坑支护范围内土层自上而下分别为: ①1杂填土:杂色,稍湿,结构松散,主要由碎砖石和少量粉质粘土组成,局部夹大量建筑垃圾,厚度0.9~1.4m; ①2素填土:灰黄~灰色,湿~饱和,可~流塑,夹少量碎砖,局部夹淤泥质土,埋深 0.9~1.4m,厚约0.8~2.2m; ②粉质粘土:灰黄色,饱和,可塑,埋深2.0~3.3m,厚约0.4~3.4m; ③粉质粘土:灰色,饱和,局部流塑,夹腐植物等,分布于场区东侧,埋深4.5~6.0m,厚约0.0~3.0m; ④1粉质粘土:灰黄色,饱和,可塑,埋深3.8~8.6m,厚约0.0~3.6m; ④2粉质粘土夹粘土:黄褐色,饱和,硬塑,埋深2.6~11.4m,厚约5.3~10.4m; 3、地下水 本场地地下水属孔隙潜水型。地下水主要赋存于填土层,由大气降水和地表水补给,富

地下建筑结构课程设计 隧道盾构施工

目录 1 荷载计算-------------------------------------3 1.1 结构尺寸及地层示意图-----------------------3 1.2 隧道外围荷载标准值-------------------------3 1.2.1 自重--------------------------------3 1.2.2 均布竖向地层荷载----------------------4 1.2.3 水平地层均布荷载----------------------4 1.2.4 按三角形分布的水平地层压力--------------5 1.2.5 底部反力-----------------------------5 1.2.6 侧向地层抗力--------------------------5 1.2.7 荷载示意图----------------------------6 2 内力计算---------------------------------------6 3 标准管片配筋计算--------------------------------8 3.1 截面及内力确定-----------------------------8 3.2 环向钢筋计算--------------------------------8 3.3 环向弯矩平面承载力验算-----------------------11 4 抗浮验算-------------------------------------10 5 纵向接缝验算--------------------------------12 5.1 接缝强度计算------------------------------12 5.2 接缝张开验算------------------------------14 6 裂缝张开验算------------------------------15 7 环向接缝验算----------------------------16

隧道围护结构施工方案

一、编制依据 1、《地铁设计规范》GB50157—2003 2、《地下铁道工程施工及验收规范》GB50299—1999 3、《建筑边坡工程技术规范》GB50330—2002 4、《建筑桩基检测技术规范》JGJ106—2003 5、《建筑桩基技术规范》JGJ94—2008 6、《建筑地基基础工程施工质量验收规范》GB50202—2002 7、《铁路混凝土与砌体工程施工规范》TB10210—2001 8、《轨道交通车站工程施工质量验收标准》QBD-006-2005 9、《钢筋焊接机验收规程》JGJ18—2003 10、《锚杆喷射混凝土支护技术规范》GB50086—2001 11、《建筑变形测量规范》JGJ8—2007 12、《城市轨道交通工程测量规范》GB50308—2008 13、《基坑土钉支护技术规程》CECS96:97 二、工程概况 (一)、工程简介 铁科院环形铁道试验基地建成于1958年,现为满足城市轨道交通装备认证检验的需要,特建设城市轨道交通试验线,以满足车辆的各种动态试验及联调试验,也包括对城市轨道交通工程产品的认证检验。 区间隧道起点为K4+375,终点为K5+300,全长925m,其中K4+375~K4+572段为明挖U型槽,长197m;K4+572~K5+085段为明挖矩形断面,长度513m;K5+085~K5+300段为明挖U型槽,长215m。

隧道基坑围护结构如下: (1)、U型槽段:坑深小于4m采用放坡土钉墙支护体系,坑深大于4m,采用钻孔灌注桩加钢支撑围护体系。 (2)、地下段:地下段采用钻孔灌注桩加钢支撑支护体系,机械成孔灌注桩为Φ600@1200(隧道最深处为Φ600@900),钢支撑竖向设置3道,基坑局部最深处钢支撑竖向设置4道(含倒撑),放坡段基坑最深4m,地下段基坑最深13.1m(隧道最低点泵房处)。 (二)、工程地质概况 (1)场地环境概况 本次全线勘察揭露地层最大深度为45m,根据钻探资料及室内土工试验结果,根据地层沉积年代、成因类型,本工程场地勘探范围内的土层分为人工堆积层(Qml)、新近沉积层(Q42al+pl)和一般第四系冲洪积层(Q4al+pl)三大类,本场区按地层岩性及其物理力学性质将土层划分为13个大层。 (2)岩土分层及其概况 1)杂填土①1层:杂色,松散,湿,含灰渣、石灰渣、砖块、碎石、混凝土块、和生活垃圾等。 2)粉土填土①2层:褐黄色~灰褐色,松散~中密,湿,以粉土为主,含少量黏性土、砖渣、煤渣、石块、灰渣。 3)粉质粘土②层:灰褐色~黄褐色,可塑,湿,中高压缩性,含云母,有机物、氧化铁、局部夹有粉土。 4)粉土②1层:褐黄色,中密,湿,中压缩性,含云母,有机物、

盾构隧道管片拼装施工选型与排版总结[优秀工程范文]

盾构隧道管片拼装施工选型与排版总结 区间盾构结构为预制钢筋混凝土环形管片,外径6200米米,内径5500米米,厚度 350米米,宽度 1200米米.在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合. 国内一般采用第③种,项目隧道采用该衬砌环. 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量. 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型.由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度 . 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环.即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄. 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度 ;③标准环数与楔形环数之比u值.还有一个可供参考的因素:楔形量管模的使用地域.楔形量理论公式如下: △=D(米+n)B/nR ①

(D-管片外径,米:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面.按最小水平曲线半径R=300米计算,楔形量△=37.2米米,楔形角β=0.334°. 值得注意的是转弯环设计时,环宽最大和最小处是固定的 ,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求. 2、圆曲线预排版 设需拟合圆曲线半径为450米(南门路到团结桥区间曲线半径值),拟合轴线弧长270米,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720米米③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1.

区间盾构隧道结构设计

区间盾构隧道结构设计 1)主要设计原则 ①盾构隧道衬砌结构应满足运营功能要求以及建筑限界、施工工艺、结构防水和城市规划等方面的要求。结构安全等级为一级,按地震烈度为7度进行结构抗震设计,采取相应的构造处理措施,以提高结构的整体抗震能力。结构抗力应满足人防部门的要求,抗力级别为6级。 ②结构类型和施工方法,应根据工程地质、水文地质和周围的环境条件,通过技术经济比选确定,并应按相关规范的规定进行结构设计计算。 ③结构设计应符合强度、刚度、稳定性、抗浮和裂缝宽度验算的要求,并满足施工工艺的要求。 ④对于钢筋混凝土结构应就其施工和正常使用阶段进行结构强度计算,必要时也应进行刚度和稳定性验算。钢筋混凝土结构应进行裂缝宽度验算,其最大裂缝允许值为:明挖法和矿山法施工的结构为0.2~0.3mm;盾构法施工的结构为0.15~0.20mm。结构进行抗浮验算时,其抗浮安全系数不得小于1.05,否则应采取抗浮处理措施。 ⑤采用暗挖法施工时,区间隧道为平行的双洞单线隧道,两隧道的净距一般不宜小于1.0倍隧道洞径。 ⑥所选择的盾构机型,必须对地层有较好的适应性,并同时依据盾构推进速度、周围环境状况、工期、造价等各方面进行技术经济比较后确定。 ⑦严格控制工程施工引起的地面沉降量,其允许数值应根据地铁沿线的地面建筑及地下构筑物等实际情况确定,并因地制宜地采取措施。 ⑧结构防水设计应根据工程地质、水文地质、地震烈度、环境条件、结构形式、施工工艺及材料来源等因素进行,并应遵循“以防为主、多道设防、刚柔结合、因地制宜、综合防治”的原则。车站及出入口通道防水等级为一级;车站风道及区间隧道防水等级为二级。 2)盾构机类型的选择

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

盾构隧道管片质量检测技术准则CJJ/T

盾构隧道管片质量检测技术标准(C J J/T164-2011) 说明: 目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T164-2011)”的word版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。 该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。 1总则 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2术语 2.0.1管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验

对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。 2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边 模塑过程中溢人模具合模线或脱模销等间隙处并留在混凝土管片上的水泥砂浆。 拼接面 采用某种方式将盾构隧道管片连接起来,管片与管片之间的接触面。 环向 盾构隧道管片拼装成环后,环的切线方向。 纵向 盾构隧道管片拼装后,环与环的中心连线方向。 渗漏检验装置 在渗漏检验中,用于固定由凝土管片试件,并能在管片外弧面与试验架钢板之间形成密闭区间进行充水加压试验的试验台座。渗漏检验装置由检验架钢板、刚性支座、横压件、紧固螺杆、橡胶密封垫等组成。 3基本规定 3.0.1盾构隧道管片检测,应在接受委托后,进行现场和有关资料调查,制定检测方案并确认仪器设备状况后进行现场检测,根据计算分析和结果评价判断是否进行扩大抽检,并应出具检测报告(见图3.0.1)。 图3.0.1盾构隧道管片检测工作程序 初检结果不

盾构隧道设计基本概念

盾构隧道设计基本概念 1盾构管片的几何设计 1.1隧道线形的选择—平纵断面的拟合 隧道的中线是由直线及曲线组成。设计常常采用楔形衬砌环(见图1-1),来实现盾构隧道在曲线上偏转及纠偏,楔形衬砌环最大宽度与最小宽度之差称为楔形量。一般来说,楔形量的确定具有经验性,应考虑管片种类、环宽、直径、曲线半径、曲线区间楔形管片环使用比例、管片制作的方便性、盾尾操作空隙因素综合确定;管片楔形量还必须为施工留出适当的余裕。如下图所示,阴影部分是管片的平面投影图,圆弧是隧道设计中心线,圆弧中心点O1是隧道的转弯半径所在的中心点,O2是理论上能拼出的最小转弯半径时的圆心,则O2P<O1P。 a)普通环b)单侧楔形环c)两侧楔形环 图1-1 楔形衬砌环(β-楔形角、△-楔形量) 图1-2 楔形量与转弯半径示意图 日本曾统计管片外径与楔形量的相关关系,如下图所示。

图1-3 楔形量的施工统计 《盾构工程用标准管片(1990年)》规定管片环外径与楔形量的关系如表1-1所示。 表1-1 楔形量与管片环外径的关系 目前,多采用楔形衬砌环与直线衬砌环的组合、左右楔形衬砌环以及通用型管片。 1.1.1标准环+楔形环 管片拼装时,根据隧道线路的不同,直线段采用标准环管片,曲线段采用楔形管片(左转弯环、右转弯环)用于隧道的转弯和纠偏。楔形环的楔形角由标准管片的宽度、外径和施工曲线的半径而定。采用这类管片时,至少需三种管片模具,即标准环管模、左转弯环管模和右转弯环管模。 a)直线段b)曲线段 图1-4 标准环+楔形环拟合线路 通常,以短折线拟合曲线,在设计时常以2标准环+1楔形环来拟合;不得以(极端困难)时,以1标准环+1楔形环来拟合。

盾构隧道转弯环管片在曲线上的排版

盾构隧道转弯环管片在曲线上的排版【东莞地铁R2线盾构前言】:盾构施工在缓和曲线上的管片选型排版直接关系 到在圆曲线上盾构机的姿态控制,现以某区间缓和曲线段管片的选型排版为例,对管片在缓和区线段的选型排版方法进行总结介绍,以便在今后盾构施工进行借鉴和指导。一般排版设计的管环宽是1.5米就考虑1.502米-1.503米我考虑的是1.503米排版情况很好。 一、引言 目前盾构工程在地下铁路施工中应用越来越多,由于曲线的存在就要用标准环与转弯环配合使用,以适应线路的走势。曲线是由一条圆曲线和两条缓和曲线组成。对于圆曲线的管片排版已有了相对较为成熟的理论。而缓和曲线上的管片排版以往通常是根据盾构机VMT来选择,没有成型的理论支持,为此,结合测量理论和弯环管片的实际探索出在缓和曲线上准确选择弯环管片理论排版的方法,介绍给大家,供参考和借鉴。 二、缓和曲线理论 按线路的前进方向,直线与缓和曲线的连接点称为直缓点,依次类推其余各点分别为缓圆点、圆缓点、缓直点,分别记为ZH、HY、YH、HZ。其相对关系见图1及图2。 图1 曲线要素示意图

图2 缓和曲线图 由可得 β――为缓和曲线上任一点P处的切线角; ――任一点P所对应的切线长 L S =L时,即可得出β=L/2R (rad) 。 当L S 2.1.弯环管片偏转角计算 依照曲线的圆心角与转弯环产生的偏转角关系可知: 图3 标准环、转弯环关系图 θ=2γ=2arctgδ/D 式中: θ—转弯环的偏转角δ—转弯环的最大楔形量的一半D—管片直径 将数据代入得出θ=0.3629o

三、缓和曲线上转弯环管片用量计算 在缓和曲线段内,缓和曲线切线角β与一环转弯环的偏转角θ的比值即为曲线上所需管片的数量。现以某区间右线JD8为例进行计算。 某区间管片技术参数如下: 管片长度:1500mm;管片内径:5400mm; 管片厚度:300mm;管片外径:6000mm; 转弯环楔形量:38mm; N=β/θ=10.53(环) N——单条缓和曲线需加设的弯环管片用量 由此可以看出在JD8的单条缓和曲线上需放10.53环转弯环管片,但是管片都要成环拼装,0.5环就要和圆曲线组合综合考虑了,整条曲线的弯环数按取整数进行取舍,如果有不足一环的管片存在,就可以多拼出一个转弯环,而不能少拼,即拼11环。 四、缓和曲线上转弯环管片位置确定 考虑切线角β累计超过转弯环偏转角θ的一半时即应该放置一个转弯环管片,可以计算出当β=0.5θ、1.5θ、2.5θ、3.5θ……时所对应曲线长,即将每一个弯环所对应的曲线长度逐个计算出来。再通过曲线位置计算出转弯环在线路上的具体里程。从表中可以清楚的看出每个转弯环管片准确的位置。

地铁盾构隧道施工技术现状

地铁盾构隧道施工技术现状 发表时间:2019-04-26T15:54:01.173Z 来源:《建筑学研究前沿》2018年第36期作者:张磊翟宝伶[导读] 利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。天津国际工程建设监理公司天津市 300191 摘要:随着我国私家车数量的不断增多,交通拥堵已成为城市发展难题之一,空气质量也受之影响,在一定程度上阻碍了社会的发展。在低碳环保,科学发展观的践行之下,必须行,绿色出行为前提下,乘坐公共交通地铁的出行为交通拥堵疏解了巨大的压力。截止目前,我国的很多城市都已经有了正式的轨道交通,并且各种线路在逐渐的发展和扩大,地铁轨道的运行在我国有了很大的突破和进步,取得了很大的成绩,对于社会的发展具有很强的推动作用。地铁轨道的优点较多,例如地下轨道交通快捷,节约资源,对环境破坏较小,以及可以抵抗自然风雪的伤害,安全舒适。当然地铁的运行离不开地下隧道,盾构法作为地铁工程建设的常用方法,在地铁工程建设中发挥了至关重要的作用。利用盾构法进行地铁工程建设有利于进行隧道挖掘,而隧道挖掘工作是地铁工程建设中最重要的内容。 关键词:地铁;盾构;隧道;施工技术 1盾构的分类 盾构机按其适用的地质情况不同主要分为泥水式盾构机、土压平衡式盾构机等类型。下面简单介绍通用的两种:泥水盾构机是在盾构机前面设置挡板,与刀盘泥浆槽之间形成稳定的开挖面,泥土进入泥浆仓内,形成一个不透水的薄膜在掌子面以此为张力来保持水压力,与开挖面的土压和水压之和保持平衡。挖出的土泥以泥浆的方式运输到地面,然后泥浆和水通过处理设备将泥土分离出来,分离出来的泥水经过处理后再循环利用到开挖中。 土压平衡盾构机是当盾构机向前推时,通过前面刀盘旋转切削土体切下来的土被运到土仓。当土仓被削下来的土填满时,被动土压力与开挖面上的土压和水压力之和保持平衡,因此实现掌子面平衡。 2盾构法施工的原理 盾构法开挖隧道本质上就是在盾构机开挖的过程中同步进行管片的拼装和盾尾注入浆体。根据开挖面所处的土层条件等状况,选择相应的盾构机机型。现在常见的形式包括密闭式、敞开式、土压式、泥水式等类型的盾构机。盾构机开挖隧道的施工过程:1.在隧道两端各建造一个盾构工作井:2.在两端的工作井处分别安装盾构设备;3.当盾构区间较长时宜进行设置中间维修井并在起始工作井处由千斤顶来提供推力使盾构机从开孔位置顶出;4.盾构机进行掘进时是根据设计位置来开挖并在开挖过程中管片安装和土体的排出同步进行;5.对盾尾的注浆必须及时用以固定衬砌管片的位置和减小土体的变形。盾构机在开挖的整体流程下存在的重要技术分为四块:1刀盘切入土层过程2开挖土层过程3盾构时管片衬砌的安装过程和最后的盾尾同步注浆过程。 (a)切入土层:盾构顶推力的大小是由本身存在的千斤顶来进行支持,当盾构的切口环进入到土体所顶进的长度和千斤顶所顶进的距离相对等。 (b)土体开挖:相对应地区的地质特性和机械的类型不同所进行的开挖方式也会有着千差万别。具体开挖方式有:网格式机械切削式敞开式和挤压式等开挖方式。 (c)衬砌拼装:在地质情况或承载力较小时一般会使用衬砌管片预制拼接来施工,同时根据设计要求存在其他的衬砌施工方法例如现浇式和复合式。 (d)盾尾同步注浆:在实际盾构开挖过程中盾构机开挖出的洞口大小比要拼接管片外径还要大一些,所以在盾构继续开挖时前期拼装好的管片会受到周围围岩作用并在盾尾通过后形成盾尾空隙。这种空隙在盾构施工中是一种十分严重的问题,如果没有对空隙及时的进行填充就会严重影响到管片的整体安全性。 3盾构隧道工程施工工艺 3.1盾构机进出洞时作业控制 地铁工程施工人员在进行盾构机的进出洞操作时,必须对作业、操作进行严格控制。利用盾构机挖掘隧道,必然会涉及到盾构机的进出洞,而这一过程的作业控制直接关系到盾构法的施工质量。如果盾构机进出洞操作出现问题,则整个地铁工程建设都有可能失败。为此,施工人员必须充分重视盾构机的进出洞作业控制。通常情况下,盾构机首先进行进洞作业,而后再进行出洞作业。在盾构机进行进洞作业之前,施工人员必须明确地铁隧道的作业路线,避免出现较大的轴线误差。同时,施工人员还应仔细勘察施工路线周围的环境,根据实际情况进行具体的操作。如果存在威胁盾构机施工作业的潜在因素,则必须在作业前制定好预防措施以及应急措施,避免在施工过程中出现重大事故,干扰盾构机的顺利施工。在进行盾构机的出洞作业前,施工人员需彻底审查各项工作,避免存在漏洞影响出洞作业。 3.2盾构机挖掘施工时作业控制 盾构机的挖掘作业是地铁施工盾构法的主要工作,此项作业在地铁工程建设的盾构施工中具有十分重要的作用。在盾构机进行挖掘施工的过程中,应尽量避免挖掘施工对周边土层产生较大影响,以保证开挖土层的稳定性。要减少盾构机挖掘施工对周边土层稳定性产生的影响,施工人员必须在挖掘作业前科学合理地调整盾构机的参数。同时,在挖掘施工过程中,使用人员应注意盾构机的姿态,避免盾构机因姿态问题影响挖掘工作的顺利进行。盾构机的姿态不仅会影响挖掘工作的进行,还会影响管片作业的拼装质量。为此,在盾构机的挖掘施工过程中必须严格控制其姿态。盾构机的姿态控制与注浆方式、盾构坡度等各项参数具有十分密切的关系,只有在控制好各项参数的前提下才能真正实现对盾构机姿态的有效控制。盾构机各项参数量的控制需要建立在可靠的测量工作之上,在进行可靠性的测量之后,才能实现对盾构机各项参数量的精准控制。此外,要将土体压力控制在可控范围内,还需严格调控盾构机的前进速度和排土容量。 3.3推进操作和纠偏 盾构在实施的时候,首先需要对围岩的范围进行观察,以此确保实施的安全性,实时对千斤顶的行程和推力进行观察,沿既定路线方向准确掘进。因此,有必要正确推进盾构的运行,随时纠正偏差。盾构掘进过程中,为了保证盾构掘进功能在计划路线上的正确性,防止偏移、偏转和俯仰,应适当调整千斤顶行程和推力,破坏不方便掘进面的稳定性。一般采用开挖后立即推进。或者一边挖一边推。因此,任何时候都要正确操作屏蔽体,任何时候都要进行纠偏的路线。

盾构隧道管片材料检验方案

盾构隧道管片材料检验 盾构隧道管片中涉及的主要材料有水泥、集料、水、混凝土外加剂、掺合料、钢筋、钢纤维和混凝土等,为时时掌控管片质量,必须对其材料实施严格控制,因此在制作管片前,对这些材料应进行检验。遵循现行标准,制定的具体检验方法如下所列: 1 水泥 水泥宜采用强度等级不低于42.5的硅酸盐水泥、普通硅酸盐水泥,其检测参数、取样方法、检测频率和检测方法应符合表1的规定。 表1 水泥的检测参数、检测频率、取样方法和检测方法 2 钢筋 钢筋直径大于10mm时宜采用热轧螺纹钢筋,直径小于或等于10mm时宜采用低碳钢热轧圆盘条。其检测参数、取样方法、检测频率和检测方法应分别符合表2、表3的规定。当发现钢筋脆断、焊接性能不良或力学性能显著不正常等现象时,应对该批钢筋进行化学成分检验或其他专项检验。 表2 热轧螺纹钢筋的检测参数、检测频率、取样方法和检测方法

表3 低碳钢热轧圆盘条的检测参数、检测频率、取样方法和检测方法 钢筋焊接前须消除焊接部位的铁锈、水锈和油污等,钢筋端部的扭曲处应矫直或切除,施焊后焊缝表面应平整,不得有烧伤、裂纹等缺陷。钢筋焊接接头的检测参数、取样方法、检测频率和检测方法应符合表4的规定。 表4 钢筋焊接接头的检测参数、检测频率、取样方法和检测方法

3 集料 细集料宜采用中砂,细度模数为2.3~3.0,含泥量不应大于2%,砂的检测参数、取样方法、检测频率和检测方法应符合表5的规定。 表5 砂的检测参数、检测频率、取样方法和检测方法 粗集料宜采用碎石或卵石,其最大粒径不宜大于30mm且不应大于钢筋骨架最小净间距的3/4,针片状含量不应大于15%,含泥量不应大于1%。石的检测参数、取样方法、检测频率和检测方法应符合表6的规定。 表6 石的检测参数、检测频率、取样方法和检测方法

隧道结构设计模型概述

隧道结构设计模型概述 摘要:目前采用的地下结构设计方法可以归纳为以下四种设计模型:○1以参照过去隧道工程实践经验进行工程类比为主的经验设计法;○2以现场量测和实验室试验为主的实用设计方法如收敛——约束法。○3作用与反作用模型,即荷载—结构模型○4连续介质模型,包括解析法和数值法。针对各种模型特点谈谈一下对该四种模型的认识。 1隧道结构体系设计计算模型的建立原则 对于均匀介质中的圆形隧道,当它处于平面轴对称状态时,将围岩与支护结构的相互作用问题抽象为支护需求曲线和支护补给曲线的收敛—约束关系,从而求出围岩与支护结构达到平衡时的支护阻力Pa。有了这个值就可以计算出围岩和支护结构的应力状态。由此可以看出,即使对于如此理想的问题,都需要事先将研究对象的几何形状、初始应力状态、开挖和支护过程、岩体和支护结构的物理力学特性等条件转换为数学力学模型,然后运用数学力学方法求出模型的、作为设计标准的特征值(如应力、位移或极限荷载等)。一个理想的隧道工程的数学力学模型应能反映下列的因素: ①必须能描述有裂隙和破坏带的,以及开挖面形状变化所形成的三维几何形状。 ②对围岩的地质状况和初始应力场不仅要能说明当时的,而且还要包括将来可能出现的状态。 ③应包括对围岩应力重分布有影响的岩石和支护材料非线性特性,而且还要能准确地测定出反映这些特性的参数。 ④如果要知道所设计的支护结构和开挖方法能否获得成功,即想评估其安全度,则必须将围岩、锚杆和混凝土等材料的局部破坏和整体失稳的判断条件纳入模型中。当然,条件必须满足现行设计规范的有关规定。 ⑤要经得起实际的检验,这种检验不能只是偶然巧合,而是需要保证系统的一致性。 这样的理想模型对于科学研究是十分必要的,因为只有准确地模拟围岩性质和施工过程,才能更好地了解围岩与支护结构的实际工作状态,作出符合实际的决策。然而这种理想模型的参数太多又不易精确测定,将各种影响因素都机械地转换到模型中来也是十分困难的。因此,理想模型还不宜直接用于设计实践,必须在可能的情况下,由理想模型推演出一些较简单的计算模型,或称为工程师模型。

盾构衬砌设计计算书

盾构隧道衬砌设计计算书 060987李博 一、设计资料 如图所示,为一软土地区地铁盾构隧道横断面,有一块封顶块K,两块邻接块L,两块标准块B 以及一块封底块D 六块管片组成。 q=20kN/m 2 j=7.2 j=8.9 部分数据 地面超载 2/20m kN q =超 地层基床系数 2/20000m kN k = 衬砌外径 m D 2.60= 衬砌内径 m D 5.5= 管片厚度 mm t 350= 管片宽度 m b 2.1=

管片裂缝宽度 允许值 []mm 2.0=v 接缝张开允许值 []mm 3=D 混凝土抗压强度 设计值 MPa f c 1.23= 混凝土抗压强度 设计值 MPa f t 89.1= 钢筋抗拉强度 设计值(II 级钢) MPa f y 300= 钢筋抗拉强度 设计值(II 级钢) MPa f y 300' = 管片混凝土 保护层厚度 mm a a s s 50' == 钢筋抗拉强度 设计值(I 级钢) MPa f y 210= 混凝土弹性模量 2 7 /1045.3m kN E ′= 钢筋弹性模量 (II 级钢) 28/100.2m kN E ′=钢 M30螺栓有效面 积 26.560mm A g = M30螺栓设计强 度 MPa R g 210= M30螺栓弹性模 量 28/101.2m kN E ′=螺栓 M30螺栓长度 cm l 5.18=螺栓 二、荷载计算 1、 自重 kN R D D g H h 81.1602)(41 220=×-=p g p 2、 竖向土压力 由于隧道上覆土层为灰色淤泥质粉质粘土,地层基床系数2 /20000m kN k =,推测应为硬黏性土,且隧道埋深超过隧道半径很多倍,故竖向土压力应按照太沙基公式计算。 衬砌圆环顶部的松弛宽度 m D B 73.6)4 8cot(200=+= j p 地面超载2 /20m kN q =超,且H q

盾构隧道管片排版总结

盾构隧道管片排版总结

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径 5500mm,厚度350mm,宽度1200mm。在盾构施.匸开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点一简化施工控制,减少管片选型工作量;缺点一需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。 2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △二D (m+n) B/nR

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 木次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R二300m计算,楔形量△二37. 2mm,楔形角o 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K 块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m (南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: B 二L/R二② △总二(R+D/2 ) B- (R-D/2 ) 3 =3720mm ③ 由△总计算出需用楔形环数量: nl二△总/A=100 ④ 标准环数量为: n2= (L-nl*B) /B二125 ⑤ 标准环和楔形环的比值为: u=n2: nl=5:4 ⑥ 即在R二450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加lo 3)管片实际拼装位置排版

盾构管片选型设计

智慧城站~神舟路站区间管片选型设计 1、管片选型的原则 1.1 管片选型适合隧道设计线路; 1.2 管片选型适应盾构机的姿态; 2、遵从隧道设计线路 2.1 管片技术参数 2.2 管片布置方式 本区间设计部署三种圆曲线,平面半径分别为R=600米、R=615米、R=800米、R=1000米;竖曲线形式为R=5000米、R=10000米。依照曲线的圆心角与弯环偏角关系,各种施工段的的布置方式管片为: (1)直线段:8+1模式 由于没有设计平、纵曲线,故仅考虑盾构机在掘进过程中,出现蛇行纠偏所表示的工况。即8个标准环加1个右(左)弯环配置。因为纠偏环多在缓和曲线到曲线之间,到曲线前就需提前安装纠偏环进行调整,以减少进曲线发生纠偏过急现象。 (2)R=600m段:1+1模式 在600m半径的圆曲线上,每隔3.80m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+2环转弯环。 (3)R=615m段:1+1模式 在615m半径的圆曲线上,每隔3.89m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+2环转弯环。 (4)R=800m段:2+1模式 在800m半径的圆曲线上,每隔5.06m要用一环转弯环,标准环与转弯环的拼装关系为2环标准环+1环转弯环。 (5)R=100m段:4+1模式 在1000m半径的圆曲线上,每隔6.33m要用一环转弯环,标准环与转弯环的拼装关系为3环标准环+1环转弯环。

(6)R=5000m竖曲线段:20+1模式 在5000m半径竖曲线上,每隔31.65m要用一环转弯环,标准环与转弯环的拼装关系为20环标准环+1环转弯环。 (7)R=10000m竖曲线段:41+1模式 在10000m半径竖曲线上,每隔63.31m要用一环转弯环,标准环与转弯环的拼装关系为41环标准环+1环转弯环。

盾构隧道管片排版总结

管片选型与排版 区间盾构结构为预制钢筋混凝土环形管片,外径6200mm,内径5500mm,厚度350mm,宽度1200mm。在盾构施工开工前,应对管片进行预排版,确定管片类型数量. 1)隧道衬砌环类型 为满足盾构隧道在曲线上偏转及蛇形纠偏的需要,应设计楔形衬砌环,目前国际上通畅采用的衬砌环类型有三种:①直线衬砌环与楔形衬砌环的组合;②通用型管片;③左、右楔形衬砌环之间相互组合。国内一般采用第③种,项目隧道采用该衬砌环。 直线衬砌环与楔形衬砌环组合排版优缺点:优点—简化施工控制,减少管片选型工作量;缺点—需要做好管片生产计划,增加钢模数量。 盾构推进时,依据预排版及当前施工误差,确定下一环衬砌类型。由于采用衬砌环类型不完全确定性,所以给管片供应带来一定难度。2)管片预排版 1、转弯环设计 区间转弯靠楔形环完成,分三种:标准换、右转弯环、左转弯环。即管片环向宽度六块不是同一量,曲线外侧宽,内侧窄。 管片楔形量确定主要因素有三个:①线路的曲线半径;②管片宽度;③标准环数与楔形环数之比u值。还有一个可供参考的因素:楔形量管模的使用地域。楔形量理论公式如下: △=D(m+n)B/nR ①

(D-管片外径,m:n-标准环与楔形环比值,B-环宽,R-拟合圆曲线半径) 本次南门路到团结桥楔形环设计为双面楔形,楔形量对称设置于楔形环的两侧环面。按最小水平曲线半径R=300m计算,楔形量△=37.2mm,楔形角β=0.334°。 值得注意的是转弯环设计时,环宽最大和最小处是固定的,左转弯以K块在1点位设计,右转弯以K块在11点位设计,即在使用转弯环时,要考虑错缝拼装和管片位置要求。 2、圆曲线预排版 设需拟合圆曲线半径为450m(南门路到团结桥区间曲线半径值),拟合轴线弧长270m,需用总楔形量计算如下: β=L/R=0.6 ② △总=(R+D/2)β-(R-D/2)β=3720mm ③ 由△总计算出需用楔形环数量: n1=△总/△=100 ④ 标准环数量为: n2=(L-n1*B)/B=125 ⑤ 标准环和楔形环的比值为: u=n2:n1=5:4 ⑥ 即在R=450圆曲线上,标准环和楔形环比例为5:4,根据曲线弧长计算管片数量,确定出各类型管片具体数量,出现小数点时标准环数量减1,转弯环加1。

软土地区地铁盾构隧道课程设计计算书

软土地区地铁盾构隧道课程设计说明书 (共00页) 姓名杨均 学号 070849 导师丁文琪 土木工程学院地下建筑与工程系 2010年7月

1. 设计荷载计算 1.1 结构尺寸及地层示意图 ?=7.2 ?=8.9 2 q=20kN/m 图1-1 结构尺寸及地层示意图 如图,按照要求,对灰色淤泥质粉质粘土上层厚度进行调整: mm 43800 50*849+1350h ==灰。 按照课程设计题目,以下只进行基本使用阶段的荷载计算。 1.2 隧道外围荷载标准值计算 (1) 自重 2 /75.835.025m kN g h =?==δγ (2)竖向土压 若按一般公式: 2 1 /95.44688.485.37.80.11.90.185.018q m KN h n i i i =?+?+?+?+?==∑=γ 由于h=+++=>D=,属深埋隧道。应按照太沙基公式或普氏公式计算竖向土压:

a 太沙基公式: )tan ()tan (0010 ]1[tan )/(p ??? γB h B h e q e B c B --?+--= 其中: m R B c 83.6)4/7.75.22tan(/1.3)4/5.22tan(/0000=+=+=? (加权平均值0007.785 .5205 .42.7645.19.8=?+?= ?) 则: 2 )9.8tan 83.68 .48()9.8tan 83.68 .48(11/02.18920]1[9 .8tan ) 83.6/2.128(83.6p m KN e e =?+--=-- b 普氏公式: 2 012/73.2699.8tan 92.7832tan 32p m KN B =??== ?γ 取竖向土压为太沙基公式计算值,即: 2 1/02.189p m KN e =。 (3) 拱背土压 m kN R c /72.286.7925.2)4 1(2)4 1(2G 22=??- ?=?- =π γπ 。 其中: 3/6.728 .1645.11 .728.10.8645.1m KN =+?+?= γ。 (4) 侧向主动土压 )2 45tan(2)245(tan )(q 0021? ?γ-?--?+=c h p e e 其中: 21/02.189p m KN e =, 3/4.785 .5205 .41.7645.18m KN =?+?= γ 0007.785.5205.42.7645.19.8=?+?=? kPa c 1.1285 .5205 .41.12645.12.12=?+?= 则:

盾构隧道管片质量检测技术标准(CJJ/T 164)

盾构隧道管片质量检测技术标准(CJJ/T 164-2011) 说明: 目前网上尚无“盾构隧道管片质量检测技术标准(CJJ/T 164-2011)”的word 版文档;为了让大家更好的学习和交流这份规范,网友ershibasui1474编写了这份规范的电子版,请大家尊重该规范的版权和权威性,不得侵犯该规范编写单位及编写人的知识产权。 该规范是在很匆忙的时间内完成的,并未进行复核,请大家在阅读时注意其中可能存在的错误并予以更正。

1总则 1.0.1为加强盾构法隧道工程施工管理,统一盾构隧道管片质量检测和验收,保证检测准确可靠,制定本标准。 1.0.2 本标准适用于采用盾构法施工的盾构隧道混凝土管片和钢管片进场拼装施工前的检测和质量验收。 1.0.3 盾构隧道管片质量检测和验收除应执行本标准外,尚应符合国家现行有关标准的规定。 2 术语 2.0.1 管片 盾构隧道衬砌环的基本单元,包括混凝土管片和钢管片。 2.0.2 混凝土管片 以混凝土为主要原材料,按混凝土预制构件设计制作的管片。 2.0.3 钢管片 以钢材为主要原材料,按钢构件设计制作的管片。 2.0.4 水平拼装检验 将两环或三环管片沿铅直方向叠加拼装,通过测量管片内径、外径、环与环、块与块之间的拼接缝隙,从而评价管片的尺寸精度和形位偏差。 2.0.5渗漏检验 对混凝土管片外弧面逐级施加水压,观察水在混凝土管片内弧面及拼接面的渗透情况,评价管片抵抗水渗漏的能力。 2.0.6抗弯性能检验 对混凝土管片施加抗弯设计荷载,分析混凝土管片在抗弯荷载作用下的变形、管片表面裂缝的产生和变化,评价管片的抗弯性能。 2.0.7抗拔性能检验 对混凝士管片中心吊装孔的预埋受力构件进行拉拔试验,评价管片吊装孔的抗拔性能。 2.0.8粘皮 混凝土表面的水泥砂浆层被模具粘去后留下的粗糙表面。 2.0.9飞边

相关主题
文本预览
相关文档 最新文档