当前位置:文档之家› RF电路设计

RF电路设计

RF电路设计
RF电路设计

在射频电路中,放大器应用非常的多,放大器的功能就是将直流的能量转换为射频信号的能量,所以射频放大器需要加入直流的偏置提供射频放大器的直流工作点。在频率相对低的射频电路中(GHZ以下或者是几个GHZ),一般采用高频扼流圈或者电感串在供电的线路中,为了阻断射频的信号通过直流偏置电路进入供电线路中,也起到了防止射频功率的损失。在更高的频率的射频电路中,往往采用四分之一波长线和扇形电容的提供直流的偏置。射频信号沿着四分之一波长线到电源,相当于是四分之一波长的短路线,射频信号进入四分之一波长的短路线并不会对信号功率造成损失,同时扇型电容的作用更是加强了这种作用,当线路供电线路中加入扇型电容后,只要扇型电容的角度和半径足够大,那么射频主线路中的射频的能量就很少损失。在射频电路中,有时为了测试方便,经常要加入一些测试点,测试点会极大的方便电路的调试,准确的链路各级的信号状态。但是测试点的加入要注意,在非测试模式下,尽量不影响主线路的信号的能量的传输。为了有效的作到这点,一个比较有效的方法是,把测试电路中的串连电容和主线路中测试电容共用一个焊点,当测试时,焊接测试用电容,主线路电容不焊接,可以准确检测该点的信号。当正常工作时,则需要将测试用的电容取下,焊接上主线路中的电容,测试线路不会对于主信号造成影响。在这里着重提到的是,如果不是按照上述方法,而是在主线路中分出一路微带线,如果微带线刚好是四分之一波长,那么这会对信号造成极大的损失。

在射频放大线路中,为了有限的调节功率和提高驻波比,从而提高链路的稳定性,经常在线路中引入PI型的衰减网络。为了方便工程中的使用,特将一些常用的衰减值的网络列举出

衰减量串连电阻并联电阻实际衰减量(dB)回波损耗(dB)

1 dB 51 820 -0.97 -40

2dB 10 430 -1.88 -37

3 dB 18 300 -3 -44

5 dB 30 180 -4.9 -65

6 dB 39 150 -6.1 -43.6

8dB 50 120 --7.68 -56

9dB 68 100 -9.6 -49

12dB 100 82 -12.4 -47

PI型衰减器对于线路中的功率调节起到了重要的作用,熟悉这些值对于快捷的电路调节是非常有效的。对于一些多级高增益的电路,PI型的衰减器可以有效的防止自激振荡现象。

在射频的电路,有时需要将一路信号分成两路信号,在低频时,常采用简单的电阻功分网络实现。电阻的功分网络会对信号造成一定的衰减,损失信号的功率。最常用的时在主线路和其他两个线路中都串联18欧姆的电阻,起到功分和匹配的作用,在其他不需要等功分的场合就需要调节电阻的值来实现功率的分配。

现将一些常用到的电阻功分网络和参数列举:

主线路电阻支路1电阻支路2电阻S21 S31 S11 S22 S33

18 18 18 -6.2 -6.2 -34 -34 -34

0 0 50 -1.9 -7.9 -14 -14 -14

0 0 100 -1.34 -10.8 -17 -17 -7.4

电阻网络功分并不是最有效的,确实是最简单的,在功率损耗可以接收的范围内,这样作是没有问题的,在更高频率的情况,通常采用微带的功分环来实现功分,从而保证功率损失小,驻波比高。

RF射频电路设计

RF电路的PCB设计技巧 如今PCB的技术主要按电子产品的特性及要求而改变,在近年来电子产品日趋多功能、精巧并符合环保条例。故此,PCB的精密度日高,其软硬板结合应用也将增加。 PCB是信息产业的基础,从计算机、便携式电子设备等,几乎所有的电子电器产品中都有电路板的存在。随着通信技术的发展,手持无线射频电路技术运用越来越广,这些设备(如手机、无线PDA等)的一个最大特点是:第一、几乎囊括了便携式的所有子系统;第二、小型化,而小型化意味着元器件的密度很大,这使得元器件(包括SMD、SMC、裸片等)的相互干扰十分突出。因此,要设计一个完美的射频电路与音频电路的PCB,以防止并抑制电磁干扰从而提高电磁兼容性就成为一个非常重要的课题。 因为同一电路,不同的PCB设计结构,其性能指标会相差很大。尤其是当今手持式产品的音频功能在持续增加,必须给予音频电路PCB布局更加关注.据此本文对手持式产品RF电路与音频电路的PCB的巧妙设计(即包括元件布局、元件布置、布线与接地等技巧)作分析说明。 1、元件布局 先述布局总原则:元器件应尽可能同一方向排列,通过选择PCB进入熔锡系统的方向来减少甚至避免焊接不良的现象;由实践所知,元器件间最少要有 0.5mm的间距才能满足元器件的熔锡要求,若PCB板的空间允许,元器件的间距应尽可能宽。对于双面板一般应设计一面为SMD及SMC元件,另一面则为分立元件。 1.1 把PCB划分成数字区和模拟区 任何PCB设计的第一步当然是选择每个元件的PCB摆放位。我们把这一步称为“布板考虑“。仔细的元件布局可以减少信号互连、地线分割、噪音耦合以及占用电路板的面积。 电磁兼容性要求每个电路模块PCB设计时尽量不产生电磁辐射,并且具有一定的抗电磁干扰能力,因此,元器件的布局还直接影响到电路本身的干扰及抗干扰能力,这也直接关系到所设计电路的性能。

2016年《射频电路设计》实验

实验三RFID标签的设计、制作及测试一、【实验目的】 在实际的生产过程中,RFID电子标签在设计并测试完成后,都是在流水线上批量制造生产的。为了让学生体会RFID标签天线设计的理念和工艺,本实验为学生提供了一个手工蚀刻制作RFID电子标签的平台,再配合微调及测试,让学生在亲自动手的过程中,不断地尝试、提炼总结,从而使学生对RFID标签天线的设计及生产工艺,有进一步深刻的理解。 二、【实验仪器及材料】 计算机一台、HFSS软件、覆铜板、Alien Higgs芯片、热转印工具、电烙铁、标签天线实物,UHF测试系统,皮尺 三、【实验内容】 第一步(设计):从UHF标签天线产品清单中,挑选出一款天线结构,或者自己设计一款标签天线结构,进行HFSS建模画图 第二步(制作):将第一步中设计好的标签模型用腐蚀法进行实物制作 第三步(测试):利用UHF读写器测试第二步中制作的标签实物性能 四、【实验要求的知识】 下图是Alien(意联)公司的两款标签天线,型号分别为ALN-9662和ALN-9640。这两款天线均采用弯折偶极子结构。弯折偶极子是从经典的半波偶极子结构发展而来,半波偶极子的总长度为波长的一半,对于工作在UHF频段的半波偶极子,其长度为160mm,为了使天线小型化,采用弯折结构将天线尺寸缩小,可以适用于更多的场合。ALN-9662的尺寸为70mm x 17mm,ALN-9640的尺寸为94.8mm x 8.1mm,之所以有不同的尺寸是考虑到标签的使用情况和应用环境,因为天线的形状和大小必须能够满足标签顺利嵌入或贴在所指定的目标上,也需要适合印制标签的使用。例如,硬纸板盒或纸板箱、航空公司行李条、身份识别卡、图书等。 ALN-9662天线版图 ALN-9640天线版图

射频电路PCB的设计技巧

射频电路PCB的设计技巧 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm 以上。

射频电路设计公式

射频电路设计对特性阻抗Z的经验公式做公式化处理,参见P61 波阻抗公式: E H =Z= μ/ε=377Ω? 相速公式: v=ω β = 1 εμ 电抗公式: Xc= 1 Xl=ωL 直流电阻公式: R= l σS = l πa2σ 高频电阻公式: R′=a R 高频电感公式: L=R′ω 趋肤厚度公式: δ= 1πfμσ 铜线电感实用公式: L′=R a πfμσ= 2l 2 ? 1 πδμσ= 2l μ0/πσf= 1.54 f uH 高频电容公式: C=εA d 高频电导率: G=σA = ωεA = ωC 电容引线电感经验公式: L′=Rd?a πfμ.σ= 2lμ. = 771 f nH

电容引线串联电阻公式: R′=R?a 2δ = 2l 2πaσ πfμ.σ= l a μ.f πσ =4.8 fμΩ 电容漏电阻: R=1 G = 1 2πfC?tanΔ = 33.9exp6 f MΩ TanΔ的定义: ESR=tanΔωC 空气芯螺旋管的电感公式: L= πr2μ.N2螺旋管的电容: C=ε.?2πrN?2a l N =4πε.? raN2 l 微分算符的意义: ? x= 0? ? ?z ? ?y ? 0? ?? ? ?y ? ?x 电容,电感,电导,电阻的定义: C=εw d L= d G= σw R= d σw 特性阻抗表达式:

Z=L C 若是平行板传输线: Z=μεd w 关于微带线设计的若干公式: w/h < 1时, Z= Z. 2π ε′ 8? w + w 4? 其中, Z.=376.8Ω ε′=εr+1 + εr?1 1+ 12h? 1 2 +0.041? w2 w/h>1时 Z= Z. ε′? 1.39+ w h+ 2 3ln w h+1.444 其中, ε′=εr+1 + εr?1 1+ 12h? 1 2 如何设计微带线w/h<2时: w h = 8e A e2A?2 其中, A=2πZ Z. εr+1 2 + εr?1 εr+1 0.23+ 0.11 εr w/h>2时: W =2 (B?1?ln2B?1+ εr?1 (ln B?1 +0.39? 0.61 )) 其中, B= Z.π2Zεr 反射系数的定义:

射频电路设计技巧

实用资料——射频电路板设计技巧成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计步骤的进展进行全面持续的评估。而这种细致的设计技巧正是国内大多数电子企业文化所欠缺的。 近几年来,由于蓝牙设备、无线局域网络(WLAN)设备,和移动电话的需求与成长,促使业者越来越关注RF电路设计的技巧。从过去到现在,RF电路板设计如同电磁干扰(EMI)问题一样,一直是工程师们最难掌控的部份,甚至是梦魇。若想要一次就设计成功,必须事先仔细规划和注重细节才能奏效。 射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种「黑色艺术」(black art) 。但这只是一种以偏盖全的观点,RF电路板设计还是有许多可以遵循的法则。不过,在实际设计时,真正实用的技巧是当这些法则因各种限制而无法实施时,如何对它们进行折衷处理。重要的RF设计课题包括:阻抗和阻抗匹配、绝缘层材料和层叠板、波长和谐波...等,本文将集中探讨与RF电路板分区设计有关的各种问题。 微过孔的种类 电路板上不同性质的电路必须分隔,但是又要在不产生电磁干扰的最佳情况下连接,这就需要用到微过孔(microvia)。通常微过孔直径为0.05mm至0.20mm,这些过孔一般分为三类,即盲孔(blind via)、埋孔(bury via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型制程完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为组件的黏着定位孔。 采用分区技巧 在设计RF电路板时,应尽可能把高功率RF放大器(HPA)和低噪音放

ADS射频电路设计基础与典型应用解析

实验报告 课程名称: ADS射频电路设计基础与典型应用实验项目名称:交直流仿真分析 学院:工学院 专业班级:11级信息 姓名: 学号:1195111016 指导教师:唐加能 2014年12月23 日 预习报告

一、 实验目的 通过本节实验课程进一步熟悉使用ADS 软件,并学会使用ADS 软件进行交直流分析。 二、 实验仪器 电脑,ADS 仿真软件 三、 实验原理 (一)ADS 软件的直流,交流仿真功能 1.直流仿真 电路的直流仿真是所有射频有源电路分析的基础,在执行有源电路交流分析、S 参数仿真或谐波平衡仿真等其他仿真前,首先需要进行直流仿真,直流仿真主要用来分析电路的直流工作点。直流仿真元件面板主要包括直流仿真控制器、直流仿真设置控制器、参数扫描计划控制器、参数扫描控制器、节点设置和节点名控件、显示模板控件和仿真测量等式控件,这些面板上的原件经过设置以后既可以提供有源电路单点的直流分析,又可以提供有源电路参数扫描分析。 2.交流仿真 交流仿真能获得电路小信号时的多种参数,如电压增益、电流增益、跨导和噪声等。交流仿真执行时,首先对电路进行直流分析,并找到非线性原件的直流工作点,然后将非线性器件在静态工作点附近进行线性化处理,分析小信号在静态工作点附近的输入输出关系。 (二)交直流仿真面版与控制原件 1.直流仿真 图1中元件面板列出了直流仿真的所有仿真控件。 直流仿真控制器(DC ):直流仿真控制器(DC ) 是控制直流仿真的最重要控件,使用直流仿真控制器可以设置仿 真的扫描参数和参数的扫描范围等相关参数。 直流仿真设置控制器(OPTIONS ):直流仿真设置控制器主要用来设置直流仿真的外部环境和计算方式,例如,环境温度、设备温度、仿真的收敛性、仿真的状态提示和输出文件的特性等相关内容。

ADS射频电路设计基础与典型应用

实验报告 课程名称:ADS射频电路设计基础与典型应用实验项目名称:交直流仿真分析 学院:工学院 专业班级:11级信息 姓名: 学号:1195111016 指导教师:唐加能 2014年12月23 日

预 习 报 告 一、 实验目的 通过本节实验课程进一步熟悉使用ADS 软件,并学会使用ADS 软件进行交直流分析。 二、 实验仪器 电脑,ADS 仿真软件 三、 实验原理 (一)ADS 软件的直流,交流仿真功能 1.直流仿真 电路的直流仿真是所有射频有源电路分析的基础,在执行有源电路交流分析、S 参数仿真或谐波平衡仿真等其他仿真前,首先需要进行直流仿真,直流仿真主要用来分析电路的直流工作点。直流仿真元件面板主要包括直流仿真控制器、直流仿真设置控制器、参数扫描计划控制器、参数扫描控制器、节点设置和节点名控件、显示模板控件和仿真测量等式控件,这些面板上的原件经过设置以后既可以提供有源电路单点的直流分析,又可以提供有源电路参数扫描分析。 2.交流仿真 交流仿真能获得电路小信号时的多种参数,如电压增益、电流增益、跨导和噪声等。交流仿真执行时,首先对电路进行直流分析,并找到非线性原件的直流工作点,然后将非线性器件在静态工作点附近进行线性化处理,分析小信号在静态工作点附近的输入输出关系。 (二)交直流仿真面版与控制原件 1.直流仿真 图1中元件面板列出了直流仿真的所有仿真控件。 直流仿真控制器(DC ):直流仿真控制器(DC ) 是控制直流仿真的最重要控件,使用直流仿真控制器可以设置仿 真的扫描参数和参数的扫描范围等相关参数。 直流仿真设置控制器(OPTIONS ):直流仿真设置控制器主要用

射频工程师必读书籍

ADS,MWO,Ansoft还是CST、HFSS 频微波类书 希望对大家有点帮助: 1.《射频电路设计--理论与应用》『美』Reinhold Ludwig 著电子工业出版社 个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解. 随便提一下,关于看射频书籍看不懂的地方怎么办?我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。 2. 《射频通信电路设计》『中』刘长军著科学技术出版社 个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。值得一看,书上有很多归纳性的经验. 3.《高频电路设计与制作》『日』市川欲一著科学技术出版社 个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看. 4. 《LC滤波器设计与制作》『日』森荣二著科学技术出版社 个人书评:语言及其通俗易懂,完全没有深奥的理论在里面,入门者看看不错,但是设计方法感觉有点落后,完全手工计算.也感觉内容的太细致,此书一般. 5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社 个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行. 6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社 个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。好书,值得收藏! 7. 《信号完整性分析》『美』Eric Bogatin 著电子工业出版社 个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口)8. 《高速数字设计》『美』Howard Johnson著电子工业出版社 个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout 的工程师一看要看下,这本书也是经典书喔! 9.《蓝牙技术原理开发与应用》『中』钱志鸿著北京航空航天大学出版社 个人书评:当时自己做蓝牙产品买的书,前2年仅有的几本,上面讲了一下蓝牙的基本理论(恰当的说翻译了蓝牙标准),软件,程序的东西占大部分内容. 10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社 个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC 测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板会很赏识你的,如果你也负责产品的EMC,这本书必读。作者写有很多实例,很有代表性,对你解决EMC问题,会有引导性(指导性)的的意义。

射频电路设计的常见问题及五大经验总结

射频电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法则。 不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准确地实施时如何对它们进行折衷处理。当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以及波长和驻波等,在全面掌握各类设计原则前提下的仔细规划是一次性成功设计的保证。 RF电路设计的常见问题 1、数字电路模块和模拟电路模块之间的干扰 如果模拟电路(射频)和数字电路单独工作,可能各自工作良好。但是,一旦将二者放在同一块电路板上,使用同一个电源一起工作,整个系统很可能就不稳定。这主要是因为数字信号频繁地在地和正电源(>3 V)之间摆动,而且周期特别短,常常是纳秒级的。由于较大的振幅和较短的切换时间。使得这些数字信号包含大量且独立于切换频率的高频成分。在模拟部分,从无线调谐回路传到无线设备接收部分的信号一般小于lμV。因此数字信号与射频信号之间的差别会达到120 dB。显然.如果不能使数字信号与射频信号很好地分离。微弱的射频信号可能遭到破坏,这样一来,无线设备工作性能就会恶化,甚至完全不能工作。 2、供电电源的噪声干扰 射频电路对于电源噪声相当敏感,尤其是对毛刺电压和其他高频谐波。微控制器会在每个内部时钟周期内短时间突然吸人大部分电流,这是由于现代微控制器都采用CMOS工艺制造。因此。假设一个微控制器以lMHz的内部时钟频率运行,它将以此频率从电源提取电流。如果不采取合适的电源去耦.必将引起电源线上的电压毛刺。如果这些电压毛刺到达电路RF部分的电源引脚,严重时可能导致工作失效。 3、不合理的地线 如果RF电路的地线处理不当,可能产生一些奇怪的现象。对于数字电路设计,即使没有地线层,大多数数字电路功能也表现良好。而在RF频段,即使一根很短的地线也会如电感器一样作用。粗略地计算,每毫米长度的电感量约为l nH,433 MHz时10 toni PCB线路的感抗约27Ω。如果不采用地线层,大多数地线将会较长,电路将无法具有设计的特性。 4、天线对其他模拟电路部分的辐射干扰 在PCB电路设计中,板上通常还有其他模拟电路。例如,许多电路上都有模,数转换(ADC)或数/模转换器(DAC)。射频发送器的天线发出的高频信号可能会到达ADC的模拟淙攵恕R蛭魏蔚缏废呗范伎赡苋缣煜咭谎⒊龌蚪邮誖F信号。如果ADC输入端的处理不合理,RF信号可能在ADC输入的ESD二极管内自激。从而引起ADC偏差。 一、射频电路布局原则 在设计RF布局时,必须优先满足以下几个总原则: (1)尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来,简单地说,就是让高功率RF发射电路远离低功率RF接收电路; (2)确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜箔面积越大越好; (3)电路和电源去耦同样也极为重要;

最新射频电路设计原理与应用

射频电路设计原理与 应用

【连载】射频电路设计——原理与应用 相关搜索:射频电路, 原理, 连载, 应用, 设计 随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。 下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。 作者介绍 ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。 第1章射频电路概述 本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。 第1节频谱及其应用 第2节射频电路概述 第2章射频电路理论基础 本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等 第1节品质因数 第2节无源器件特性 第3章传输线 工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。 第1节传输线的基本参数 第2节终端带负载的传输线分析 (1) 第3节终端带负载的传输线分析 (2) 第4章史密斯圆图 为了简化反射系数的计算,P.H.Smith开发了以保角映射原理为基础的图解方法。这种近似方法的优点是有可能在同一个图中简单直观的显示传输线阻抗以及反射系数。本小节将对史密斯圆图进行系统的介绍。第1节史密斯圆图

射频电路和射频集成电路线路设计

射频电路和射频集成电路线路设计(9天) 培训时间为9天 课程特色 1)本讲座总结了讲演者20多年的工作,报告包括 o设计技术和技巧的经验, o获得的美国专利, o实际工程设计的例子, o讲演者的理论演译。 o 【主办单位】中国电子标准协会 【协办单位】智通培训资讯网 【协办单位】深圳市威硕企业管理咨询有限公司 o 2)本讲座分为三个部分: A. 第一部分讨论和強调在射频电路设计中的设计技术和技巧, 着重论述设计中关鍵性 的技术和技巧,譬如,阻抗匹配,射频接地, 单端线路和差分线路之間的主要差別,射频集成电路设计中的难题……可以把它归类为橫向论述. 到目前为止,这种着重于设计技巧的論述是前所未有的,也是很独特的。讲演者认为,作为一位合格的射频电路设计的设计者,不论是工程师,还是教授,应当掌握这一部分所论述的基本的设计技术和技巧,包括: ?阻抗匹配; ?接地; ?射频集成电路设计; ?测试 ?画制版图; ? 6 Sigma 设计。 B. 第二部分: 描述射频系统的基本参数和系统设计的基本原理。

C. 第三部分: 提供个别射频线路设计的基本知识。这一部份和现有的有关射频电路和 射频集成电路设计的书中的论述相似, 其內容是讨论一个个射频方块,譬如,低噪声放大器,混频器,功率放大器,壓控振蕩器,頻率综合器……可以把它归类为纵向论述,其中的大多数内容来自本讲座的讲演者的设计 ?在十几年前就已经找到了最佳的低噪声放大器的设计方法但不曾经发表过。在低噪声放大器的设计中可以同时达到最大的增益和最小的噪 声; ?获得了可调谐濾波器的美国专利; ?本讲座的讲演者所建立的用单端线路的设计方法来进行差分对线路的设计大大简化了设计并缩短了线路仿真的时间; ?获得了双线巴伦的美国专利。 学习目标在本讲座结束之后,学员可以了解到 o比照数码电路,射頻电路设计的主要差別是什麼? o什么是射频设计中的基本概念? o在射频电路设计中如何做好窄带的阻抗匹配? o在射频电路设计中如何做好宽带的阻抗匹配? o在射频线路板上如何做好射频接地的工作? o为什么在射频和射频集成电路设计中有从单端至双差分的趋势? o为什么在射频电路设计中容许误差分析如此重要? o什么是射频和射频集成电路设计中的主要难题?射频和射频集成电路设计师如何克服这些障碍?

射频电路的设计与调试

一:WiFi产品的一般射频电路设计(General RF Design In WiFi Product) 2011-01-20 18:18:41 写在前面的话: 这篇文章是我结合多年的工作经验和实践编写而成的,具有一定的实用性,希望能够对大家的设计工作起到一定的帮助作用。 I. 前言 这是一篇针对性很强的技术文章。在这篇文章中,我只是分析研究了Wi-Fi产品的一般射频电路设计,而且主要分析的是Atheros 和Ralink的解决方案,对于其他厂商的解决方案并没有进行研究。 这是一篇针对性很不强的技术文章。在这篇文章中,我研究,讨论了Wi-Fi产品中的射频电路设计,包括各个组成部分,如无线收发器,功率放大器,低噪声放大器,如果把这里的某一部分深入展开讨论,都可以写成一本很厚的书。 这篇文章具有一般性。虽然说这篇文章主要分析了Atheros和Ralink的方案,但是这两家厂商的解决方案很具有代表性,而且具有很高的市场占有率,因此,大部分Wi-Fi 产品也必然是具有一致或者类似的架构。经常浏览相关网站的人一定知道,在中国市场热卖的无线路由器,无线AP很多都是这两家的解决方案。 这篇文章具有一定的实用性。这篇文章的编写是基于我们公司的二十余种参考设计电路,充分吸收了参考设计的精华,并提取其一般性,同时,本文也重在分析实际的电路结构和选择器件时应该注意的问题,并没有进行深入的理论研究,所以,本文具有一定的实用性。 这篇文章是我在自己的业余时间编写的(也可以说我用这种方式消磨时间),如果这篇文章能够为大家的工作带来一点帮助,那将是我最高兴的事。我平时喜欢关注一些业界的新技术新产品,但是内容太多,没有办法写在文章中,感兴趣的同事可以访问我的博客:https://www.doczj.com/doc/797845190.html,。 由于时间有限,编写者水平更加有限,错误之处在所难免,欢迎大家批评指正。 第1章. 射频设计框图 做技术的,讲解某个设计的原理时,都会从讲解框图开始,本人也不例外,先给大家展示一下Wi-Fi产品的一般射频设计框图。

射频电路设计--理论与应用

射频电路设计--理论与应用 第1章引言 1 1 射频设计的重要性 1 2 量纲和单位 1 3 频谱 1 4 无源元件的射频特性 1 4 1 高频电阻 1 4 2 高频电容 1 4 3 高频电感 1 5 片状元件及对电路板的考虑 1 5 1 片状电阻 1 5 2 片状电容 1 5 3 表面安装电感 1 6 小结 参考文献 习题 第2章传输线分析 2 1 传输线理论的实质 2 2 传输线举例 2 2 1 双线传输线 2 2 2 同轴线 2 2 3 微带线 2 3 等效电路表示法 2 4 理论基础 2 4 1 基本定律 2 5 平行板传输线的电路参量 2 6 各种传输线结构小结 2 7 一般的传输线方程 2 7 1 基尔霍夫电压和电流定律表示式2 7 2 行进的电压和电流波 2 7 3 阻抗的一般定义 2 7 4 无耗传输线模型 2 8 微带传输线 2 9 端接负载的无耗传输线 2 9 1 电压反射系数 2 9 2 传播常数和相速 2 9 3 驻波 2 10 特殊的终端条件 2 10 1 端接负载无耗传输线的输入阻抗2 10 2 短路传输线 2 10 3 开路传输线 2 10 4 1/4波长传输线

2 11 信号源和有载传输线 2 11 1 信号源的相量表示法 2 11 2 传输线的功率考虑 2 11 3 输入阻抗匹配 2 11 4 回波损耗和插入损耗 2 12 小结 参考文献 习题 第3章 Smith圆图  3 1 从反射系数到负载阻抗 3 1 1 相量形式的反射系数 3 1 2 归一化阻抗公式 3 1 3 参数反射系数方程 3 1 4 图形表示法 3 2 阻抗变换 3 2 1 普通负载的阻抗变换 3 2 2 驻波比 3 2 3 特殊的变换条件 3 2 4 计算机模拟 3 3 导纳变换 3 3 1 参数导纳方程 3 3 2 叠加的图形显示 3 4 元件的并联和串联 3 4 1 R和L元件的并联 3 4 2 R和C元件的并联 3 4 3 R和L元件的串联 3 4 4 R和C元件的串联 3 4 5 T形网络的例子 3 5 小结 参考文献 习题 第4章单端口网络和多端口网络 4 1 基本定义 4 2 互联网络 4 2 1 网络的串联 4 2 2 网络的并联 4 2 3 级连网络 4 2 4 ABCD网络参量小结 4 3 网络特性及其应用 4 3 1 网络参量之间的换算关系4 3 2 微波放大器分析 4 4 散射参量

射频电路的pcb设计技巧

[导读]摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路PCB设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法 摘要:针对多层线路板中射频电路板的布局和布线,根据本人在射频电路 PCB 设计中的经验积累,总结了一些布局布线的设计技巧。并就这些技巧向行业里的同行和前辈咨询,同时查阅相关资料,得到认可,是该行业里的普遍做法。多次在射频电路的PCB设计中采用这些技巧,在后期PCB的硬件调试中得到证实,对减少射频电路中的干扰有很不错的效果,是较优的方案。 关键词:射频电路;PCB;布局;布线 由于射频(RF)电路为分布参数电路,在电路的实际工作中容易产生趋肤效应和耦合效应,所以在实际的PCB设计中,会发现电路中的干扰辐射难以控制,如:数字电路和模拟电路之间相互干扰、供电电源的噪声干扰、地线不合理带来的干扰等问题。正因为如此,如何在PCB的设计过程中,权衡利弊寻求一个合适的折中点,尽可能地减少这些干扰,甚至能够避免部分电路的干涉,是射频电路PCB设计成败的关键。文中从PCB的LAYOUT角度,提供了一些处理的技巧,对提高射频电路的抗干扰能力有较大的用处。 1 RF布局 这里讨论的主要是多层板的元器件位置布局。元器件位置布局的关键是固定位于RF路径上的元器件,通过调整其方向,使RF路径的长度最小,并使输入远离输出,尽可能远地分离高功率电路和低功率电路,敏感的模拟信号远离高速数字信号和RF信号。 在布局中常采用以下一些技巧。 1.1 一字形布局 RF主信号的元器件尽可能采用一字形布局,如图1所示。但是由于PCB 板和腔体空间的限制,很多时候不能布成一字形,这时候可采用L形,最好不要采用U字形布局(如图2所示),有时候实在避免不了的情况下,尽可能拉大输入和输出之间的距离,至少1.5 cm以上。

微波电路及其PCB设计

微波电路及其PCB设计 一.关于CAD辅助设计软件与网络分析仪 对于高频电路设计,当前已经有了很好的CAD类软件,其强大的功能足以克服人们在设计经验方面的不足及繁琐的参数检索与计算,再配合功能强大的网络分析仪,按理应该是稍具经验者便能完成质量较好的射频部件。但是,实际中却不是这回事。 CAD设计软件依靠的是强大的库函数,包含了世界上绝大部分无线电器件生产商提供的元器件参数与基本性能指标。不少射频工程师错误地认为:只要利用该工具软件进行设计,就不会有多大问题。但实际结果却总是与愿望相反,原因是他们在错误认识下放弃高频电路设计基本概念的灵活应用及基本设计原则的应用经验积累,结果在软件工具的应用中常犯下基本应用错误。射频电路设计CAD软件属于透明可视化软件,利用其各类高频基本组态模型库来完成对实际电路工作状态的模拟。至此,我们已经可以明白其中的关键环节棗高频基本组态模型有两类,一类属于集中参数形态之元器件模型,另一类属于常规设计中的局部功能模型。于是存在如下方面问题: (1)元器件模型与CAD软件长期互动发展,日趋完善,实际中可以基本相信模型的*真度。但元器件模型所考虑的应用环境(尤其是元器件应用的电环境)均为典型值。多数情况下,必须利用经验确定系列应用参数,否则其实际结果有时甚至比不借助CAD软件的设计结果相差更远。 (2)CAD软件中建立的常规高频基本组态模型,通常限于目前应用条件下可预知的方面,而且只能局限于基本功能模型(否则产品研发无须用人,仅靠CAD一手包办而诞生各类产品)。 (3)特别值得注意的是:典型功能模型的建立,是以典型方式应用元器件并以典型完善的工艺方式构造(包括PCB构造)下完成的,其性能也达到“典型”的较高水平。但在实际中,就是完全模仿,也与模型状态相差甚远。原因是:尽管选用的元器件及其参数一致,但它们的组合电环境却无法一致。在低频电路或数字电路中,这种相差毫厘的情况妨碍不大,但在射频电路中,往往发生致命的错误。 (4)在利用CAD软件进行设计中,软件的容错设计并不理睬是否发生与实际情况相违背的错误参数设置,于是,按照其软件运行路径给出一理想的结果,实际中却是问题百出的结果。可以知道其关键错误环节在于没有利用射频电路设计的基本原则去正确应用CAD软件。 (5)CAD软件仅仅属于设计辅助工具,利用其具备的实时模拟功能、强大的元器件模型库及其函数生成功能、典型应用模型库等等方面来简化人们的繁琐设计与计算工作,到目前为为止,尚远远无法在具体设计方面代替人工智能。 CAD软件在射频PCB辅助设计中所体现的强大功能是该软件大受欢迎的一个重要方面。但实际中,许多射频工程师会经常“遭其暗算”。导致原因仍然是其对参数设置的容错特性。往往利用其仿真功能得出一理想的模型(包括各个功能环节),一到实际调试中才发现:还不如利用自己的经验来设计。

射频电路的PCB设计

射频电路的PCB设计 2012-12-04 22:27:53来源:互联网关键字: 电磁兼容Protel99SE射频电路PCB 本文就如何最大限度地实现电路的性能指标,以达到电磁兼容要求,在Protel99 SE软件进行掌上产品射频电路PCB的设计。 图1 射频电路PCB板 1、板材的选择 印刷电路板的基材包括有机类与无机类两大类。基材中最重要的性能是介电常数εr、耗散因子(或称介质损耗)tanδ、热膨胀系数CET和吸湿率。其中εr影响电路阻抗及信号传输速率。对于高频电路,介电常数公差是首要考虑的更关键因素,应选择介电常数公差小的基材。 2、PCB设计流程 由于Protel99 SE软件的使用与Protel 98等软件不同,因此,首先简要讨论采用Protel99 SE软件进行PCB设计的流程。 ①由于Protel99 SE采用的是工程(PROJECT)数据库模式管理,在Windows 99下是隐含的,所以应先键立1个数据库文件用于管理所设计的电路原理图与PCB版图。 ②原理图的设计。为了可以实现网络连接,在进行原理设计之间,所用到的元器件都必须在元器件库中存在,否则,应在SCHLIB中做出所需的元器件并存入库文件中。然后,只需从元器件库中调用所需的元器件,并根据所设计的电路图进行连接即可。 ③原理图设计完成后,可形成一个网络表以备进行PCB设计时使用。 ④PCB的设计。 a、PCB外形及尺寸的确定。根据所设计的PCB在产品的位置、空间的大小、形状以及与其它部件的配合来确定PCB的外形与尺寸。在MECHANICAL LAYER层用PLACE TRACK命令画出PCB的外形。 b、根据SMT的要求,在PCB上制作定位孔、视眼、参考点等。 c、元器件的制作。假如需要使用一些元器件库中不存在的特殊元器件,则在布局之前需先进行元器件的制作。在Protel99 SE中制作元器件的过程比较简单,选择“DESIGN”菜单中的“MAKE LIBRARY”命令后就进入了元器件制作窗口,再选择“TOOL”菜单中的“NEW COMPONENT”命令就可以进行元器件的设计。这时只需根据实际元器件的形状、大小等在TOP LAYER层以PLACE PAD等命令在一定的位置画出相应的焊盘并编辑成所需的焊盘(包括焊盘形状、大小、内径尺寸及角度等,另外还应标出焊盘相应的引脚名),然后以PLACE TRACK命令在TOP OVERLAYER层中画出元器件的最大外形,取一个元器件名存入元器件

射频电路设计原理与应用

【连载】射频电路设计——原理与应用 相关搜索:射频电路, 原理, 连载, 应用, 设计 随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。 下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。 作者介绍 ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。 第1章射频电路概述 本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。 第1节频谱及其应用 第2节射频电路概述 第2章射频电路理论基础 本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等 第1节品质因数 第2节无源器件特性 第3章传输线

Wi-Fi产品射频电路调试经验谈

Wi-Fi产品射频电路调试经验谈 1 前言 这份文档总结了我工作一年半以来的一些射频(Radio Frequency)调试(以下称为Debug)经验,记录的是我在实际项目开发中遇到并解决问题的过程。现在我想利用这份文档与大家分享这些经验,如果这份文档能够对大家的工作起到一定的帮助作用,那将是我最大的荣幸。 个人感觉,Debug过程用的都是最简单的基础知识,如果能够对RF的基础知识有极为深刻(注意,是极为深刻)的理解,我相信,所有的Bug解起来都会易如反掌。同样,我的这篇文档也将会以最通俗易懂的语言,讲述最通俗易懂的Debug 技巧。 在本文中,我尽量避免写一些空洞的理论知识,但是第二章的内容除外。“微波频率下的无源器件”这部分的内容截取自我尚未完成的“长篇大论”——Wi-Fi 产品的一般射频电路设计(第二版)。 我相信这份文档有且不只有一处错误,如果能够被大家发现,希望能够提出,这样我们就能够共同进步。 2 微波频率下的无源器件 在这一章中,主要讲解微波频率下的无源器件。一个简单的问题:一个1K的电阻在直流情况下的阻值是1K,在频率为10MHz的回路中可能还是1K,但是在10GHz 的情况下呢?它的阻值还会是1K吗?答案是否定的。在微波频率下,我们需要用另外一种眼光来看待无源器件。 2.1. 微波频率下的导线 微波频率下的导线可以有很多种存在方式,可以是微带线,可以是带状线,可以是同轴电缆,可以是元件的引脚等等。 2.1.1. 趋肤效应 在低频情况下,导线内部的电流是均匀的,但是在微波频率下,导线内部会产生很强的磁场,这种磁场迫使电子向导体的边缘聚集,从而使电流只在导线的表面流动,这种现象就称为趋肤效应。趋肤效应导致导线的电阻增大,结果会怎样?当信号沿导体传输时衰减会很严重。 在实际的高频场合,如收音机的感应线圈,为了减少趋肤效应造成的信号衰减,通常会使用多股导线并排绕线,而不会使用单根的导线。 我们通常用趋肤深度来描述趋肤效应。趋肤深度是频率与导线本身共同的作用,在这里我们不会作深入的讨论。 2.1.2. 直线电感 我们知道,在有电流流过的导线周围会产生磁场,如果导线中的电流是交变电流,那么磁场强度也会随着电流的变化而变化,因此,在导线两端会产生一个阻止电流变化的电压,这种现象称之为自感。也就是说,微波频率下的导线会呈现出电感的特性,这种电感称为直线电感。也许你会直线电感很微小,可以忽略,但是

相关主题
文本预览
相关文档 最新文档