当前位置:文档之家› 生化专题习题集

生化专题习题集

生化专题习题集
生化专题习题集

1 蛋白质二级结构包括哪些?

2 蛋白质的loop结构有什么特点?

长的无规则的重复性环状结构。经常附在蛋白质的表面。是连接a螺旋和b链的中间体,并调控它们形成蛋白质的疏水核心。Loop结构在溶剂中富含带电荷的亲水残基,经常参与形成结合位点和酶的活性部位

3 supersecondary structures or motifs概念?

经常出现在简单连接二级结构的特殊几何构型的结构

4 Zinc finger概念,C2H2 Zinc finger的结构特点及功能?

锌指结构是含有一个或多个锌离子的起稳定折叠结构稳定性作用的小型蛋白质结构。

5 蛋白质domain的概念及domain 的特点?DNA结合domain的应用有哪些?

蛋白质domain是蛋白质的基本结构单元、功能单元和进化单元,而且还是控制整个蛋白质特点的最小单元。Domain结构紧凑、稳定,有疏水中心,能够独立折叠,行使特殊功能,能够和其他domain有不同的结合方式,在domain的水平完成蛋白质的进化。

6 Protein Quaternary Structure的概念?

7 维系蛋白质结构的次级键及参与的氨基酸残基有哪些?不同次级键的特点有哪些?

8 四级结构的生物学意义?

减小表面体积从而使其更稳定;实现基因的经济与效率(一个基因-一个大蛋白);使催化位点集合到一起;存在变构效应。

9 Protein Families的概念?

10 programmable nucleases?

Chimera of distinct DNA binding domain with cleavage domain of some nuclease

11 double-strand breaks

12 Zinc-finger nucleases

13 TALE与TALEN的概念?

transcription activator-like effector(TALE)nucleases 。Transcription activator-like effector nucleases (TALENs)are artificial restriction enzymes generated by fusing a TAL effector DNA binding domain to a DNA cleavage domain。

14 TALE的结构组成及功能特点?

A typical TALE structure (top) comprises an N-terminal translocation domain(TD), a central DNA binding domain (DBD), two nuclear localization signals(NLS) and a transcriptional activation domain (AD) in the C-terminal region.

15 CRISPR概念?CRISPR-Cas9基因组编辑的基本原理?

CRISPR (规律成簇的间隔短回文重复)(clustered regularly interspaced short palindromic repeats):CRISPR 是一个特殊的DNA重复序列家族, 广泛分布于细菌和古细菌基因组中。CRISPR 位点通常由短的高度保守的重复序列(repeats) 组成, 重复序列的长度通常21~48 bp, 重复序列之间被26~72 bp 间隔序列(spacer)隔开。CRISPR就是通过这些间隔序列(spacer)与靶基因进行识别。

原理:当细菌抵御噬菌体等外源DNA入侵时,在前导区的调控下,CRISPR被转录为长的RNA 前体(Pre RISPR RNA,pre-crRNA),然后加工成一系列短的含有保守重复序列和间隔区的成熟crRNA,最终识别并结合到与其互补的外源DNA序列上发挥剪切作用。

16 Cas(CRISPR associated protein)?

17 crRNA

18 tracrRNA

19 dCas9

20 Cas9 nickase

21 Protospacers

22 Protospacer-adjacent motifs (PAMs):

(间隔的保守相邻基序)that are short(2–5bp) conserved nucleotide motif adjacent to to the protospacers, such as NGG and NGGNG ,are absolutely necessary for Cas9 binding and cleavage.

是与protospacers相邻的片段短的(2–5bp)保守核苷酸基序,如NGG和NGGNG,对于Cas9结合和裂解是必不可少的。

23 Guide RNA (gRNA):A small, single-chain guide RNA that is created by the fusion of CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA).

single guide RNA, the same as a gRNA.

由CRISPR核糖核酸(crRNA)和反式激活crRNA(tracrRNA)的融合产生一个小的,单链的向导RNA,即gRNA。

24 简述利用CRISPR-Cas9 系统将目标基因整合到拟南芥的基本过程。

25 什么是蛋白质折叠?

Protein folding:蛋白质凭借氨基酸相互作用在特定的环境下形成有功能的特定三维构象的过程。折叠依赖于:

The intrinsic properties of the amino-acid sequence (氨基酸序列的内在属性)

Multiple contributing influences from the crowded cellular milieu.

26 蛋白质折叠自组装(self-assembly)?提出人是?实验基础是什么?

20世纪60年代,安芬森(Anfinsen)基于还原变性的牛胰RNase的研究提出“自组装学说”。提出“多肽链的氨基酸序列包含了形成其热力学上稳定的天然构象所必须的全部信息”或者说“一级结构决定高级结构”的著名论断,形成了蛋白质折叠自组装(self-assembly)的主导学说。

27 第二遗传密码是什么?有哪些特点?

完整的提法应该是遗传密码的第二部分,即蛋白质中氨基酸序列与其空间结构的对应关系,国际上称之为第二遗传密码或折叠密码

特点:1.简并性

在第一遗传密码中有所谓“简并性”,即同一AA可以由不同密码子所编码,如CGA 和AGC 都编码为Arg,UCC 和AGU都编码为Ser等。

第二密码也同样有简并性。现在已经知道有很多氨基酸序列不同的肽链可以有极为相似甚至相同的空间结构,这就是第二密码的简并性。

如同源蛋白质,蛋白质家族

2.多意性

某些相同的氨基酸序列还可以在不同条件下决定不同的空间结构,这种情况可以称之为第二遗传密码的多意性。

例如,Prusiner对天然型和感染型朊病毒(prion)的研究。天然型朊病毒(PrPc)在正常动物体内存在, 不导致疾病, 而感染型的朊病毒(PrPSC)则导致某些神经性疾病, 并导致天然型朊病毒转变为感染型的朊病毒。初步研究表明天然型朊病毒主要为α-螺旋结构, 而感染型的朊病毒却主要为β-折叠结构.

3.全局性:

维系蛋白质总体三维结构相对稳定的是大量弱键协同作用的结果,个别键的形成或破坏并不

足于影响蛋白质的总体三维结构

肽链在空间折叠构成三维结构,在肽链上相距很远的殘基可以在空间上彼此靠近而相互作用。并对分子结构产生重要影响

某些蛋白质C-末端少数氨基酸的去除,或侧链基团的翻译后修饰有时会对整体构象和功能产生影响。新生肽合成时,后形成的肽段可以影响已经形成的肽段的构象从而造成对整体分子的影响。

28 大分子拥挤概念?

29 Molecular chaperone

any protein that interacts with and aids in the folding or assembly of another protein without being part of its ?nal structure

分子伴侣特点:从参与促进一个反应而自身并不在最终产物中出现这一点来看,分子伴侣具有酶的特征,酶与分子伴侣的不同表现在如下三个方面:

1.分子伴侣对靶蛋白不具有高度专一性,同一分子伴侣可以促进多种氨基酸序列完全不同的多肽链折叠成三维结构、性质和功能都并不相关的蛋白质

2.分子伴侣的催化效率很低

3.分子伴侣和肽链折叠的关系,有时也只是阻止肽链的错误折叠,而不是促进其正确折叠成为成熟的有完整功能的蛋白质

30 分子伴侣的特点有哪些?

31 heat shock protein, HSP指什么?其功能主要是?

32 Assembly与aggregate的区别是什么?

Protein Assembly: the association of two or more protein molecules in a functional complex. Protein Aggregate: the association of two or more protein molecules in a nonfunctional state.

33 二硫键异构酶?

34 分子内伴侣?

35 简述heat-shock protein在植物非生物胁迫反应中的角色?

36 简述蛋白质解折叠过程中,280nm激发光下荧光光谱变化特点及应用?

Trp 和Tyr在280nm激发,产生荧光信号。折叠状态的蛋白Trp 和Tyr往往位于疏水内核;280nm激发下可产生较高的荧光信号. 若Trp 和Tyr暴露于亲水环境,易导致荧光淬灭,荧光强度变弱。因此,可利用Fluorescence Spectroscopy检测在不同条件下如尿素、加热、pH 等对蛋白质折叠的影响。

37 RNA chaperone ?

RNA分子伴侣——帮助RNA分子折叠的一类蛋白。

RNA chaperone:RNA molecules have the tendency to fold into diverse secondary structures, and these alternative misfolded structures have to be resolved in order for the RNA molecules to function normally.

RNA chaperones are RBPs that aid in the RNA folding process by preventing RNA misfolding or by resolving misfolded RNA species

RNA chaperone:activity playing a role in the growth, development, and stress response of plants.

38 RNA chaperone的主要功能有哪些?

39 cold shock proteins概念?在低温条件下,其保护细胞的机制?

40 cold shock proteins在植物分子育种领域的应用潜力如何?

41 简述细胞内蛋白质降解的生物学意义?降解途径主要包括?

42 溶酶体的概念?

43 什么是泛素与泛素化?

蛋白质的降解是一个精细控制的过程,首先有待降解的蛋白质被一种多肽(称之为泛素)所标记(蛋白质的泛素化),接着这些泛素化的蛋白质进入细胞的蛋白酶复合体的活性位点,蛋白质被降解成7~9个氨基酸长度的短肽片段后,从蛋白酶体的另一段被释放。Ubiquitin is a highly conserved protein (3 aa exchanges from yeast to men)

Ubiquitin is composed of 76 aa

Attachment site to target protein on ubiquitin is C-terminus

Bond is formed to side chain of Lys of target protein (Isopeptide bonds:异肽键) Attachment is performed by array of enzymes (E1, E2, E3, E4)

Subsequently, poly-ubiquitin chains form via binding of further molecules to Lys side chains (Lys48 > 6, 11, 29, 63) of primary ubiquitin

44 泛素分子的结构特点?

45 参与泛素化的酶主要包括哪些?

46 简述泛素化的过程?(具体见生化专题1 ,232-233)

C-terminus of ubiquitin gets adenylated

Rearrangement to intermolecular thioester with a E1 (activation enzyme)

Transfer of activierted ubiquitin from E1 to E2 (ubiquitin-conjugating enzyme) (thioester bond) Transfer from E2 via E3(ubiquitin ligase) to target protein

47 蛋白酶体的概念?

48 免疫沉淀

42 双向电泳

将等电聚焦技术与SDS-PAGE技术组合起来的新技术,是目前分离蛋白质混合物最强大的技术,也是蛋白质组学研究的重要技术。

基本步骤:第一相等电聚焦后,在等电聚焦的垂直的方向进行第二相SDS-PAGE。

1975年,Farrel建立的;是目前唯一能将数千种蛋白质同时分离与展示的分离技术,一般能分离1000 –3000个蛋白质点

43 蛋白质组学(生化专题2 , 51-52)

蛋白质组学(proteomics)是研究在特定时间或环境下某个细胞或某种组织的基因组表达的全部蛋白质。

44 SDS-PAGE与凝胶过滤法测定蛋白质分子量的区别?

45 原核生物表达载体遗传原件包括哪些?

【高考生物】运动生物化学考题(A卷)

(生物科技行业)运动生物化学考题(A卷)

运动生物化学考题(A卷) 一.名词解释:(每题4分,共24分) 1.电子传递链(呼吸链) 2.底物水平磷酸化(胞液) 3.糖酵解作用 4.酮体 5.氨基酸代谢库 6.运动性疲劳 二.填空题:(每空1分,共25分) 1.运动生物化学是生物化学的分支,是研究时体内的化学变化即及其调节的特点与规律,研究运动引起体内变化及其的一门学科。是从生物化学和生理学的基础上发展起来的,是体育科学和生物化学及生理学的结合。 2.据化学组成,酶可以分为:类和类,在结合蛋白酶类中的蛋白质部分称之为,非蛋白质部分称为(或辅助因子)。 3.人体各种运动中所需要的能量分别由三种不同的能源系统供给。即、、。 4.生物氧化中水的生成是通过电子呼吸链进行的,在呼吸链上有两条呼吸链,一条为:NADH 氧化呼吸链,一分子NADH进入呼吸链后可产生分子的ATP;另一条为FADH2氧化呼吸

链,一分子FADH2进入呼吸链后可产生分子ATP。 在肝脏,每分子甘油氧化生成乳酸时,释放能量可合成ATP;如果完全氧化生成CO2和H2O时,则释放出的能量可合成ATP。 5.正常人血氨浓度一般不超过μmol/L。 评价运动时体内蛋白质分解代谢的常用指标是尿素氮;尿中。 血尿素在安静正常值为毫摩尔/升 6.运动强度的生化指标有、、;运动负荷量的生化评定指标主要有:、、、。 三、辨析题:(判断正误,如果表述错误,请将正确的表述论述出来。每题判断正误2分,论述2分,共16分) 1.安静时,运动员血清酶活性处于正常范围水平或正常水平的高限;运动后或次日晨血清酶活性升高;血清中酶浓度升高多少与运动持续时间、强度和训练水平有关。运动员安静时血清升高是细胞机能下降的一种表现,属于病理性变化。 2.底物水平磷酸化与氧化磷酸化都是在线粒体中进行的。 3.所有的氨基酸都可以参与转氨基作用。 4.脂肪分子中则仅甘油部分可经糖异生作用转换为糖。脂肪酸不能转化为糖。

动物生物化学试卷试题最新完整标准包括答案.docx

动物生物化学试题(A) 2006.1 一、解释名词(20分,每小题4分) 1. 氧化磷酸化 2.限制性核酸内切酶 3. Km 4.核糖体 5.联合脱氨基作用 二、识别符号(每小题 1 分,共 5 分) 1.SAM 2.Tyr 3.cDNA 4.PRPP 5.VLDL 三、填空题(15分) 1.蛋白质分子的高级结构指的是( 1分), 稳定其结构的主要作用力有(2分)。 2.原核生物的操纵子是由(1分 ) 基因,(1分 ) 基因及其下游 的若干个功能上相关的( 1 分)基因所构成。 3.NADH呼吸链的组成与排列顺序为 ( 3 分)。 4.酮体是脂肪酸在肝脏中产生的不完全分解产物,包括( 1分), ( 1 分)和( 1 分),在肝外组织中

利用。 5.脂肪酸的氧化分解首先要( 1 分)转变成脂酰辅酶A,从胞浆转入线粒 体需要一个名为( 1 分)的小分子协助;而乙酰辅酶 A 须经过 ( 1 分)途径从线粒体转入胞浆合成脂肪酸。

四、写出下列酶所催化的反应,包括所需辅因子,并指出它所在的代谢途径 (10分) 1. 氨甲酰磷酸合成酶I 2.谷丙转氨酶 五、问答题(50分) 1.什么是蛋白质的变构作用(4 分),请举例说明( 4 分)。(8 分) 2. 以磺胺药物的抗菌作用为例( 4 分),说明酶的竞争抑制原理( 4 分)。(8 分) 3. 一摩尔的乙酰辅酶A经过三羧酸循环完全氧化分解可以生成多少ATP?( 3 分)请说 明理由( 5 分)。(8分) 4. 比较在原核生物DNA复制过程中DNA聚合酶III和聚合酶I 作用的异同。(8分) 5.真核基因有什么特点,简述真核生物mRNA转录后的加工方式。(8分) 6.简述由肾上腺素经PKA途径调控糖原分解代谢的级联放大机制。(10分)

生物化学专题

生物化学专题 共价修饰酶 共价调节是利用蛋白质的共价变化来调节酶的活性的,有些共价变化是可逆的,如蛋白质的磷酸化;有些则是不可逆的,如酶原激活 (一)可逆共价修饰的调控(共价调节酶) 共价调节酶:酶分子被其它的酶催化进行共价修饰,从而在活性形式与非活性形式之间相互转变。有多种类型: 1 ser thr tyr 残基的磷酸化 2 thr 残基的腺苷酰化 3 arg cys 残基的ADP-核糖基化 其中磷酸化是最普遍,发生最多的,真核细胞的1/2~1/3的蛋白质被磷酸化,在这个过程中,有两种酶参与反应,一种是蛋白激酶,催化蛋白质发生磷酸化反应;另一种是蛋白质磷酸酶,催化蛋白质的去磷酸化反应。 共价调节与别构调节的区别: 1 共价修饰系统能把调节物的效应放大,即级联放大效应 2 共价修饰系统有较大的能力进行生物学整合,能把胞内代谢和胞外刺激(包括电刺激)联系起来,别构调节作用于胞内,特点在于灵敏、迅速;共价调节也作用于胞内但是涉及整体,在数分钟或者更长时间内起作用。 (二)不可逆的共价调节(酶原的激活) 有些蛋白质合成时不具有活性,经蛋白酶专一性作用后,构象发生变化,变成有活性的蛋白。这种不具生物活性的蛋白质称为前体。如果活性蛋白质是酶,这个前体就称为酶原。特点是不可逆。属于此类的有 *消化系统中的酶(胰蛋白酶,胰凝乳蛋白酶,胃蛋白酶) *血液凝固系统中的酶 *某些蛋白质激素,如胰岛素由胰岛素原激活而成 *存在于皮肤和骨骼中的纤维蛋白——胶原,由前胶原激活而成。 例如: 胰蛋白酶原 肠激酶 胰凝乳蛋白酶原弹性蛋白酶原 胰蛋白酶 胰凝乳蛋白酶弹性蛋白酶 羧肽酶原羧肽酶 RNA转录调控(主要为原核生物转录调控)

高级生物化学历年试题及答案

2010年高级生化考试题 蛋白质组学:指应用各种技术手段来研究蛋白质组的一门新兴科学,其目的是从整体的角度分析细胞内动态变化的蛋白质组成成份、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律。 蛋白质组:一个细胞或组织或机体所包含的所有蛋白质,现定义为基因组表达的全部蛋白质。具有三种含义:一个基因组、一种生物、一种细胞所表达的全部蛋白质。 疏水作用层析:就是根据蛋白质表面的疏水性差别发展起来的一种纯化技术。在疏水作用层析中,不是暴露的疏水基团促进蛋白质与蛋白质之间的相互作用,而是连接在支持介质(如琼脂糖)上的疏水基团与蛋白质表面上暴露的疏水基团结合。 DNA的三级结构:DNA分子通过扭曲和折叠形成的特定构象。核酸的三级结构反映了对整体三维形状有影响的相互作用,包括不同二级结构元件间的相互作用,单链与二级结构间的相互作用以及核酸的拓扑特征。 DNA的四级结构: 共价催化:在酶催化反应过程中,酶与底物以共价键结合成中间物过滤态以加速反应。即在催化时,亲核催化剂或亲电催化剂能分别放出点子或汲取电子,并作用于底物的缺电子反应中心或负电中心,迅速形成不稳定的共价键中间复合物,降低反应活化能,使反应加速。 Ks型不可逆抑制剂:这类抑制剂主要作用于酶活性部位的必须基团,但也作用于酶非活性部位,取决于抑制剂与酶活性部位必须基团在反应前形成非共价络合物的解离常数以及与非活性部位同类基团形成非共价络合物的解离常数之比,即Ks的比值,故称为Ks型不可逆抑制剂。 Kcat型不可逆抑制剂:这类抑制剂不但具有与天然底物相类似的结构,而且本身也是酶的底物,可被酶催化而发生类似底物的变化。但这类抑制剂还有一种潜伏性的反应基团,这种基团可因酶的催化而暴露或活化,作用于酶活性中心或辅基,使酶共价共价修饰而失活。 Ks分段盐析法:在一定的pH值和温度条件下,改变盐的离子强度I值,使不同的溶质在不同的离子强度下有最大的析出,此种方法称为Ks分段盐析法。 β分段盐析:保持溶液的离子强度不变,改变溶液的pH值和温度,使不同的溶质在不同的PH值和温度条件下台最大的析出,此种方法称为β分段盐析法。 cDNA文库:以mRNA为模板,经反转录酶催化,在体外反转录成cDNA,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增,这样包含着细胞全部mRNA信息的cDNA克隆集合称为该组织细胞的cDNA文库。 穿梭载体(shuttle vector):是指含有两个亲缘关系不同的复制子,能在两种不同的生物中复制的。这类载体不仅具有细菌质粒的复制原点及选择标记基因,还有真核生物的自主复制序列(ARS)以及选择标记性状,具有多克隆位点.通常穿梭载体在细菌中用于克隆,扩增克隆的基因,在酵母菌中用于基因表达分析. 后生遗传:指通过遗传而产生的基因表达修饰,且不能被逆转,此类遗传改变主要指染色体结构的改变和DNA甲基化状态的改变。 对角线电泳:用于分析混合物中某一组分对某些化学处理或光处理后变化的双向电泳技术。样品加样后先从一个方向进行电泳分离,经化学或光处理后,再以与第一次电泳垂直方向进行第二次电泳分离,则经过处理未被修饰的组分皆位于电泳图谱的对角线上。 化学酶工程:也称初级酶工程是指天然酶、化学修饰酶、固定化酶及人工模拟酶的研究和应用。 生物酶工程:是用生物学方法,特别是基因工程、蛋白质工程和组合库筛选法改造天然酶,创造性能优异的新酶;它是酶学和以DNA重组技术为主的现代分子生物学技术相结合的产物。 酶提取的回收率:每次提纯后酶制剂总活力与提取液的总活力的百分比。 1,miRNA和siRNA,及其功能(网上搜索所得) SiRNA的主要特征:长约21到23nt ;双链的3’端各有2个或3个突出的核苷酸;5’端磷酸化,3’端为自由的-OH基团。siRNA可作为一种特殊引物,在RNA指导的RNA聚合酶作用下,以靶mRNA为模板合成dsRNA,后者可被降解形成新的siRNA,新生成的siRNA又可进入上述循环。这种过程称为随机降解性多聚酶链反应。MicroRNA (miRNA):是含有茎环结构的miRNA前体,经过Dicer加工之后的一类非编码的小RNA分子(~21-23个核苷酸)。MiRNA,以及miRISCs(RNA-蛋白质复合物)在动物和植物中广泛表达。因之具有破坏目标特异性基因的转录产物或者诱导翻译抑制的功能,miRNA被认为在调控发育过程中有重要作用。 miRNA的特点:广泛存在于真核生物中, 是一组不编码蛋白质的短序列RNA , 它本身不具有开放阅读框架(ORF) ;通常的长度为20~24 nt , 但在3′端可以有1~2 个碱基的长度变化;成熟的miRNA 5′端有一磷酸基团, 3′端为羟基, 这一特点使它与大多数寡核苷酸和功能RNA 的降解片段区别开来;多数miRNA 还具有高度保守性、时序性和组织特异

运动生物化学学习重点大全

绪论生物化学:是研究生命化学的科学,它从分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节及其在生命活动中的作用。运动生物化学:是研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 运动生物化学的任务主要体现在:1、解释人体运动变化的本质;2、评定和监控运动人体的机能;3、科学的知道体育锻炼和运动训练。 第一章 1.酶催化反应的特点是什么?影响酶促反应速度的因素有哪些? 一、高效性;二、高度专一性;三、可调控性 一、底物浓度与酶浓度对反应速度的影响;二、PH对反应速度的影响;三、温度对反应速度的影响;四、激活剂和抑制剂对反应速度的影响; 2.水在运动中有何作用?水代谢与运动能力有何关系? 人体内的水是进行生物化学反应的场所,水还具有参与体温调节、起到润滑等作用,并与体内的电解质平衡有关。 运动时,人体出汗量迅速增多,水的丢失加剧。一次大运动负荷的训练可以导致人体失水2000~7000ml,水丢失严重时即形成脱水,会不同程度的降低运动能力。 3.无机盐体内有何作用?无机盐代谢与运动能力有何关系? 无机盐在体内中解离为离子,称为电解质,具有调节渗透压和维持酸碱平衡等重要作用。

4.生物氧化合成ATP有几种形式,他们有何异同? 生物氧化共有两种形式:1、底物水平磷酸化;2、氧化磷酸化 相同点:1、反应场所都是在线粒体;2、都要有ADP和磷酸根离子存在 不同点:1、在无氧代谢供能中以底物水平磷酸化合成ATP为主,而人体所利用的ATP约有90%来自于氧化磷酸化的合成即在有氧代谢中主要提供能量;2、底物水平低磷酸化不需要氧的参与,氧化磷酸化必须要有氧;3、反应的方式不同。 5.酶对运动的适应表现在哪些方面?运动对血清酶有何影响? 一、酶催化能力的适应;二、酶含量的适应。 ①、运动强度:运动强度大,血清酶活性增高 ②、运动时间:相同的运动强度,运动时间越长,血清酶活性增加越明显 ③、训练水平:由于运动员训练水平较高,因此完成相同的运动负荷后,一般人血清酶活性增高比运动员明显 ④、环境:低氧、寒冷、低压环境下运动时,血清酶活性升高比正常环境下明显。 6.试述ATP的结构与功能。 ATP分子是由腺嘌呤、核糖和三个磷酸基团组成的核苷酸,其分子结构 功能:生命活动的直接能源;合成磷酸肌酸和其他高能磷酸化合物 7.酶:酶是生物体的活性细胞产生的具有生物催化功能的蛋白质。 生物氧化:指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。生物氧化实际上是需氧细胞呼吸作用中一系列氧化---还原反应,故又称为细胞呼吸。 同工酶:人体内有一类酶,他们可以催化同一化学反应,但催化特性、理

博士考试高级动物生物化学试题

博士考试高级动物生物 化学试题精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

2014年攻读博士学位研究生入学考试初试试题答案 一、名词解释(20分)(每题4分,中英文回答均可) 1. Shine-Dalharno sequence SD序列: mRNA中用于结合原核生物核糖体的序列。SD序列在细菌mRNA起始密码子AUG上游7-12个核苷酸处,有一段富含嘌呤的碱基序列,能与细菌16SrRNA3'端识别,帮助从起始AUG处开始翻译。 2、Molecular chaperon分子伴侣:细胞中的某些蛋白质分子可以识别正在合成的多肽或部分折叠的多肽并与多肽的某些部位相结合,从而帮助这些多肽转运、折叠或组装,这一类分子本身并不参与最终产物的形成,因此称为分子“伴侣” 3、Cori cycle乳酸循环:肌肉收缩通过糖酵解生成乳酸。在肌肉内无6-P-葡萄糖酶,所以无法催化葡萄糖-6-磷酸生成葡萄糖。所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝脏内在乳酸脱氢酶作用下变成丙酮酸,接着通过糖异生生成为葡萄糖。葡萄糖进入血液形成血糖,后又被肌肉摄取,这就构成了一个循环(肌肉-肝脏-肌肉),此循环称为乳酸循环。 4.Melting temperature熔解温度:双链DNA熔解彻底变成单链DNA的温度范围的中点温度。 5. Specific activity比活:用于测量酶纯度时,可以是指每毫克酶蛋白所具有的酶活力,一般用单位/mg蛋白来表示 二、简答题(50分) 1、简要说明RNA功能的多样性。(8分) 1、RNA在遗传信息翻译中起决定作用。(mRNA起信使和模板的作用,rRNA起着装配作用,tRNA起转运和信息转换作用)。

生物化学课程内容

生物化学是研究生命化学的科学,它在分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节、及其在生命活动中的作用。近30年来,生命科学发展惊人,而 21 世纪被认定为是一个生命科学腾飞的世纪,作为生命科学的基础和核心,生物化学的发展更加引人瞩目。现代生物化学的内容越来越多、程度越来越深、影响越来越大,目前生命科学已经渗透到医药科学的各个分支,特别是分子生物学与传统医学课程结合起来,形成了一批冠以“分子”二字的新型学科:如分子解剖学、分子生理学、分子病理学、分子免疫学、分子诊断学等等,成为名副其实的“领头学科”,足见生命科学已经与医药科学融为一体,生命科学的理论和技术已经成为医药科学各分支的“共同语言”。 生物化学的教学任务主要是介绍生物化学与分子生物学的基本知识,以及某些与医学相关的生物化学进展,理论教学内容分成四个知识模块,模块一:生物大分子的结构和功能,包括第一章绪论,第二章蛋白质的结构与功能,第三章核酸,第四章维生素,第五章酶;模块二:物质代谢及其调节, 包括第六章生物氧化,第七章糖代谢,第八章脂肪代谢,第九章蛋白质的分解代谢,第十章核苷酸代谢;模块三:分子生物学基础包括第十一章 DNA 生物合成,第十二章 RNA生物合成,第十三章蛋白质生物

合成,第十四章癌基因与抑癌基因,第十五章分子生物学常用技术及其应用模块四:专题篇包括第十六章细胞信号转导,第十七章水和电解质的代谢,第十八章酸碱平衡,第十九章肝的生物化学。这四个知识模块中,模块一是基础,模块二是传统生物化学教学的重点和核心,近些年随着分子生物学的飞速发展,模块三已成专科生物化学的重点教学内容,也是教学的一个难点,模块四是一些生物化学与分子生物学相关专题内容的讲述。实验教学内容:总体设计了14个实验,不同的专业,由于教学侧重不同开设的实验项目也有所区别,比如临床医学专业强调代谢与疾病的联系,故除了开设基本的生化实验,主要开设与临床检验有关的血糖测定、转氨酶的测定以及较综合的调节的实验;再如护理学专业,注重营养学的内容,开设了维生素C含量的测定;而药学专业要掌握更多生物化学与分子生物学的技术为后期专业课做基础,所以相对开设更多的利用传统生化技术和分子生物学技术的实验,如各种类型电泳、层析技术,为了让同学了解更多更新但由于条件不能开设的实验技术,我们选了一些综合性比较强,技术比较实用的项目录象,比如PCR技术、基因工程技术。 在生物化学教学中,很多概念、理论抽象难懂,图、表及反应式多。结合专科学生主动学习能力薄弱的特点,抓住“生命的物质组成与物质变化”主线索,遵循循序渐

运动生物化学 名词解释

运动生物化学:运动生物化学是生物化学的一个分支学科。是用生物化学的理论及方法,研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 1、新陈代谢:新陈代谢是生物体生命活动的基本特征之一,是生物体内物质不断地进行着的化学变化,同时伴有能量的释放和利用。包括合成代谢和分解代谢或分为物质代谢和能量代谢。 2、酶:酶是由生物细胞产生的、具有催化功能和高度专一性的蛋白质。酶具有蛋白质的所有属性,但蛋白质不都具有催化功能。 3、限速酶:限速酶是指在物质代谢过程中,某一代谢体系常需要一系列酶共同催化完成,其中某一个或几个酶活性较低,又易受某些特殊因素如激素、底物、代谢产物等调控,造成整个代谢系统受影响,因此把这些酶称为限速酶。 4、同工酶:同工酶是指催化相同反应,而催化特性、理化性质及生物学性质不同的一类酶。 5、维生素:维生素是维持人体生长发育和代谢所必需的一类小分子有机物,人体不能自身合成,必须由食物供给。 6、生物氧化:生物氧化是指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。实际上是需氧细胞呼吸作用中的一系列氧化-还原反应,又称为细胞呼吸。 7、氧化磷酸化:将代谢物脱下的氢,经呼吸链传递最终生成水,同时伴有ADP磷酸化合成ATP的过程。 8、底物水平磷酸化:将代谢物分子高能磷酸基团直接转移给ADP生成ATP的方式。 9、呼吸链:线粒体内膜上的一系列递氢、递电子体按一定顺序排列,形成一个连续反应的生物氧化体系结构,称为呼吸链 。1、糖酵解:糖在氧气供应不足的情况下,经细胞液中一系列酶催化作用,最后生成乳酸的过程称为糖酵解。 2、糖的有氧氧化:葡萄糖或糖原在有氧条件下氧化分解,生成二氧化碳和水,同时释放出大量的能量,该过程称为糖的有氧氧化。 3、三羧酸循环:在线粒体中,乙酰辅酶A与草酰乙酸缩合成柠檬酸,再经过一系列酶促反应,最后生成草酰乙酸;接着再重复上述过程,形成一个连续、不可逆的循环反应,消耗的是乙酰辅酶A,最终生成二氧化碳和水。因此循环首先生成的是具3个羧基的柠檬酸,故称为三羧酸循环。 4、糖异生作用:人体中丙酮酸、乳酸、甘油和生糖氨基酸等非糖物质在肝脏中能生成葡萄糖或糖原,这种由非糖物质转变为葡萄糖或糖原的过程称为糖异生。 1、脂肪:脂肪是由3分子脂肪酸和1分子甘油缩合形成的化合物。 2、必需脂肪酸:人体不能自身合成,必须从外界摄取以完成营养需要的脂肪酸。如亚麻酸、亚油酸等。 3、脂肪动员:脂肪细胞内储存的脂肪经脂肪酶的催化水解释放出脂肪酸,并进入血液循环供给全身各组织摄取利用的过程,称为脂肪动员。 4、β-氧化:脂肪酸在一系列酶的催化作用下,β-碳原子被氧化成羧基,生成含2个碳原子的乙酰辅酶A和比原来少2个碳原子的脂肪酸的过程。 5、酮体:在肝脏中,脂肪酸氧化不完全,生成的乙酰辅酶A有一部分生成乙酰乙酸、β-羟丁酸、丙酮,这三种产物统称酮体。 1、氧化脱氨基作用:通过氧化脱氨酶的作用,氨基酸转变为亚氨基酸,再水解为α-酮酸和氨的过程。

高级动物生化复习资料--研究生

1. 蛋白质一级结构、二级结构、超二级结构、结构域、三级结构、四级结构,肽平面、Rossman折叠、Bohr效应的概念、分叉进化。 (1)一级结构:指蛋白质分子中氨基酸的排列顺序。 (2)二级结构:指多肽链主链上原子的局部空间排列状态。 (3)超二级结构:在蛋白质结构中有一些二级结构的组合物,充当三级结构的构件。 (4)结构域:蛋白质三维结构中存在着易于鉴别的具有重要的功能球状亚结构,1973年温特劳弗尔(Wetlaufer)将蛋白质中的这种亚结构称为结构域。 (5)三级结构:指二级结构和非二级结构在空间进一步盘曲折叠,形成包括主、侧链原子在内的专一性三维排布。。 (6)四级结构:四级结构就是指蛋白质分子中亚基在空间排列状态、亚基间的相互作用以及接触部位的布局。 (7)肽平面:肽键具有部分双键的性质(约40%),不能自由旋转,所以肽键是一个刚性平面,称为肽平面(酰胺平面)。(8)Rossman折叠:蛋白质中常常还有两组βαβ组合成的一种更为复杂的超二级结构,这种结构称为Rossman折叠,它包括两个相邻的βαβ单元,即βαβαβ,有时还有ββααββ结构,这是βXβ单元的特殊形式。 (7)Bohr效应:H+ 浓度或pH的变化可以影响血红蛋白对氧的亲合力。在肺组织中,CO2分压低、H+ 浓度低、pH较高的情况下,血红蛋白与氧的亲合力增加,所以易与氧结合成氧合血红蛋白。但在周围组织中,CO2分压高、H+ 浓度高、pH较低的情况下,血红蛋白与氧的亲合力降低,所以氧合血红蛋白易释放出氧成为脱氧血红蛋白。这就是Bohr效应。 (8)分叉进化:这种从一个共同祖先蛋白质发展出另一种新蛋白质的现象称为分叉进化。 2试举两例说明蛋白质一级结构与功能的关系 蛋白质的氨基酸顺序与生物功能具的密切的关系,特别是蛋白质与其它生物大分子物质之间的相互作用及其作用方式都是由氨基酸顺序决定的。 牛的催产素和抗利尿素的结构相似,都是环八肽,但有两个氨基酸不同。羧基端第3个氨基酸和第8个氨基酸,前者是异亮氨酸和亮氨酸,后者是苯丙氨酸和精氨酸,导致两者有不同的生理功能和催化活性。催产素主要是促进子宫收缩的催产作用,但同时也具有微弱的抗利尿活性;抗利尿素的主要作用是抗利尿和增血压,但也具有微弱的催产活性。 正常人血红蛋白β链从N-端开始第6位氨基酸是谷氨酸,当此氨基酸被缬氨酸取代时,将导致镰刀型贫血病。谷氨酸的侧链是带有负电荷的亲水羧基,而缬氨酸的侧链是不带电荷的疏水基团。当谷氨酸被缬氨酸取代后使Hb的表面电荷性质发生了改变,于是等电点改变,溶解度降低和不正常聚合增加,以致红细胞收缩变形而成为镰刀状,且输氧能力下降,细胞脆弱,容易溶血,严重的可导致死亡。这正是我们所说的分子病中的一种,是由于基因突变引起的,具有遗传性。 3 目前已知的蛋白质的超二级结构有哪些,各有什么特征? 1. 卷曲的卷曲α-螺旋其特征是两股(或三股)右手α-螺旋彼此沿一个轴缠绕在一起,形成一个左手的超螺旋,两股右手α-螺旋之间的作用角大约为18°,超螺旋的重复距离为14nm。 2. βXβ单元(β-片-β单元)在多肽链的两股平行β-折叠中间以X连接起来,称为βXβ单元。在βXβ单元中,如果中间的连接为不规则的卷曲,就称之为βcβ单元;如果中间的连接是α-螺旋,就称为βαβ单元;如果中间连接为另一β结构,则称为βββ单元。 3.β-迂回在蛋白质中有些β-折叠层是由3个或更多相邻的反平行β-折叠形成,它们中间以短链(大多数为β-转角)连接。1980年斯查尔(Schulz)称之为β-迂回。 4.β-折叠桶蛋白质中的β-折叠层可以进一步折叠成桶状结构,1982年理查德森(Richandson)将其称为β-折叠桶,简称β-桶。β-折叠桶由β-折叠片形成。一条长的反平行的β-折叠片全部地或部分地卷成一个桶状。 5.α-螺旋-转角-α-螺旋 4、简述血红蛋白的结构特征及其在结合氧的过程中的变化 血红蛋白是由四个亚基聚合成的四聚体,在四聚体中,四个亚基成D2正四面体分布,即四个亚基分布在正四面体的四个角上。 血红蛋白与氧结合时,其分子构象要发生一系列的变化,主要的变化有以下几个方面: ①脱氧血红蛋白中Fe的配位数为5,其中4个来自卟啉环的N,另一个来自近侧组氨酸(F8)的第三位N。此时配位场较弱,Fe(Ⅱ)与卟啉环的四个N是通过电价配位键连接的,Fe(Ⅱ)采取高自旋结构,具有4个不成对电子,分布在4个轨道上,因此原子半径大,突出在卟啉环的中央空穴之外,与卟啉环平面保持0.06nm的距离。血红蛋白氧合后,Fe

西医综合(生化专题)历年真题试卷汇编1

西医综合(生化专题)历年真题试卷汇编1 (总分:84.00,做题时间:90分钟) 一、 A1/A2型题(总题数:20,分数:40.00) 1.下列关于Ras蛋白特点的叙述,正确的是( )(2010年) A.具有GTP酶活性√ B.能使蛋白质酪氨酸磷酸化 C.具有7个跨膜螺旋结构 D.属于蛋白质丝/苏氨酸激酶 癌基因ras家族所编码的蛋白质(Ras蛋白)都为21kD的小G蛋白P21,位于细胞质膜内面,P21可与GTP 结合,具有GTP酶活性,并参与cAMP水平的调节。其他三个选项均与:Ras蛋白特点无关。 2.下列关于GTP结合蛋白(G蛋白)的叙述,错误的是( )(2007年) A.膜受体通过G蛋白与腺苷酸环化酶耦联 B.可催化GTP水解为GDP C.霍乱毒素可使其失活√ D.有三种亚基α、β、γ 考查对G蛋白性质和功能的掌握情况。G蛋白是一类和GTP或GDP结合的、位于细胞膜胞液面的外周蛋白,由三个亚基组成:α、β、γ。膜受体通过G蛋白与腺苷酸环化酶耦联,G蛋白可分为激动型和抑制型G 蛋白等,激动型G蛋白的仪亚基与GDP结合时没有活性,当有信号时,α亚基的GDP被GTP置换而被活化,从而激活腺苷酸环化酶。此后,α亚基上的CTP酶活性使结合的CTP水解为GDP,亚基失去活性恢复最初状态。C蛋白的α亚基有一个可被霍乱毒素进行ADP核糖基化修饰部位,使α亚基仍可与GTP结合,但丧失GTP酶活性。GTP不能水解为GDP,因此活化的α亚基始终结合在腺苷酸环化酶上,使其处于不正常的活化状态。 3.下列因素中,与Ras蛋白活性无关的是( )(2007年) A.GTP B.Grb 2 C.鸟苷酸交换因子 D.鸟苷酸环化酶√ 考查对酪氨酸蛋白激酶(TPK)体系的掌握情况。Ras是受体型TPK—Ras—MAPK途径中的信号分子,性质类似于G的α亚基,与GTP结合时有活性。当受体型TPK与配基结合后,发生自身磷酸化,并与GRB2(生长因子受体结合蛋白)和SOS(一种鸟苷酸交换因子)结合,进而激活Ras蛋白及下游的信号通路。在这一过程中,SOS可促使Ras与GDP分离而与CTP结合。在这一过程中不涉及鸟苷酸环化酶。 4.下列哪种酶激活后会直接引起cAMP浓度降低( )(2006年) A.蛋白激酶A B.蛋白激酶C C.磷酸二酯酶√ D.磷脂酶C E.蛋白激酶G 能直接引起cAMP浓度改变的酶有腺苷酸环化酶和磷酸二酯酶,前者激活后促进ATP脱去焦磷酸环化生成cAMP,使cAMP浓度升高,而磷酸二酯酶催化cAMP水懈生成5’-AMP,因此使cAMP浓度降低。其他四种酶与cAMP浓度变化无关。蛋白激酶A(PKA)能使许多蛋白质的特定丝氨酸残基、苏氨酸残基磷酸化。蛋白激酶C(PKC)可引起一系列靶蛋白的丝氨酸残基、苏氨酸残基发生磷酸化。磷脂酶C能特异性水解膜组分——磷脂酰肌醇4,5-二磷酸(PIP2)而生成DAG和IP3。蛋白激酶G(PKG)催化有关蛋白或有关酶类的丝氨酸残基、苏氨酸残基磷酸化产生生物学效应。 5.cAMP能别构激活下列哪种酶( )(2005年) A.磷脂酶A 2 B.蛋白激酶A √ C.蛋白激酶C

关于运动生物化学知识总结

辨析体能、体适能、体质、身体素质。 体能,即运动员身体素质水平的总称。即运动员在专项比赛中体力发挥的最大程度、也标志着运动员无氧训练和有氧训练的水平,反映了运动员机体能量代谢水平。体能即人体适应环境的能力。包括与健康有关的健康体能和与运动有关的运动体能。 体适能是Physical Fitness的中文翻译,是指人体所具备的有充足的精力从事日常工作(学习)而不感疲劳,同时有余力享受康乐休闲活动的乐趣,能够适应突发状况的能力。 美国运动医学学会认为:体适能包括“健康体适能”和“技能体适能”。 健康体适能的主要内容如下: ①身体成分:即人体内各种组成成分的百分比,身体成分保持在一个正常百分比范围对预防某些慢性病如糖尿病、高血压、动脉硬化等有重要意义。 ②肌力和肌肉耐力:肌力是肌肉所能产生的最大力量,肌肉耐力是肌肉持续收缩的能力,是机体正常工作的基础。 ③心肺耐力:又称有氧耐力,是机体持久工作的基础,被认为是健康体适能中最重要的要素。 ④柔软素质:是指在无疼痛的情况下,关节所能活动的最大范围。它对于保持人体运动能力,防止运动损伤有重要意义。 技能体适能包括灵敏、平衡、协调、速度、爆发力和反应时间等,这些要素是从事各种运动的基础,但没有证据表明它们与健康和疾病有直接关系。[1] “体适能”可视为身体适应生活、运动与环境(例如;温度、气候变化或病毒等因素)的综合能力。体适能较好的人在日常生活或工作中,从事体力性活动或运动皆有较佳的活力及适应能力,而不会轻易产生疲劳或力不从心的感觉。在科技进步的文明社会中,人类身体活动的机会越来越少,营养摄取越来越高,工作与生活压力和休闲时间相对增加,每个人更加感受到良好体适能和规律运动的重要性。在测量上,体适能分为心肺适能、肌肉适能、与体重控制三个面向。 体质:由先天遗传和后天获得所形成的,人类个体在形态结构和功能活动方面所固有的、相对稳定的特性,与心理性格具有相关性。个体体质的不同,表现为在生理状态下对外界刺激的反应和适应上的某些差异性,以及发病过程中对某些致病因子的易感性和疾病发展的倾向性。所以,对体质的研究有助于分析疾病的发生和演变,为诊断和治疗疾病提供依据。 身体素质,通常指的是人体肌肉活动的基本能力,是人体各器官系统的机能在肌肉工作中的综合反映。身体素质一般包括力量、速度、耐力、灵敏、柔韧等。

动物生物化学(1)

动物生物化学复习题 1、天然蛋白质氨基酸的结构要点? 答:在与羧基相连的α-碳原子上都有一个氨基,称为α-氨基酸。α—碳原子不是手性碳原子的是哪个氨基酸? 答:甘氨酸 具有紫外吸收特性的氨基酸有哪些? 答:酪氨酸、色氨酸、苯丙氨酸 吸收波长是多少? 答:280nm 核酸的紫外吸收波长是多少? 答:260nm 2、全酶包括哪几部分? 答:酶蛋白与辅助因子 辅基与辅酶的异同点? 答:与酶蛋白结合梳松,用透析、超滤等方法可将其与酶蛋白分开者称为辅酶;与酶蛋白结合紧密,不能用透析发分离的称为辅基。 正常情况下,大脑获得能量的主要途径是什么? 答:葡萄糖的有氧氧化 糖酵解是在细胞的是在细胞的哪个部位进行的?

答:细胞的胞液中 3、糖异生的概念和意义? 答: 概念:由非糖物质转变为葡萄糖或糖原的过程。 意义:由非糖物质合成糖以保持血糖浓度的相对恒定;有利于乳酸的利用;可协助氨基酸代谢。 生糖氨基酸、丙酮酸、乳酸、乙酰COA哪个不能异生成糖? 答:乙酰COA 4、什么是呼吸链? 答:又称电子传递链,是指底物上的氢原子被脱氢酶激活后经过一系列的中间传递体,最后传递给被激活的氧分子而生成水的全部体系。各种细胞色素在呼吸链中传递电子的顺序? 答:B-C1-C-AA3-O2 两条呼吸链的磷氧比分别是多少? 答:NADH呼吸链:P/O~2.5(接近于3) FADH2呼吸链:P/O~1.5(接近于2) 氰化物中毒是由于抑制了哪种细胞色素? 答:Cytaa3(细胞色素氧化酶) 5、为了使长链脂酰基从胞浆转运到线粒体内进行脂肪酸的β-氧 化,所需要的载体是什么? 答:肉碱

6、氨基酸脱下的氨基通常以哪种化合物的形式暂存和运输?答:谷氨酰胺 参与尿素循环的非蛋白氨基酸有哪几种? 答:瓜氨酸和鸟氨酸 7、RNA 和 DNA 彻底水解后的产物有哪些不同? 答:DNA彻底水解产物:磷酸,脱氧脱氧核糖,鸟嘌呤,腺嘌呤, 胞嘧啶,胸腺嘧啶。 RNA彻底水解产物:磷酸,核糖核酸,鸟嘌呤,腺嘌呤,尿嘧啶,胸腺嘧啶 双链DNA 解链温度的增加,提示其中碱基含量高的是哪几种碱基?答:C和G(胞嘧啶和鸟嘌呤) 8、蛋白质一级结构的概念? 答:蛋白质的一级结构是指多肽链上氨基酸残基的排列顺序,即氨基酸序列。 维系蛋白质一级结构的化学键主要是什么键? 答:肽键 9、蛋白质变性后可出现哪些变化? 答:破坏次级键和二硫键,不改变蛋白质的一级结构。如:溶解度降低,易形成沉淀析出,结晶能力丧失,分子形状改变,酶失去活力,激素蛋白失去原来的生理功能。

高级生物化学(1)

高级生化复习题 1.酶的催化混杂性(Enzyme promiscuity):是指酶具有能催化除其天然反应外的其它反应的能力,也就是说在单个位点催化不止一类化学反应的能力混乱性。 2.活性中心的催化三联体:催化三联体通常指在水解酶和转移酶的活性位点中心同时作用的三个氨基酸残基(如蛋白酶、酰胺酶、酯酶、酰基转移酶、脂肪酶和β-内酰胺酶)。用于共价催化的亲核残基一般是酸-碱-亲核三联体。 3.聚合酶链式反应:简称PCR。聚合酶链反应(PCR)是体外酶促合成特异DNA 片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。 4.比较基因组学(Comparative Genomics):在基因组图谱和序列分析的基础上,对已知基因和基因的结构进行比较,了解基因的功能,表达调控机制和物种进化过程的学科。 5.酶的转化数(Kcat):在单位时间内每一活性中心或每分子酶所能转换的底物分子数。 6.Toll样受体(Toll-like receptors):是参与非特异性免疫(天然免疫)的一类重要蛋白质分子,也是连接非特异性免疫和特异性免疫的桥梁。TLR是单个的跨膜非催化性蛋白质,可以识别来源于微生物的具有保守结构的分子。当微生物突破机体的物理屏障,如皮肤、粘膜等时,TLR可以识别它们并激活机体产生免疫细胞应答。 7.鸟枪测序法(whole genome shotgun):一种分析大片段基因组DNA序列的策略,主要是指将大片段DNA随机切成许多1~1.5kb的小片段,分别对其测序,然后借助序列重叠区域拼接成全段序列。 8.蛋白质芯片:一种高通量的蛋白功能分析技术,可用于蛋白质表达谱分析,研究蛋白质与蛋白质的相互作用,甚至DNA-蛋白质、RNA-蛋白质的相互作用,筛选药物作用的蛋白靶点等。 9.Annexin V:是一种检测细胞凋亡的试剂,在正常细胞中,磷脂酰丝氨酸(PS)只分布在细胞膜脂质双层的内侧,细胞发生凋亡早期,膜磷脂酰丝氨酸由脂膜内侧翻向外侧。Annexin V作为一种磷脂结合蛋白,与磷脂酰丝氨酸有高度亲和力,它通过细胞外侧暴露的磷脂酰丝氨酸与凋亡早期细胞的胞膜结合。因此Annexin V是检测细胞早期凋亡的灵敏指标。 10.遗传图谱(genetic map):遗传图谱又称连锁图谱,通过计算机连锁的遗传标志之间的重组频率,确定他们之间的距离,即以具有遗传多肽性的遗传标记为“坐标”,遗传学距离作为“图巨”的基因组图,一般用厘摩(cM,即每次减数分裂的重组频率为1%)来表示. 11.亲和层析:是根据生物大分子和配体之间的特异性亲和力(如酶和抑制剂、抗体和抗原、激素和受体等),将某种配体连接在载体上作为固定相,而能对与配体特异性结合的生物大分子进行分离的一种层析技术,亲和层析是分离生物大分子最为有效的层析技术,具有很高的分辨率。 12.基因物理图谱(genome physical):通过测定遗传标志的排列顺序与位置而

“运动生物化学”课程教学大纲

“运动生物化学”课程教学大纲 教研室主任:田春兰执笔人:王凯 一、课程基本信息 开课单位:体育科学学院 课程名称:运动生物化学 课程编号:144213 英文名称:sports biochemistry 课程类型:专业方向任选课 总学时: 36理论学时:36 实验学时: 0 学分:2 开设专业:休闲体育 先修课程:运动解剖运动生理 二、课程任务目标 (一)课程任务 运动生物化学是从分子水平上研究运动与身体化学组成之间的相互适应,研究运动过程中机体内物质和能量代谢及调节的规律,从而为增强体质、提高竞技能力提供理论和方法的一门学科,是一门科学性和应用性很强的学科。重视最新科学成就的介绍和体现体育专业的特点及需要。在体育科学和体育教学中占有重要的地位,在体育专业各层次教学中被列为专业基础理论课,是体育院校学生的必修课。 (二)课程目标 在学完本课程之后,学生能够: 1.使学生初步了解运动与身体化学组成之间的相互适应,初步掌握运动过程中机体物质和能量 代谢及调节的基本规律。 2.为增强体质、提高竞技能力(如运动性疲劳的消除和恢复、反兴奋剂及其监测技术、机能监 控和评定、制定运动处方等)提供理论和方法。 3.增强学生的科学素养,培养科学思维的良好习惯。 三、教学内容和要求

第一章绪论 1.理解运动生物化学的概念,研究任务,发展、现状及展望; 2.了解运动生物化学在体育科学中的地位;激发学生学习本学科的兴趣; 3.使学生树立整体观、动态观,用辩证的思维去看待生命、看待运动人体。 重点与难点:运动生物化学的概念;运动生物化学的研究任务。 第二章糖代谢与运动 1.掌握糖的概念、人体内糖的存在形式与储量、糖代谢不同化学途径与ATP合成的关系; 2.了解糖酵解、糖的有氧氧化的基本代谢过程及其在运动中的意义; 3.掌握糖代谢及其产物对人体运动能力的影响; 4.熟悉糖原合成和糖异生作用的基本代谢过程及其在运动中的意义; 5.了解运动训练和体育锻炼中糖代谢产生的适应性变化。 重点与难点:糖代谢的不同化学途径及其与ATP合成的关系 第三章脂代谢与运动 1.掌握脂质的概念与功能、脂肪酸分解代谢的过程; 2.了解酮体的生成和利用及运动中酮体代谢的意义; 3.掌握运动时脂肪利用的特点与规律; 4.理解运动、脂代谢与健康的关系。 重点与难点:脂肪酸分解代谢的过程、酮体代谢的意义;运动时脂肪利用的特点与规律。第四章蛋白质代谢与运动 1.掌握蛋白质的概念、分子组成和基本代谢过程; 2.理解蛋白质结构与功能的辩证关系。 3.了解运动与蛋白质代谢和氨基酸代谢的适应。 重点与难点:运动时蛋白质和氨基酸代谢变化的规律;蛋白质的代谢过程; 第五章水无机盐维生素的生物化学与运动 1.了解掌握水的生物学功能与对运动能力影响 2.了解掌握无机盐的生物学功能及与运动能力的关系 3.了解掌握维生素的生物学功能与运动能力的关系 第六章酶与激素 1了解酶的特点,理解运动中酶的适应变化及运动对血清酶的影响和应用 2了解运动对

生物化学试卷4(精)

生物化学试卷4 一、选择题(从4个备选答案中选出1个唯一正确的答案,把答案代码填入题末的括号内) 1、ATP水解生成ADP和磷酸反应的?G0'等于: ①+7.3kJ/mol; ②+30.5kJ/mol; ③-7.3kJ/mol; ④-30.5kJ/mol。答() 2、无脊椎动物肌肉中的贮能物质是: ①ATP; ②磷酸肌酸; ③磷酸精氨酸;④磷酸烯醇式丙酮酸。答() 3、下面关于呼吸链的论述,哪项不正确? ①呼吸链各组分在膜结构中都具有特定的定位关系; ②NADH脱氢酶复合物含有铁硫蛋白; ③来自NADH的电子必须经CoQ传递至分子氧; ④氰化物不能阻止电子从细胞色素C传递到氧。答() 4、下列物质中哪种是常见的解偶联剂? ①2,4二硝基苯酚;②氰化物; ③寡霉素;④安密妥。答() 5、下述哪种氨基酸可由柠檬酸循环的中间物经一步反应即可生成? ①丙氨酸;②丝氨酸; ③天冬氨酸;④谷氨酰酸。答() 6、在磷酸戊糖途径中,哪个酶需要焦磷酸硫胺素作辅因子? ①6-磷酸葡萄糖脱氢酶;②6-磷酸葡萄糖酸脱氢酶; ③转酮酶;④转醛酶。答() 7、糖类物质在动物及人体内主要以下列哪一种糖的形式转运 ①葡萄糖;②麦芽糖; ③蔗糖;④果糖。答() 8、糖原合成的直接糖基供体是 ①ADPG;②GDPG; ③CDPG;④UDPG。答() 9、对光合作用有效的电磁幅射,其波长范围为: ①200-1400nm; ②200-400nm; ③400-700nm; ④700-1200nm。答()10、叶绿素分子中含有的金属原子是: ①Fe; ②Cu; ③Mg; ④Co。答() 11、C4植物中光合固定CO2的最初产物是: ①磷酸甘油酸;②草酰乙酸; ③苹果酸;④磷酸甘油酸。答() 12、脂肪酸合成酶复合体上脂酰基中间物是与ACP中的哪种基团结合的? ①-SH; ②-NH2; ③-OH; ④-COOH。答() 13、脂肪的消化与吸收主要在哪个部分进行? ①胃;②口腔; ③小肠;④大肠。答() 14、L-氨基酸氧化酶的辅因子为: ①NADP+; ②维生素B6; ③FMN或FAD; ④NAD。答() 15、爬虫类和鸟类以下列哪种物质作为氨基酸氨基氮排泄的主要形式? ①尿素;②尿酸; ③酰胺;④氨。答() 16、下列氨基酸,哪一个不参与生成一碳基团? ①Gly; ②Ser; ③His; ④Cys。答() 17、下列氨基酸中,哪种氨基酸经转氨作用可直接生成草酰乙酸? ①苏氨酸;②天冬氨酸; ③丙氨酸;④谷氨酸。答() 18、卟啉的结构含有4个相同的环,它们属于下列哪种环? ①吡咯;②吡唑; ③吡啶;④咪啶。答() 19、生物固氮作用的第一个产物是: ①NH4+; ②NO3-; ③Glu; ④Gln。答() 20、嘧啶环中C2和N3原子来源于哪种化合物? ①天冬氨酸;②谷氨酰胺;

2015年博士考试高级动物生物化学试题

2015年攻读博士学位研究生入学考试初试试题答案 一、名词解释(20分)(每题4分,中英文回答均可) 1.Posttranslational processing 翻译后加工:肽链从核蛋白体释放后,经过细胞内各种修饰处理,成为有活性的成熟蛋白质的过程。 2.Ketone bodies酮体:在肝脏中由乙酰CoA合成的燃料分子(β羟基丁酸,乙酰乙酸和丙酮)。在饥饿期间酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。 3.Induced fit hspothesis诱导契合学说:酶并不是事先就以一种与底物互补的形状存在,而是在受到诱导之后才形成互补的形状。底物一旦结合上去,就能诱导酶蛋白的构像发生相应的变化,从而使酶和底物契合而形成酶-底物络合物,并引起底物发生反应。反应结束当产物从酶上脱落下来后,酶的活性中心又恢复了原来的构象。 4.Telomerase端粒酶:是一种RNA-蛋白质复合物。其RNA序列常可与端粒区的重复序列互补;蛋白质部分具有逆转录酶活性,因此能以其自身携带的RNA为模板逆转录合成端粒DNA。 5. Sobstrate level phosphofylatin底物水平磷酸化:ADP或某些其它的核苷-5′—二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。这种磷酸化与电子的转递链无关。 二、简答题(40分)(每题8分) 1、解释哺乳动物脂肪组织中脂肪库是如何成为细胞内水的来源的? 脂肪酸氧化是指脂肪酸在供氧充足的条件下,可氧化分解生成二氧化碳和水,并释放出大量能量供机体利用。 脂肪酸β-氧化是体内脂肪酸分解的主要途径,生成乙酰CoA,进入三羧酸循环 三羧酸循环生理意义: 1.三大营养素的最终代谢通路2.糖、脂肪和氨基酸代谢的联系通路 有问题还需补充:

相关主题
文本预览
相关文档 最新文档