当前位置:文档之家› 逐步聚合反应的研究进展及其应用

逐步聚合反应的研究进展及其应用

逐步聚合反应的研究进展及其应用
逐步聚合反应的研究进展及其应用

逐步聚合反应的研究进展及其应用

一、逐步聚合反应得特点

逐步聚合(Step Polymerization):逐步聚合反应是高分子材料合成的重要方法之一。在高分子化学和高分子合成工业中占有重要地位。有很多用该方法合成的聚合物.其中包括人们熟知的涤纶、尼龙、聚氨酯、酚醛树脂等高分子材料。特别是近年来,逐步聚合反应的研究无论在理论上,还是在实际应用上都有了新的发展.一些高强度、高模量及耐高温等综合性能优异的高分子材料不断问世。例如、聚碳酸酯、聚砜、聚苯醚、聚酰亚胺及聚苯并咪唑等。

逐步聚合反应通常是由单体所带的两种不同的官能团之间发生化学反应而进行的,例如,羟基和羧基之间的反应。两种官能团可在不同的单体上,也可在同一单体内。

绝大多数缩聚反应都属于逐步聚合,最基本的特征是在低分子单体转变成高分子的过程中反应是逐步进行的。逐步聚合反应在高分子工业中占有重要地位,通过一系列的工艺合成了大量有工业价值的聚合物

二、逐步聚合反应得研究进展

缩聚反应是高分子聚合反应的重要方式之一, 在实际应用中占据主导地位. 早期关于缩聚反应的理论研究始于Flory和Stockmayer的开创性工作. 随后陆续出

现了多种研究方法. 其中Tobolsky等首先利用动力学方法对缩聚反应进行研究, 但其方法仅限于线性缩聚反应. 事实上, 高分子反应统计理论和反应动力学理论是研究聚合反应的主要方法. 众所周知, 反应程度是表征聚合反应的重要物理量, 它与分子量分布、回转半径和网络结构参数等直接相关. 近年来, 我们通过反应动力学理论将反应程度与体系的物理化学性质和热力学量联系起来, 得到与统计力学理论一致的结果,并对反应过程的影响因素和分子量的控制条件进行了动力学模拟和理论计算。

1.缩聚反应的动力学理论

对于线性缩聚反应, Tobolsky等指出, 平衡聚合反应的方程可表示为:

(1)

式中, 符号M m 表示m-聚体, X表示缩聚反应过程中生成的小分子. 该动力学方

程表示一个m -聚体和单体生成(m + 1)-聚体的过程. 假设与该过程相应的平衡常数为km , 若以[M m ]表示反应体系中m-聚体的平衡浓度, 以[ X ]表示小分子的平衡浓度, 根据反应动力学理论, 则有k m= [M m + 1 ] [ X ] /( [M m] [M1 ] ), 反复利用此递推关系可得

(2)

通常, 有关缩聚反应平衡常数的研究主要采用以下两种近似:

(3)

(4)

一种聚合反应究竟以何种近似研究更为合理, 应视具体反应和条件而定. 按照式(3)的近似, 可得:

(5)

由此可以计算数均聚合度、数均和重均分子量分布等物理量. 事实上, 在实际的线性聚合反应过程中,一个m 2聚体的生成方式有多种, 通常可用如下方程来表示:

(6)

由此可知, 方程(1)所示的聚合过程只是其中一种方式. 对于非线性的缩聚反应, 聚合过程也可由上式描述, 但由于聚合物分子有若干个可反应的官能团, 因此导致生成m-聚体方式的数目不仅与m 有关, 也与单体官能团数目有关.

若与式(6)过程对应的反应平衡常数为k m, 根据反应动力学理论可得:

(7)

如果在反应过程中不断排出小分子, 即在式(6)中可以忽略小分子的贡献, 则

可用准平衡态的方法来研究相应问题, 此时可得方程:

按照方程(3)的近似, 计算可得:

(8)

式中, 因子Ωm不仅与m 有关, 也与单体的官能团数目等因素有关。

2.基于格子链的缩聚反应的动态Monte Carlo 模拟

传统的研究聚合反应动力学的Monte Carlo 模拟方法忽略了与空间相关的信息, 故不能够同时直接研究链构象, 在需要考虑支化链、高分子凝胶网络等复杂结构的生成动力学时就无能为力, 也不容易考察扩散控制反应等化学工程上十分需

要的动力学过程。

Monte Carlo 模拟的一个重要方法就是所谓的动态Monte Carlo (DMC)方法, 它

通过引入高分子链的恰当松弛模式, 采用Metropolis 重要性抽样, 可以研究链动力学过程. 将DMC 方法用来研究聚合反应是Monte Carlo 模拟方法的一个独到应用. 采用高分子多链体系的Monte Carlo 模拟的动态算法, 关键是通过边松弛边反应使体系演化, 从而统计反应过程中链的性质. 除可以得到动力学和产物分子量及分布等信息之外, 还可同时得到构象信息. 韩国的Jo等[7,8]对酯交换反应用DMC进行了模拟, 但是, 由于采用了简单格子链模型, 不能处理超高分子网络等复杂的链拓扑构造; 他们随后又采用了非格子链模型与DMC 相结合, 研究了超支化体系, 但是非格子链模型在计算机时间上耗费较大. 由Kremer提出、Binder[11]修正的键长涨落格子链模型在三维空间采用了8 个格点代表一个粗粒化链段, 其模型十分适合DMC 方法, 既保持了格子链模型处理排除体积效应时的高效率, 又使得模型可以扩大所允许的键长和键角. 作者课题组成功地采用基于键长涨落格子链模型的DMC 方法研究了蛋白质折叠问题[12]以及流场下高分

子链的动力学, 这里将基于该方法研究缩聚反应动力学. 作为研究缩聚反应动力学和相关链构象的首次研究, 仅考察AB 型单体的缩聚反应过程, 以证明方法的可行性; 并考察了有限元胞效应, 指出了在模拟时应注意的问题。

1) 模型及方法

被模拟的粗粒化聚合物由被键连接起来的有效重复单元组成. 按照键长涨落模型, 占有2D 个方格子的粒子就代表一个有效单元(D为空间维数). 以三维空间为例, 每个有效单体占有立方格子的八个顶点, 其键长可以在一定范围里波动[11], 故称为键长涨落模型; 并且,该方法在保证两个粒子不可以占据同一个格子的同时,还保证键在松弛过程中不能交叉而过, 完全体现了体积排除相互作用. 只有当一个运动同时满足了键长的要求和体积排除作用的时候, 该运动才可能被接受. 我们的模拟在无热状态进行。

对AB 型单体进行自缩聚反应的模拟时, 反应过程中的环化会导致缠结, 使问题复杂化, 所以本工作中暂时避免发生环化, 即禁止分子链和它自身反应. 如此生成的都是线形链, 且反应过程中暂时不考虑解聚、链交换等复杂反应. 在实际反应中, 体系粒子数目是非常大的, 而模拟中的粒子数相当有限, 因此我们采用周期性边界条件. 在模拟的开始阶段, 先把单体均匀地放在反应体系中, 松弛50000 次得到平衡初态, 定为反应的起始点, 并开始反应. 在反应过程中, 随机地选取一个单体或链重复单元, 再随机选取一个方向. 在此方向上的相邻格点若是空格, 尝试移动, 根据键长涨落模型的要求, 键长满足的时候, 此次运动被接受, 新构象参加一次统计; 否则退回原位, 原构象参加一次统计;如果在随机选取的方向上的相邻格点不是空格, 而且不属于同一个单体或链单元, 判断二者是否满足反应条件, 即官能团A 遇官能团B 可发生反应, 官能团B 遇官能团A也可发生反应。

反应中时间的计量是以Monte Carlo 步数(MCS)为单位. 一单位MCS 定义为体系中所有粒子平均被选择一次所进行的尝试. 体系的浓度选择了体积分数为0.625 的浓溶液, 主要的模拟工作是在64×64×64 (即L=64)的立方格子中进行, 但为了考察有限尺寸效应,我们同时还在小些的立方格子即L 分别取16, 32, 48 以及大的立方格子80 和128 进行了模拟. 若无特别说明,都是L 为64 的结果.统计的参量有: 数均聚合度、重均聚合度、分子量分布、反应程度p、链的均方末端距<H2>和均方回转半径<S2>. 单体部分计入分子量的统计。

2) 分子量与反应程度

图1(a)是数均聚合度X n 和重均聚合度X w 随时间的演化. 图1(b)是反应程度p 随时间的演化以及X n 和p 的关系, 这里反应程度p 等同于成键分数. 模拟中, 从仅含单体的独立的初始状态共独立演化80 次, 每次的演化时间为10000 MCS, 每间隔500 MCS 取点统计. 由图1(b)可知在反应开始后很短时间内, p 就接近于1, 但此时分子量还很小, 说明反应的开始阶段单体基本消失而形成了多聚体. 从X n和p 的关系上看到, X n与1/(1-p)呈很好的线性关系, 符合理论和实验结果。

图1 缩聚反应相关统计参量的变化

(a) 数均聚合度和重均聚合度随时间的演化; (b) 反应程度p 与数均聚合度及时间的关系

3) 分子量分布

统计得到不同反应时间的分子量数量分布曲线和重量分布曲线, 如图2 所示. 图中每个时刻的数值是由从该统计时刻之前100 个点到之后100 个点共200 点的数据取时间平均所得的结果。

根据Flory 理论[15], 缩聚反应的分子量数量分布和重量分布为:

(1)

(2) 式中, Nx/N 为x 聚体的数量分数, Wx/W 为x 聚体的重量分数. 将所选时刻对应的数均聚合度以x 代入式中, 计算的结果在图2 中以曲线表示. 可见, 模拟的结果基本符合Flory 分布。只是由于本模拟中未考虑解聚反应,使得在数量分布中, 低分子量的部分与Flory 分布有些偏差。

重均分子量与数均分子量的比值给出了多分散系数d. 在图2 中对应所得到的分子量, d 分别为1.74 与1.80。理想的Flory 分布所得到的d 应为2. 需要指出的是, 即使延长计算时间, 模拟所得到的d 仍然要小于2。这是由于理想的Flory 缩聚反应是平衡的可逆缩聚反应,而本文模拟中反应是不可逆的, 造成体系中单体含量的偏低, 这在图2 的数量分布曲线中也可以看出; 而单体含量的偏低会造成d 的偏小. 要得到一个理论解析公式需要设定许多假设, 难度较大; 而模拟虽然也基于假设,但是所需要的限制比理论小得多. 事实上考虑可逆与不可逆反应均可. 从模拟结果看, 不可逆缩聚在一定时间范围内并不显著影响Flory 理论的正确性, 这也与许多实验结果相符。

图2 分子量的数量和重量分布曲线

(a) 500 MCS; (b) 3000 MCS

3.Carothers方程在控制缩聚反应分子量上的应用

一般地,控制缩聚反应分子量有两种方法: 一是两种单体A-A 和B-B 非等基团数配比, 其中A-A 稍微过量; 二是单体A-A 和B-B 等基团数配比、另加少量单官能团化合物。普遍使用了两个公式。为了便于说明, 假定单体A-A 起始物质的量为N A , 官能度f A = 2; 单体B-B 起始物质的量为N B , 官能度f B= 2; 单官能团化合物R2A 物质的量为N C,官能度f C= 1。基团数比r 定义为起始时两种官能团数目之比, 且r≤1, p 为反应程度。这两个公式是:

(1)

(2)

另外,丁择扬等介绍了另一种方法来控制分子量

——Carothers方程(3)

表. 三个方程控制分子量的比较

由此可以看出:

i. (3) 式适用于所有的情形。(1) 式通过变换r 后也可用, 但理论上是不完善的, (2) 式只适用于特定的情形。

ii. 在(3) 式中关键是求出f,这按f 的定义就可计算。在(1) 式中关键是r, 在不同的情形r的定义不同。r 称为基团数比、r′和r″都不能称为基团数比, 没有物理意义, 纯粹是一个运算符号。

iii. 对于线性缩聚, 等基团数比r= 1, f = 2。其分子量控制, 无论如何配方都使f < 2, 从而限制了链增长, 这就是缩聚反应分子量控制的实质。

iv. (1) 和(2) 式都可由(3) 式推导出来。

在控制缩聚反应分子量所用的公式中, (3) 式的形式最简单, 容易记忆, 没有

特别要求, 只需掌握f 的计算就可适用于上述所有情形。(1) 式与(2) 式都可遇到矛盾和难题, 故(3) 式比(1) 和(2) 式更好, 更具普遍意义。

4.缩聚反应过程的分子量分布模型

建立聚合过程分子量分布模型的一般方法为: 引入可测的操作变量, 如聚合温度、压力等, 利用聚合反应机理, 列出各产物和副产物的浓度方程, 再利用生成函数法, 列出分子量分布各阶矩的方程, 通过求解这些微分方程或偏微分方程组, 最终得到该过程中聚合物分子量分布的参数或图形。

反应度法是另一类可用来列写聚合过程数学模型的方法。与传统的浓度法相比, 它的优势在于可方便地定义胀度的概念, 将聚合反应中体积变化的因素引入方程。同时, 由于反应度描述的是各反应组分随时间累计的效应, 因而描述存在大量低浓度副产物和快速消耗的单体、引发剂的聚合反应过程尤为方便。Ramasy 等利用反应度法和传统的浓度法建立起某类管式聚合反应模型, 通过比较指出: 反应度法具有某些优势, 表现在求解微分方程时抗僵化能力强, 可避免奇异方程的出现等。

5.缩聚反应得时间优化

汪自谦对PET生产过程中,反应器物料停留时间(液位)对缩聚反应、产品分子

质量分布、b值、运行电流的影响进行了考察总结,得出如下结论(1)改变一定负荷下的缩聚反应时间(液位)只影响传质控制区过程速率,降低液位高度, 过程速率增加,处于反应控制区的范围扩大, 同时会使分子质量分布变窄。处于传质控制区的范围缩小, 可通过温度、压力、催化剂浓度等工艺参数调节非常有效,受设备结构影响也变小,调节余地大; (2) 在反应控制区的预缩阶段,不能轻易调整液位,会直接影响反应器内物料黏度,而且温度、压力等参数有时无法弥补。在传质控制区终缩聚圆盘反应器中,脱挥过程显得很重要,降低液位使过程速率明显增加,反应器真空余量变大,证明其停留时间有优化的必要性和可能性,并在实践中取得成功; (3) 改变一定负荷下的缩聚反应时间(液位) 使产品质量发生变化。随着缩聚釜液位下降,产品分子质量分布变窄, b 值明显下降; (4) 改变一定负荷下的缩聚反应时间(液位) 使缩聚反应器搅拌电流发生明显变化。其搅拌电流随液位下降明显下降,节能降耗; (5) 随着负荷增加,反应器最低液位也会增加,而且在设备结构确定时,要使产品质量最佳,有一个最佳反应液位。

6.缩聚反应过程中相对分子量分布的在线检测

聚合物产品的品位和质量是由构成它的基本分子参数决定的,如平均相对分子质量、相对分子质量分布、共聚物的组成分布等。。建立聚合过程的相对分子质量分布模型成为进行产品质量在线估计和控制的关键。

张素贞等以某聚酯生产工艺为实际背景,根据缩聚反应机理,建立操作变量(即缩聚进出口温度,真空度,生产负荷和缩聚入口物料的聚合度) 对相对分子质量分布影响的在线估计模型。该模型方程将反映影响MWD 的各种主要因素,如反应的可逆性,混合与传质效应和MWD 的再分布现象,同时兼顾在线、实时等要求,根据工艺操作条件在线估计聚酯熔体的主要参数如:数均、重均相对分子质量,分散指数等,也可以直接得到任何运行时刻其相对分子质量分布的曲线。

相对分子质量分布在线估计流程图

数据结果表明,该模型预估黏度的相对误差能够满足实际工艺要求,相对分子质量分布估计与凝胶色谱仪(GPC)相比,快速及时,投资极小,而且能不断给出整个缩聚流程的质量信息。

三、逐步聚合反应在聚合物合成中的应用

1.溶液缩聚法直接合成聚乳酸

聚乳酸(PLA) 是一种具有良好的生物相容性和可生物降解的聚合物, 已成为生物医用材料中最受重视的材料之一。长期以来, 聚乳酸及其衍生物大都采用二

步法合成,即先将乳酸单体经脱水环化合成丙交酯,然后丙交酯再开环聚合得到聚乳酸。此法易于获得高相对分子质量聚乳酸及其衍生物,但路线冗长、成本高, 影响了聚乳酸及其衍生物产品的推广应用。近年来,由乳酸直接缩聚合成聚乳酸的方法引起人们的关注。

探讨了溶液聚合中单体粘度、催化剂用量、反应温度、反应时间等对分子量的影响。

不同分子量聚乳酸的DSC 曲线如下图所示。

不同分子量聚乳酸的DSC 曲线

比较可以看出:分子量为7890 的聚乳酸玻璃化转变温度为39185 ℃,分子量为

9625 的聚乳酸的玻璃化转变温度为45164 ℃,分子量为12320 的聚乳酸的玻璃化转变温度为46156 ℃,可见合成得到的聚乳酸的玻璃化转变温度随着分子量升高而升高,不过聚乳酸的玻璃化转变温度随分子量的增加而升高的趋势在减小。结果表明,用溶液缩聚法直接合成聚乳酸,选用辛酸亚锡作为催化剂,用量为018 %;甲苯作为溶剂,甲苯与乳酸单体的比例为2∶1 ,聚合温度控制在170 ℃,反应24h ,可得到分子量较高的聚乳酸。

2.熔融缩聚法合成高分子量聚L-乳酸

熔融缩聚法的产率较低,主要原因在于因聚乳酸的―回咬‖反应而生成大量丙交酯, 在抽真空过程中被排出反应体系。对此通过改进装臵,减少了丙交酯的挥发,并在SnCl2 ·2H2O /TSA催化体系中加入少量丙交酯开环催化剂,进一步优化工艺条件,得到了分子量较高,且产率也较高的聚L-乳酸产物。

在乳酸的熔融缩聚过程中, 乳酸齐聚物在催化剂作用下继续脱水,在整个反应体系中存在着乳酸、乳酸齐聚物、乳酸高聚物、水以及聚乳酸降解产物———丙交酯等诸多物质的平衡。副产物丙交酯的生成直接降低了聚乳酸的产率,而且使得产物分子量的增加受到抑制。因此,在熔融缩聚过程为了得到高分子的聚乳酸,在排出体系中水分的同时,应尽量减少丙交酯的挥发,而将丙交酯保留在体系内,抑制聚乳酸的降解。

为了达到分离水蒸气和丙交酯蒸气的目的,对普通缩聚装臵进行了改进,在缩聚反应器上加装冷凝回流装臵,实现了丙交酯的部分回流。PLLA的黏均分子量和产率分别提高到6.7万和61%。

通过改进反应装臵,优选催化剂,在170℃,反应12h,由L-乳酸直接熔融缩聚得到了黏均分子量大于10万的高分子量聚L2乳酸,产率约76%,色泽良好。反应装臵中增加丙交酯冷凝回流装臵,以及在反应体系中加入适量Sn (Ot) 2 是提高PLLA分子量的关键因素。

3.尼龙612的合成

尼龙由于具有较长的碳链和较低的酞胺基密度, 克服了短碳链尼龙如尼龙、尼龙吸水率低、尺寸稳定性不好等方面的不足, 除具有一般尼龙的通性外, 还具有更好的低温韧性、回弹性, 耐磨性和电性能, 是目前国内外重点研究和开发的长碳链尼龙新品种之一。以十二碳二酸和己二胺为主要原料, 采用釜式间歇熔融缩聚法, 进行了尼龙612的合成,制备了不同粘度的尼龙612。

以十二碳二酸和己二胺为原料, 先在溶剂存在下二者中和生成尼龙612盐, 然后将尼龙612盐溶液直接高温缩合, 制得了尼龙612树脂。适宜的中和成盐反应温度为60~100℃ ,聚合温度240~260℃ , 常压聚合时间2~3h,94~98kPa下减压聚合40~100min。且放大实验de重复性较好。

4.聚亚苯基苯并二噁唑缩聚反应动力学

聚亚苯基苯并二唑( PBO) 是一种刚性结构的溶致型液晶高分子,由于其纤维具有高强度、高模量、耐高温等优异特性,某些性能甚至胜过著名的Kevlar 纤维,已成为目前综合性能最为优异的高分子纤维,在航空航天、国防等高科技领域有

广泛的应用。目前PBO 主要是由4 ,6-二氨基间苯二酚(DAR) 和对苯二甲酸( TA) 在多聚磷酸( PPA) 的介质中进行缩聚反应制得,该反应是一种非均相逐步缩聚反应,过程比较复杂。

庄启昕等以4 ,6-二氨基间苯二酚磷酸盐(DAR ·2HP3O4 )为单体,避免了脱气过程,在多聚磷酸溶液中形成的DAR 直接与TA缩聚合成PBO ,使研究的动力学过

程阶段分明、简单均一,并在高浓度单体的条件下,对聚合全过程进行详细的分析,研究聚合物分子量随时间和温度的变化规律。

聚合过程粘度随时间和温度的变化关系

通过Mark-Houwink 方程式( 1 ) 由[η] 可求得.M w ,由适合聚合反应全过程的M w 与反应程度P 的关系式(2) 求得P ,并获得P 与时间的关系,如下图所示。

(1)

(2)

反应程度随时间和温度的变化关系粘度随时间的变化关系

由的[η]计算出数均聚合度X n ,然后以X n 对反应时间t 作图,得到下图中的4 条直线,由此图可以看出,分子量随反应时间的增加是线性地增大,均符合不可逆二

级反应机理。

聚合度随时间的变化图ln (d X n / d t)~1/ T 的直线

由图中每条直线的斜率,即为d X n / d t , 然后作ln (d X n / d t) ~1/ T 的直线,

如上右图所示, 直线线性关系良好, 由此求得指前因子A为5.06 ×1010 g ·mol-1·h-1 ,反应活化能E a为51.9 kJ/mol。

5.固态缩聚法改性聚对苯二甲酸丁二酯的缩聚反应

聚对苯二甲酸丁二酯(PBT)是一种具有高结晶速率的半结晶型芳香族聚酯.普

遍认为缩聚物,如PBT,可以很容易地与其他活性缩聚物在熔融条件下进行酯交换反应以达到改性目的。

上海交通大学的吕红武等研究了对苯二甲酸二羟乙酯(BHET)单体和PBT的SSP共聚反应动力学,并揭示了聚合物数均分子量随反应时间的变化规律。

研究结果表明,在185℃的反应温度下,通过SSP法,BHET单体被成功地引入PBT链中,形成共聚物.SEC测试结果表明,在反应的初始阶段(t SSP<0.5 h),体系数均分子量下降.t SSP>0.5 h后,自由BHET单体几乎完全消失.1H-NMR表征结果表明,在反应开始0.5 h内,一部分BHET单体与非晶相中的PBT链段发生酯交换反应,使得PBT分子链被打断;而另一部分BHET单体发生自缩聚反应形成PET均聚物.深入分析1H-NMR谱图可知,随着反应的持续进行,PET均聚物和PBT发生进一步酯交换反应,最终使乙二醇基团在体系中趋于无规分布.同时,从13C-NMR结果可计算得到共聚物的自由度R.由于体系中存在大量的PBT和PET均聚物链段,使得R值远低于1。但在t SSP=0.5 h以后,R快速上升,t SSP>4 h后R值才开始趋于缓和,表明(BD70EG30)SSP的化学结构在t SSP=4 h后趋于稳定。

四、展望

参考文献:

1.丁泽扬, 冉蓉, 潘固平,Carothers 方程的应用——关于缩聚反应控制分子量公式的商榷,高分子材料科学与工程,2005,21(6),273-276。

2.李红,郭宏,李士锋,廖春泉,于世钧,超支化聚芳酰胺合成及表征,化学推进剂与高分子材料,2007,5(6),48-51。

3.张新峰,俞建勇,高分子量聚己二酸乙二醇酯的合成及表征,纺织科技进展,

2007,2,30-32,34。

4.吕文琦,丁建东,基于格子链的缩聚反应的动态Monte Carlo模拟,化学学报,2005,63(13),1231-1235。

5.张爱军,杨青芳,叶佳佳,梁建锋,聚乳酸熔融缩聚的研究,中国胶粘剂,2007,16(8),31035。

6.周承俊,庄启昕,陈晓军,韩哲文,聚亚苯基苯并二唑缩聚反应动力学,功能高分子学报,2007,19(2),167-171,192。

7.唐新华,李馥梅,尼龙612的合成及其性能研究,合成纤维工业,2007,30(5),8-10。

8.陈佑宁,樊国栋,高艳华,溶液缩聚法直接合成聚乳酸的研究,化工新型材料,2007,35(7),85-87。

9.谢吉星,杨荣杰,熔融缩聚法合成高分子量聚L2乳酸,塑料,2006,35(5),43-46。

10.舒静, 王鹏,郑彤,田六一,赵宝秀,熔融缩聚合成聚L - 乳酸的研究,材料科学与工艺,2007,15(3),374-378。

11.王海军,洪晓钟,巴信武,缩聚反应的统计力学和反应动力学理论,高等学校化学学报,2005,26(11),2077-2081。

12.范文兵,张素贞,缩聚反应过程相对分子质量分布的在线检测,聚酯工业,2003,16(1),1-3,14。

13.汪自谦,缩聚反应时间优化分析,聚酯工业,2004,17(6),10-12。14.王奉平,线性聚硅氧烷缩聚反应的探讨,有机硅材料,2005,19(2),20-22。15.曹柳林,一类缩聚反应过程的分子量分布模型,计算机与应用化学,1999,16(3),225-230。

16.Jinhuan Li, Lijun Dai, Chao Wang, A new class of aromatic poly(ether-ketone benzoxazole) copolymers by nucleophilic olycondensation: Synthesis and

properties, European Polymer Journal, 2008, 44, 483–493.

17.Issa M. El-Nahhal,Nizam M. El-Ashgar, A review on polysiloxane-immobilized ligand systems:Synthesis, characterization and applications, Journal of

Organometallic Chemistry, 2007, 692, 2861–2886.

18.Yuesheng Ye, Kyu Yong Choi, Optimizing polymer reactivities for the solid-state polycondensation of AA and BB type monomers, Polymer 2008, 49, 2817–2824.

19.Yu Nagase, Tomonori Ando, Cheol Min Yun, Syntheses of siloxane-grafted aromatic polymers and the application to pervaporation membrane, Reactive & Functional Polymers, 2007, 67, 1252–1263.

20.Yusuke Hattori, Takaaki Miyajima , Minoru Sakai, Yu Nagase, Nobukatsu Nemoto, Synthesis and thermal characterization of novel adamantane-based

polysiloxane, Polymer, 2008, 49, 2825–2831.

21.夏敏,罗运军,ABx 型单体在中心核分子RBf 存在下自缩聚反应的研究——聚合度与多分散系数,高分子材料科学与工程,2007,23(3),34-38。22.肖杨1,吴元欣,王存文,应卫勇,超临界CO2 中合成聚碳酸酯,化工学报,2007,58(9),2403-2407。

23.张凯,范敬辉,马艳,吴菊英,超声波场作用下苯乙烯的分散聚合反应机理研究,化学推进剂与高分子材料,2007,5(3),49-51。

24. 游波, 邢文涛, 武利民,大分子植酸2聚有机硅倍半氧烷的合成及性能,高

等学校化学学报,2007,28(12),2408-2412。

25. 金伟,封亚培,晏雄,汪晓,低温溶液缩聚制备芳香族聚砜酰胺的研究,

合成纤维,2007,10,27-30,36。

26. 李全涛,姚 畅,徐祖顺,易昌凤,共缩聚型可溶性聚酰亚胺的微波辐射合

成,化学研究,2007,18(4),20-23。

27. 林克芝,朱良,固相缩聚反应的新进展,石化技术,2001,8(4),253~256。

28. 刘广田,王海军,巴信武,赵敏寿,含引发机制的A f -A g 型缩聚反应固化理

论——高分子矩及平均分子量,化学学报,2007,65(9),867-870。

29. 李美江,吕素芳,蒋剑雄,邱化玉,来国桥,甲基苯基二氯硅烷与苯基三

氯硅烷共水解缩聚研究,化工新型材料,2007,35(11),57-59。

30. 陈成坤,刘春丽,张刚,刘静,杨杰,龙盛如,聚芳硫醚砜酰胺共聚物的

常压合成与表征,高分子材料科学与工程,2007,23(6),53-56。

31. 梁博,聚乳酸合成方法研究进展,石油化工应用,2007,26(5),1-3。

32. 韩书广,吴羽飞,卢晓宁,三聚氰胺改性脲醛树脂化学结构及反应过程的

13C-NMR 研究,南京林业大学学报(自然科学版),2007,31(6),82-86。

33. 郭巍,刘晶元,隋鹏达,张野,影响聚酯缩聚真空的因素及处理,聚酯工

业,2007,20(5),5-7,25。

34. 马海艳,滕翠青,余木火,逐步减压缩聚法制备高分子量聚乳酸的研究,

材料科学与工程学报,2007,25(4),554-557。

余鼎声 逐步聚合反应统计理论进展——递归计算法 《高分子通报》1990年01期

本文介绍和评述了 Maeosko 等提出的聚合反应的新统计理论——递归计算法。该理论是基于逐步聚合过程的一级 Markov 统计特性以及这种链的递归性质。运用这种方法可以直接计算复杂的线性共聚体系的分子量、链长和序列分布等平均值,与其它统计方法相比,具有简单、通用性的优点。

第2章逐步聚合习题参考答案

第二章 缩聚与逐步聚合反应-习题参考答案 1.名词解释:逐步聚合;缩合聚合;官能团等活性;线型缩聚;体型缩聚;凝胶点;转化率;反应程度。 答: 逐步聚合——单体转变成高分子是逐步进行的,即单体官能团间相互反应而逐步增长。 缩合聚合——由带有两个或两个以上官能团的单体之间连续、重复进行的缩合反应。 官能团等活性——在一定聚合度范围内,官能团活性与聚合物分子量大小无关。 线型缩聚——参加反应的单体都含有两个官能团,反应中形成的大分子向两个方向增长,得 到线型缩聚物的一类反应。 体型缩聚——参加反应的单体中至少有一种单体含有两个以上的官能团,且体系平均官能度 大于2,反应中大分子向三个方向增长,得到体型结构的聚合物的这类反应。 凝胶点——开始出现凝胶瞬间的临界反应程度。 转化率——参加反应的单体量占起始单体量的分数 反应程度——参与反应的基团数占起始基团的分数。 3.由己二元酸和己二胺等摩尔合成尼龙—6,6。已知聚合反应的平衡常数K=432,如果要合成聚合度在200的缩聚物,计算反应体系中的水含量应控制为多少? 解: n X =n X =200,K=432代入此式可得: 224320.0108200 w n K n X === 答:反应体系中的水含量应控制为0.0108 mol/L. 4.计算等摩尔的对苯二甲酸与乙二醇反应体系,在下列反应程度时的平均聚合度和分子量。0.500,0.800,0.900,0.950,0.995。 解: 等物质量条件下,有P X -=11,聚苯二甲酸乙二醇酯结构单元的分子量:M 0=192。 11n X p =-,n o n X M M ?=,因此各反应程度时的平均聚合度和分子量见下表:

第二章缩聚和逐步聚合(可编辑修改word版)

第二章缩聚和逐步聚合 思考题2.1 简述逐步聚合和缩聚、缩合和缩聚、线形缩聚和体形缩聚、自缩聚和共缩聚的关系 和区别。 解(1)逐步聚合和缩聚逐步聚合反应中无活性中心,通过单体中不同官能团之间相互反 应而逐步增长,每步反应的速率和活化能大致相同。 缩聚是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,缩聚物为 主产物,同时还有低分子副产物产生,缩聚物和单体的元素组成并不相同。 逐步聚合和缩聚归属于不同的分类。按单体—聚合物组成结构变化来看,聚合反应可 以分为缩聚、加聚和开环三大类。按聚合机理,聚合反应可以分成逐步聚合和连锁聚合两类。大部 分缩聚属于逐步聚合机理,但两者不是同义词。 (2)缩合和缩聚缩合反应是指两个或两个以上有机分子相互作用后以共价键结合成一 个分子,并常伴有失去小分子(如水、氯化氢、醇等)的反应。 缩聚反应是缩合聚合的简称,是指带有两个或两个以上官能团的单体间连续、重复进 行的缩合反应,主产物为大分子,同时还有低分子副产物产生。 l-1、1-2、1-3 等体系都有一种原料是单官能度,只能进行缩合反应,不能进行缩聚反应, 缩合的结果,只能形成低分子化合物。醋酸与乙醇的酯化是典型的缩合反应,2-2、2-3 等体系能进行缩聚反应,生成高分子。 (3)线形缩聚和体形缩聚根据生成的聚合物的结构进行分类,可以将缩聚反应分为线 形缩聚和体形缩聚。 线形缩聚是指参加反应的单体含有两个官能团,形成的大分子向两个方向增长,得到 线形缩聚物的反应,如涤纶聚酯、尼龙等。线形缩聚的首要条件是需要2-2 或2 官能度体系 作原料。 体形缩聚是指参加反应的单体至少有一种含两个以上官能团,并且体系的平均官能度 大于2,在一定条件下能够生成三维交联结构聚合物的缩聚反应。如采用2-3 官能度体系(邻 苯二甲酸酐和甘油)或2-4 官能度体系(邻苯二甲酸酐和季戊四醇)聚合,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构。 (4)自缩聚和共缩聚根据参加反应的单体种类进行分类,可以将缩聚反应分为自缩聚、混缩聚和共缩聚。 自缩聚(均缩聚):通常为aAb 型的单体进行的缩聚反应,其中a 和b 是可以反应的官能团。如羟基酸或氨基酸的缩聚。 混缩聚:通常为aaa 和bbb 的单体之间进行的缩聚反应,其中a 和b 是可以反应的官能团。如己二酸和己二胺合成尼龙-66 的反应。 共缩聚:通常将aAc 型的单体(a 和c 是不能反应的官能团,a 和c 可以相同)加入到其 他单体所进行的自缩聚或混缩聚反应中进行的聚合反应。共缩聚反应通常用于聚合物的改性。例如以少量丁二醇、乙二醇与对苯二甲酸共缩聚,可以降低涤纶树脂的结晶度和熔点,增 加柔性,改善熔纺性能。 思考题2.3 己二酸与乙醇、乙二醇、甘油、苯胺、己二胺这几种化合物反应,哪些能形成聚 合物? 解:己二酸(f=2)为2 官能度单体,因此能与己二酸形成聚合物的化合物有:乙二醇(f=2)、甘油(f=3)、己二胺(f=2)。其中与乙二醇(f=2)、己二胺(f=2)形成线形缩聚物,与甘油(f=3) 形成体形缩聚物。

高分子化学_余木火_第二章 逐步聚合反应习题

第二章逐步聚合反应_习题 1、写出用下列单体合成聚合物的化学反应方程式,并命名反应物和产物。(1) (2) (3) (4) (5) (6) (7)

2、当下列单体与脂肪酸发生反应时,哪些(个)能得到聚合物:(1)乙醇;(2)乙二醇;(3)二缩乙二醇;(4)苯胺;(5)乙二胺。 3、乙二酰氯与乙二胺、己二胺中的哪一个反应能得到高聚物而不是环状物?为什么? 4、如果酯交换反应的官能团反应程度是0.99999,那么生成聚酯的是多少? 5、先在下列各题中解释所涉及的名词,然后分析以下各题中所给的概念对之间的联系。 (1)反应程度与转化率 (2)平均官能度与凝胶点 (3)界面缩聚与混缩聚 (4)固相缩聚与熔融缩聚 (5)均缩聚与混缩聚 (6)线形缩聚与成环缩聚 (7)逐步性与平衡性 (8)官能团等活性与速率常数 (9)减压缩聚与缩聚平衡 (10)链交换反应与缩聚物的聚合度分布 6、为什么在缩聚反应中不用转化率而用反应程度描述反应过程? 7、如果A0和k的值是10mol/L和10-3 L·mol-1·S-1则要获得=37的聚合物需要多长时间? 8、将等摩尔比的乙二醇和对苯二甲酸于280℃下进行缩聚反应,已知K为4.9。如达平衡时所得聚酯的为15,试问此时体系中残存小分子分数是多少? 9、某逐步增长聚合物的数均聚合度为100。若该体系聚合度分布为最可几分布,且反应程度为p=0.9999,计算和。 10、推导己二酸与己二胺缩聚的速率方程,指出推倒中所用的假设并叙述之。 11、以HO(CH2)6COOH为原料合成聚酯。若反应过程中羧基的离解度一定,反应开始时体系的PH为2。反应到某一时间后PH值变为4。问此时反应程度是多少? 12、某一耐热性芳族聚酰胺数均分子量为24990。聚合物经水解后,得38.91%(质量分数)对苯二胺,59.81%(质量分数)对苯二甲酸,0.88%(质量分数)苯甲酸。试写出分子式,计算聚合度或(和)反应程度。如苯甲酸加倍,试计算对聚合度的影响。

(完整版)第二章缩聚和逐步聚合

第二章缩聚和逐步聚合 思考题2.1简述逐步聚合和缩聚、缩合和缩聚、线形缩聚和体形缩聚、自缩聚和共缩聚的关系和区别。 解(1)逐步聚合和缩聚逐步聚合反应中无活性中心,通过单体中不同官能团之间相互反应而逐步增长,每步反应的速率和活化能大致相同。 缩聚是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,缩聚物为主产物,同时还有低分子副产物产生,缩聚物和单体的元素组成并不相同。 逐步聚合和缩聚归属于不同的分类。按单体—聚合物组成结构变化来看,聚合反应可以分为缩聚、加聚和开环三大类。按聚合机理,聚合反应可以分成逐步聚合和连锁聚合两类。大部分缩聚属于逐步聚合机理,但两者不是同义词。 (2)缩合和缩聚缩合反应是指两个或两个以上有机分子相互作用后以共价键结合成一个分子,并常伴有失去小分子(如水、氯化氢、醇等)的反应。 缩聚反应是缩合聚合的简称,是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,主产物为大分子,同时还有低分子副产物产生。 l-1、1-2、1-3等体系都有一种原料是单官能度,只能进行缩合反应,不能进行缩聚反应,缩合的结果,只能形成低分子化合物。醋酸与乙醇的酯化是典型的缩合反应,2-2、2-3等体系能进行缩聚反应,生成高分子。 (3)线形缩聚和体形缩聚根据生成的聚合物的结构进行分类,可以将缩聚反应分为线形缩聚和体形缩聚。 线形缩聚是指参加反应的单体含有两个官能团,形成的大分子向两个方向增长,得到线形缩聚物的反应,如涤纶聚酯、尼龙等。线形缩聚的首要条件是需要2-2或2官能度体系作原料。 体形缩聚是指参加反应的单体至少有一种含两个以上官能团,并且体系的平均官能度大于2,在一定条件下能够生成三维交联结构聚合物的缩聚反应。如采用2-3官能度体系(邻苯二甲酸酐和甘油)或2-4官能度体系(邻苯二甲酸酐和季戊四醇)聚合,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构。 (4)自缩聚和共缩聚根据参加反应的单体种类进行分类,可以将缩聚反应分为自缩聚、混缩聚和共缩聚。 自缩聚(均缩聚):通常为aAb型的单体进行的缩聚反应,其中a和b是可以反应的官能团。如羟基酸或氨基酸的缩聚。 混缩聚:通常为aaa和bbb的单体之间进行的缩聚反应,其中a和b是可以反应的官能团。如己二酸和己二胺合成尼龙-66的反应。 共缩聚:通常将aAc型的单体(a和c是不能反应的官能团,a和c可以相同)加入到其他单体所进行的自缩聚或混缩聚反应中进行的聚合反应。共缩聚反应通常用于聚合物的改性。例如以少量丁二醇、乙二醇与对苯二甲酸共缩聚,可以降低涤纶树脂的结晶度和熔点,增加柔性,改善熔纺性能。 思考题2.3己二酸与乙醇、乙二醇、甘油、苯胺、己二胺这几种化合物反应,哪些能形成聚合物? 解:己二酸(f=2)为2官能度单体,因此能与己二酸形成聚合物的化合物有:乙二醇(f=2)、甘油(f=3)、己二胺(f=2)。其中与乙二醇(f=2)、己二胺(f=2)形成线形缩聚物,与甘油(f=3)形成体形缩聚物。

第二章 逐步聚合测验题--

第二章 逐步聚合测验题 一.填空题 1. 缩聚反应通常有 小分子 析出,所以结构单元分子量与单体分子量 不相等 。 2.线型缩聚的关键问题是 控制分子量 ;体型缩聚的关键问题是 凝胶点的控制 。 3. 等当量的二元醇和二元酸进行缩聚反应,设体系中起始羧基或羟基数为N 0,那么它等于 单体总量 ,也等于反应时间为t 时的酸和醇的 结构单元数 ,t 时残留羧基或羟基数N 等于当时的 大分子总数 。 4. 影响缩聚物聚合度的因素有 平衡常数 , 反应程度 , 基团数比 ;逐步聚合的实施方法有 熔融缩聚 , 溶液聚合 , 界面聚合 , 固相聚合 。 5.邻苯二甲酸酐和甘油的摩尔比为1.50:0.98,缩聚体系的平均官能度为 ;邻苯二甲酸酐与等物质量的甘油缩聚,体系的平均官能度为 (精确到小数点后2位)。 6. 主链含—OCO —的聚合物一般称为_聚酯__,含—NHCO —的聚合物称为_聚酰胺,而含—NHCOO —的则称为_聚氨酯。 7. 在进行线性缩聚时,单体的官能度一般是_等于2_,而体型缩聚的单体的平均官能度是__大于2_______。 8. 计算体型缩聚的凝胶点有 carothers 方程和 flory 统计公式。 9. 在缩聚反应中聚合的聚合度稳步上升,延长聚合反应时间其主要目的在于提高_分子量__,而不是提高_转化率___。 二.名词解释 平均官能度 摩尔系数 三.选择题 1. 合成具有-NH-COO-特征基团的单体类型是(C ) A. 二元酸+二元醇 B. 二元酸+二元胺 C. 二异氰酸酯+二元醇 D. 二元酸+ 一元醇 2. 对缩聚反应的特征说法错误的是(C ) A 、无特定活性种 B 、不存在链引发、连增长、链终止等基元反应 C 、转化率随时间明显提高 D 、在反应过程中,聚合度稳步上升 3. 下列聚合物种按线型逐步聚合的聚合物是(C ) A 、环氧树脂 B 、碱催化酚醛树脂 C 、聚芳砜 D 醇酸树脂 4. m 为(B C )时,H 2N CH 2COOH m 进行缩聚反应易于环化反应。 A 、2 B 、3 C 、4 D 、5

第五章聚合酶链式反应

第五章聚合酶链反应及其相关技术 PCR技术从Mullis最初建立到现在共约20多年时间,因为此技术具有高特异性、高敏感性和简便快捷等特点而备受人们广泛应用,许多新型的PCR技术或由PCR衍生的新技术正不断出现,使PCR技术由最初的单一技术体系逐步发展成为一系列的技术综合。PCR技术在体外快速特异地复制目的DNA序列,理论上能将极其微量的(pg DNA)目的基因在较短的时间内(通常1-3h)扩增达到纳克、微克甚至毫克级水平,使产物极易被检测。因此PCR技术目前已经成为人们获取目标基因的最常用的方法之一,Mullis因其杰出的贡献,于1993年获得了诺贝尔化学奖。 聚合酶链式反应(polymerase chain reaction,PCR) 是体外酶促扩增DNA或RNA序列的一种方法,它是一种不需要借助于分子克隆而可以在体外快速繁殖、扩增DNA的技术,它与分子克隆(molecular cloning)、DNA测序(DNA sequencing)一起构成了分子生物学的三大主流技术。在这三项技术中,PCR技术自1983年由美国Cetus公司Kary.Mullis提出并于两年后建立以来,得到了快速的发展,成为最常用的分子生物学技术之一。这项技术使人们能够在数小时内通过试管中的酶促反应将特定的DNA片断扩增数百万倍,给生命科学领域的研究手段带来了革命性的变化。由于PCR技术的实用性和极强的生命力,PCR技术成为生物科学研究的一种重要方法,极大地推动了分子生物学以及生物技术产业的发展。目前,一系列的PCR方法被设计开发出来,并广泛应用于基因扩增与分离、医疗诊断、基因突变与检测、分子进化研究、环境检测、法医鉴定等诸多领域。 5.1 PCR技术原理 聚合酶链式反应(PCR)是利用DNA片段旁侧两个短的单链引物,在体外快速扩增特异DNA片段的技术。它应用热稳定的聚合酶,通过双链DNA模板的热变性、引物退火和引物延伸的重复循环,DNA片段以指数方式增加了百万倍。从非常微量的DNA甚至单个细胞所含有的DNA起始,可产生ug量的PCR产物(见图5-1)。 在PCR反应中,欲扩增的目的DNA片段由两条单链组成。首先合成出与两条链两端互补的寡聚核苷酸引物(约含20个核苷酸),然后将起始反应液中的模板DNA加热而变性解链。在降低温度复性时,引物分别与A,B链两端的互补序列配对结合。最后,在DNA聚合酶的催化下,以目的DNA片段为模板进行聚合反应。第一轮反应结束后,目的DNA增加了一倍。新合成的DNA片段本身又能作为下一轮反应的模板。如此反复进行,DNA片段的数目可以呈

第2章 缩聚和逐步聚合

第二章 计算题 1、通过碱滴定法和红外光谱法,同时测得21.3 g 聚己二酰己二胺试样中含有2.50?10-3mol 羧基。 根据这一数据,计算得数均分子量为8520。计算时需作什么假定?如何通过实验来确定的可靠性?如该假定不可靠,怎样由实验来测定正确的值? 解:∑∑= i i n N m M , g m i 3.21=∑,852010 *5.23 .213 == -n M ,310*5.2=∑i N 上述计算时需假设:聚己二酰己二胺由二元胺和二元酸反应制得,每个大分子链平均只含一个羧基,且羧基数和胺基数相等。 可以通过测定大分子链端基的COOH 和NH 2摩尔数以及大分子的摩尔数来验证假设的可靠性,如果大分子的摩尔数等于COOH 和NH 2的一半时,就可假定此假设的可靠性。 用气相渗透压法可较准确地测定数均分子量,得到大分子的摩尔数。 碱滴定法测得羧基基团数、红外光谱法测得羟基基团数 2、羟基酸HO-(CH 2)4-COOH 进行线形缩聚,测得产物的质均分子量为18,400 g/mol -1,试计算:a. 羧基已经酯化的百分比 b. 数均聚合度 c. 结构单元数n X 解:已知100,184000==M M w 根据 p p X M M X w w w -+= = 110和得:p=0.989,故已酯化羧基百分数为98.9%。 9251,1=+=n n w M P M M 51.92100 9251 0===M M X n n 3、等摩尔己二胺和己二酸进行缩聚,反应程度p 为0.500、0.800、0.900、0.950、0.980、0.990、0.995,试求数均聚合度n X 、DP 和数均分子量n M ,并作n X -p 关系图。 4、等摩尔二元醇和二元酸经外加酸催化缩聚,试证明从开始到进行缩聚,反应程度p 为0.500、0.800、0.900、0.950、0.980、0.990、0.995,试求数均聚合度n X 、DP 和数均分子量n M ,并作n X -p 关系图。 解:在外加酸催化的聚酯合成反应中存在10+'=t c k X n

高分子化学 第五章共聚合习题

习题与思考题 1.按大分子的微结构,共聚物可分为哪几种类型?它们的结构有何差异?在这些共聚物名称中,对前后单体的位置有何规定。 2.试用动力学和统计理论两种方法推导二元共聚物组成微分方程,并用比例法导出F1-f1关系式。 试用动力学和几率两种方法推导二元共聚物组成微分方程,并用比例法导出F1-f1关系式。 3.当r1 = r2 = 1; r1 = r2 = 0; r1 0, r2 = 0及r1 r2 = 1等特殊情况下,d[M1]/d[M2]=f([M1]/[M2])及F1 = f(f1)的函数关系如何? 4.试讨论二元共聚物组成微分方程的适用范围。 5.试举例说明两种单体进行理想共聚、恒比共聚和交替共聚的必要条件。并画出相应的共聚物组成示意图。 6.示例画出下列各对竞聚率的共聚物组成曲线,并说明其特征。f1= 0.5时,低转化率阶段的F1约为多少? r1 0.01 0.01 0 1 0.2 r2 0.01 0 0 1 5 7.苯乙烯(M1)与丁二烯(M2)在5℃进行自由基乳液共聚合,其r1= 0.64, r2= 1.38。已知两单 体的均聚链增长速率常数分别49和25.1 L/mol.s。 (1)计算共聚时的增长反应速度常数 (2)比较两单体及两链自由基的反应活性的大小。 (3)作出此体系的F1-f1曲线。 (4)要制备组成较均一的共聚物,需采取什么措施? f=0.50,转化率c = 50%,求共聚物的平均组8.两单体的竞聚率r1 = 2.0,r2 = 0.5, 如0 1 成。

9.分子量为 72 、53 的两单体进行共聚,实验数据为: 1 共聚物中M1,Wt % 25.5 30.5 59.3 69.5 78.6 86.4 试用线性化法求竞聚率r1、r2。 10.为什么要对共聚物的组成进行控制?控制共聚物组成的方法有哪几种?各适用于什么情 况? 11.在生产AS树脂(丙烯腈和苯乙烯共聚物)时,丙烯腈(M1)和苯乙烯(M2)的投料重量比为 24:76。该体系的r1 = 0.04, r2 = 0.40。若采取混合单体一次投料法,并在高转化率下停止反应,请讨论所得共聚物组成的均匀性。 12.在自由基共聚反应中,苯乙烯单体的相对活性远大于醋酸乙烯酯。若在醋酸乙烯酯均聚 时加入少量苯乙烯,将会如何?为什么? 13.试述Q、e 概念,如何根据Q、e值来判断单体间的共聚倾向? 14.由Q、e值计算苯乙烯-丁二烯和苯乙烯-甲基丙烯酸甲酯的竞聚率。 (丁二烯的Q=2.39, e = -1.05; 甲基丙烯酸甲酯的Q=0.74,e =0.40)。 15.甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、马来酸酐、醋酸乙烯酯、丙烯腈等单体与丁二 烯共聚,试以交替倾向的次序排列,并说明原因。 16.分别用自由基、正离子和负离子型引发体系使苯乙烯(M1)和甲基丙烯酸甲酯(M2)共聚。 起始原料组成(f1)0=0.5,共聚物中F1的实测值列于下表,相应的曲线如图(5-11)所示 引发体系反应温度(℃) F1( mol % ) 光60 51 SnCl430 > 99 BPO 60 51 K (液氨中)-30 < 1 热130 51 Na(液氨中)-30 < 1 请回答下列问题

逐步聚合习题参考答案

逐步聚合习题参考答案

作者: 日期:

第二章缩聚与逐步聚合反应-习题参考答案 1名词解释:逐步聚合;缩合聚合;官能团等活性;线型缩聚;体型缩聚;凝胶点;转化 率;反应程度。 答: 逐步聚合一一单体转变成高分子是逐步进行的,即单体官能团间相互反应而逐步增长。 缩合聚合一一由带有两个或两个以上官能团的单体之间连续、重复进行的缩合反应。 官能团等活性一一在一定聚合度范围内,官能团活性与聚合物分子量大小无关。 线型缩聚——参加反应的单体都含有两个官能团, 反应中形成的大分子向两个方向增长, 得 到线型缩聚物的一类反应。 体型缩聚一一参加反应的单体中至少有一种单体含有两个以上的官能团, 且体系平均官能度 大于2,反应中大分子向三个方向增长,得到体型结构的聚合物的这类反应。 凝胶点一一开始出现凝胶瞬间的临界反应程度。 转化率一一参加反应的单体量占起始单体量的分数 反应程度一一参与反应的基团数占起始基团的分数。 3.由己二元酸和己二胺等摩尔合成尼龙一 6,6。已知聚合反应的平衡常数 K=432,如果要合 成聚合度在200的缩聚物,计算反应体系中的水含量应控制为多少? 解: 4?计算等摩尔的对苯二甲酸与乙二醇反应体系, 在下列反应程度时的平均聚合度和分子量。 0.500, 0.800, 0.900, 0.950, 0.995。 解: 1 一 等物质量条件下,有 X ,聚苯二甲酸乙二醇酯结构单元的分子量: M 0=192。 1 P 1 X n , M n M o X n ,因此各反应程度时的平均聚合度和分子量见下表: X n 将 X n =200, K=432代入此式可得: n w 答:反应体系中的水含量应控制为 K 432 X n 2 2002 0.0108 mol/L. 0.0108

第二章逐步聚合习题及答案

第二章逐步聚合习题 1、解释下列概念 ①反应程度和转化率 ②当量系数和过量分数 ③平衡缩聚和不平衡缩聚 ④均缩聚、混缩聚和共缩聚 ⑤线形缩聚和体型缩聚 ⑥平均官能度和凝胶点 ⑦管能团和官能度 ⑧热塑性树脂和热固性树脂 ⑨结构预聚物和无规预聚物 2、讨论下列缩聚反应环化的可能性。m=2 —10。 ① ②K:h H. - ' , '"II 3、写出并描述下列反应所形成的聚酯的结构,聚酯结构与反应物相对量有无关系。如有关系,请说明差别。 ①HO——R--COOH ②HOOC一—COOH + HO-R-OH ③HO—-R--COOH + HO-R—OH OH ④HO — —R—COOH + HO-R-OH + HO R " OH OH 4、等摩尔二元醇与二元酸在外加酸催化下进行缩聚,证明从P从0.98到0.99所需的时间与从开始到P=0.98所需的时间相近。 5、等摩尔二元酸与二元胺缩聚,平衡常数为1000,在封闭体系中反应,问反应程度和聚 合度能达到多少?如果羧基起始浓度为4mol/L,要使聚合度达到200,需将[H?。]降低到怎 样的程度? 6、尼龙-1010是根据1010盐中过量的癸二酸控制相对分子质量的。如果要求数均相对分子质量为 2X 104,反应程度为0.995,问配料时的当量系数和过量分数各是多少? 7、等摩尔二元醇和二元酸缩聚,另加1.5% ( mol)醋酸调节相对分子质量。P=0.995及0.999 时,聚酯的聚合度各为多少?加1% (mol)醋酸时,结果如何?(醋酸% ( mol )浓度以二元酸计) 8、等摩尔的二元酸和二元胺缩聚时,画出P=0.95, 0.99和0.995时的数均分子质量分布曲线和重均分子质量分布曲线,并计算数均聚合度和重均聚合度,比较二者的相对分子质量分布的宽度。 9、计算下列混合物的凝胶点,各物质的比例为摩尔比 a、邻苯二甲酸酐:甘油=3.0 : 2.0 b、邻苯二甲酸酐:甘油=1.50 : 0.98 c、邻苯二甲酸酐:甘油=4.0 : 1.0 d、邻苯二甲酸酐:甘油:乙二醇=1.50 : 0.99: 0.002

第5章共聚合反应习题参考答案

第五章共聚合反应—习题参考答案 1.无规、交替、嵌段和接枝共聚物的结构有何差异?命名时单体前后的位置有什么规定?答: 无规共聚物——共聚物分子链中两种单元无规排列,而且单体单元连续排列的几率不高。如:…M1M2M2M1M2M2M2M1M1M2M2M1M1M1M2M2… 交替共聚物——共聚物分子链上两种单元严格交替排列。如: …M1M2 M1M2M1M2… 嵌段共聚物——共聚物分子链由较长的M1链段和另一较长的M2链段通过化学键连接成大分子,每个链段由几百到几千个结构单元组成。如: …M1M1M1M1……M1M1 M2M2M2……M2M2 接枝共聚物——主链由单元M1组成,支链由另一单元M2组成。 ……M1M1M1M1M1M1…… M2M2M2M2… 无规共聚物名称中前一单体为主单体,后为第二单体。嵌段共聚物名称中的前后单体则代表单体聚合的次序。接枝共聚物中前单体M1为主链,后单体M2则为支链。 2.画出下列各对竞聚率的共聚物组成曲线。当f1=0.5时,在低转化率阶段的F2是多少? 答:

6.已知丙烯腈(M 1)与偏二氯乙烯共聚合时,r 1=0.91,r 2=0.37。试求:(1)作出F 1~f 1共聚物组成曲线;(2)由上述曲线确定恒比点的坐标;(3)根据公式计算恒比点的坐标;(4)原料单体中丙烯腈的质量分数为20%,给出瞬时共聚物中丙烯腈的质量比。 答: (1) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 F 1 f 1 (2)上述曲线与恒比对角线的交点即为恒比点,其坐标为(0.873, 0.873)

2教材习题的参考答案-第二章缩聚和逐步聚合.doc

2教材习题的参考答案-第二章缩聚和逐步聚合.doc

教材各章习题的参考答案 第二章缩聚和逐步聚合 思考题 3.己二酸于下列化合物反应,哪些能形成聚合物? a.乙醇 b.乙二醇 c.甘油 d.苯酐 e.己二胺 key:b c e 4.写并描述下列缩聚反应所形成的聚酯结构。b-d聚酯结构与反应物配比有无关系? 答: 与反应物配比有关系。 15.体形缩聚时有哪些基本条件?平均官能度如何计算? 答:首先体系应是多官能度体系,即f>2.然后进一步交联,从而生成体形聚合物。 平均官能度:若等基团数,则f=∑N if i∕∑N i 若两基团数不等,则f=2NAf A∕NA+NB 17.简述不饱和聚酯的配方原则和固化原理。 答:不饱和聚酯是主链中含有双键的聚酯,双键可与苯乙烯共聚而交联,用来生产玻璃纤维,增强塑料。其固化原理:其固话原理分两个阶段:一是预聚缩,制备分子量数若干的线性聚合物。二是玻璃纤维的粘结,成型和交联固化。 配方原则:如以对苯磺酸作催化剂,可令1.2mol丙二醇,0.67mol马来酸酐,0.33mol邻苯二甲酸酐。其中丙二醇过量可弥补挥发损失,并封锁两端。加甲苯或二甲苯作溶剂,帮助脱水,通氮或二氧化碳以防氧化变色。 18.比较合成涤纶聚酯的两条技术及其选用原则。说明涤纶聚合度的控制方法和分段聚合的原因。

计算题 1.通过碱滴定法和红外光谱法,同时测得21.3 g聚己二酰己二胺试样中含有 2.50 10-3mol羧基。根据这一数据,计算得数均分子量为8520。计算时需作什么假定?如何通过实验来确定的可靠性?如该假定不可靠,怎样由实验来测定正确的值? 解:,,, 上述计算时需假设:聚己二酰己二胺由二元胺和二元酸反应制得,每个大分子链平均只含一个羧基,且羧基数和胺基数相等。 可以通过测定大分子链端基的COOH和NH2摩尔数以及大分子的摩尔数来验证假设的可靠性,如果大分子的摩尔数等于COOH和NH2的一半时,就可假定此假设的可靠性。 用气相渗透压法可较准确地测定数均分子量,得到大分子的摩尔数。 碱滴定法测得羧基基团数、红外光谱法测得羟基基团数 2. 羟基酸HO-(CH2)4-COOH进行线形缩聚,测得产物的质均分子量为18,400 g/mol-1,试计算:a. 羧基已经醌化的百分比 b. 数均聚合度 c. 结构单元数 解:已知 根据得:p=0.989,故已酯化羧基百分数为98.9%。 3. 等摩尔己二胺和己二酸进行缩聚,反应程度p为0.500、0.800、0.900、0.950、0.980、0.990、0.995,试求数均聚合度、DP和数均分子量,并作-p关系图。 解:

高分子化学第二章 缩聚和逐步聚合(复习内容)

第二章缩聚与逐步聚合 名词解释 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 线形缩聚(Linear Poly-codensation):在聚合反应过程中,如用2-2 或 2 官能度体系的单体作原料,随着聚合度逐步增加,最后形成高分子的聚合反应。线型缩聚形成的聚合物为线形缩聚物,如涤纶、尼龙等。 体形缩聚(Tri-dimensional Poly-condensation):参加反应的单体,至少有一种单体含有两个以上的官能团,反应中形成的大分子向三个方向增长,得到体型结构的聚合物的这类反应。 官能度(Functionality):一分子聚合反应原料中能参与反应的官能团数称为官能度。 平均官能度(Aver-Functionality) :单体混合物中每一个分子平均带有的官能团数。即单体所带有的全部官能团数除以单体总数 反应程度(Extent of Reaction):参加反应的官能团数占起始官能团数的分率。 转化率(Conversion)参加反应的反应物(单体)与起始反应物(单体)的物质的量的比值即为转化率。 凝胶化现象(Gelation Phenomena) 凝胶点(Gel Point):体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。此时的反应程度叫凝胶点。 结构预聚物(Structural Pre-polymer):具有特定的活性端基或侧基的预聚物称为结构预聚物。结构预聚物往往是线形低聚物,它本身不能进一步聚合或交联。 问答题 1.讨论下列两组反应物进行缩聚或环化反应的可能性。(m=2-10) (1) H2N(CH2)m COOH (2) HO(CH2)2OH+HOOC(CH2)m COOH 解:(1)m=3、4时易形成环,其余主要进行缩聚反应,形成线性聚合物。 (2)该体系不易成环,主要生成线性聚合物。 2.解释下列名词 (1)均缩聚、混缩聚、共缩聚; (2)平衡缩聚和非平衡缩聚; (3)DP与X n;

第二章 逐步聚合反应

第二章逐步聚合反应 1.解释下列名词: (1)官能团等活性理论;(2)凝胶点;(3)反应程度和转化率;(4)平均官能度 2.现以等摩尔比的二元醇和二元酸为原料于某温度下进行封管均相聚合,试问该产品最终的Xn是多少?已知该温度下反应平衡常数为4。 3.将等摩尔比的己二胺和己二酸于220℃下进行缩聚反应,已知该温度下K为365。如想所得尼龙-66的数均聚合度为100,试问此时体系中残存小分子为多少? 4.由己二胺和己二酸合成聚酰胺,分子量约15000,转化率99.5%,若己二胺过量,试计算原料比。产物端基是什么? 5.单体HORCOOH进行均缩聚反应,若在反应中加入R’COOH为分子量控制剂,如在反应中不断地排除生成的水,试求欲达到Xn =600时的配料比应是多少? 6.等摩尔二元醇和二元酸经外加酸催化聚合,试证明p从0.98到0.99所需时间与从开始至p=0.98所需时间相等。 7.用羟基戊酸经缩聚得重均分子量为18400的聚羟基戊酯,请求出:(1)羟基的反应程度; (2)该聚酯的数均和重均分子量。 8.试应用Flory分布函数,从理论上计算在缩聚反应中未反应单体理论数量。(1)当p=0; (2)当p=0.5;(3)当p=1。 9.对苯二甲酸、乙二醇、丙三醇三种物料进行缩聚反应,若按以下情况配料:(1)对苯二甲酸:乙二醇:丙三醇=2:1:0.6;(2)对苯二甲酸:、丙三醇=1.5:1,试判断当反应程度为0.90时,它们是否会出现凝胶化?若还未出现,试计算缩聚反应的数均聚合度。10.苯酚和甲醛采用酸和碱催化聚合,固化方法有何不同? 11.关于环氧树脂请回答下列问题:(1)环氧树脂是什么?(2)室温固化用何固化剂?写出固化过程。(3)欲使1000克环氧树脂(环氧值0.2)固化,试计算乙二胺的用量。

第二章 逐步聚合测验题

第二章逐步聚合测验题 一.填空题 1. 缩聚反应通常有析出,所以结构单元分子量与单体分子量。 2.线型缩聚的关键问题是;体型缩聚的关键问题是。 3. 等当量的二元醇和二元酸进行缩聚反应,设体系中起始羧基和羟基数为N0,那么它等于,也等于反应时间为t时的酸和醇的,t时残留羧基或羟基数N等于当时的。 4. 影响缩聚物聚合度的因素有,,;逐步聚合的实施方法有,,,。 5.邻苯二甲酸酐和甘油的摩尔比为:,缩聚体系的平均官能度为;邻苯二甲酸酐与等物质量的甘油缩聚,体系的平均官能度为(精确到小数点后2位)。 6. 主链含—OCO—的聚合物一般称为________,含—NHCO—的聚合物称为________,而含—NHCOO—的则称为________。 7. 在进行线性缩聚时,单体的官能度一般是_______,而体型缩聚的单体的平均官能度是_________。 / 8. 计算体型缩聚的凝胶点有方程和统计公式。 9. 在缩聚反应中聚合的聚合度稳步上升,延长聚合反应时间其主要目的在于提高____,而不是提高____。 二.名词解释 平均官能度摩尔系数 三.选择题 1. 合成具有-NH-COO-特征基团的单体类型是() A. 二元酸+二元醇 B. 二元酸+二元胺 C. 二异氰酸酯+二元醇 D. 二元酸+ 一元醇 2. 对缩聚反应的特征说法错误的是( ) A、无特定活性种 B、不存在链引发、连增长、链终止等基元反应 ] C、转化率随时间明显提高 D、在反应过程中,聚合度稳步上升 3. 下列聚合物种按线型逐步聚合的聚合物是( ) A、环氧树脂 B、碱催化酚醛树脂 C、聚芳砜D醇酸树脂

4. m 为( )时,H 2N CH 2COOH m 进行缩聚反应易于环化反应。 A 、2 B 、3 C 、4 D 、5 5. 一个聚合反应中将反应程度从97%提高到98%需要0到97%同样多的时间,它应是( ) A 链式聚合反应 B 逐步聚合反应 C 开环聚合反应 D 界面聚合反应 6. 在开放体系中进行线型缩聚反应,为了得到最大聚合度的产品,应该( ) A 、选择平衡常数大的有机反应 ~ B 、选择适当高的温度和极高的真空,尽可能除去小分子副产物 C 、尽可能延长反应时间 D 、尽可能提高反应温度 7. 在缩聚反应中界面缩聚的最突出优点是( ) A.反应温度低 B.低转化率下获得高分子量聚合物 C.反应速度快 D.当量比要求严格 8. 工业上为了合成涤纶树脂(PET)可采用( )聚合方法。 A 熔融缩聚 B 界面缩聚 C 溶液缩聚 D 固相缩聚 9. 己二酸与下列 化合物反应,那些能形成聚合物 A 、乙醇 B 、乙二醇 C 、甘油 D 、苯胺 > 10. 所有缩聚反应所共有的是( )。 A 、逐步特性 B 、通过活性中心实现链增长 C 、引发速率很快 D 、快终止 11. 当w-羟基己酸进行均缩聚,反应程度为时,其聚合度为 A 、10 B 、50 C 、100 D 、500 12. 缩聚反应中,所有单体都是活性中心,其动力学特点是 A 、单体慢慢消失,产物相对分子量逐步增加 B 、单体很快消失,产物相对分子质量逐步增加 C 、单体逐步消失,产物相对分子质量很快增大 13. 凝胶效应现象就是( )。 . A 凝胶化 B 自动加速效应 C 凝固化 D 胶体化 四.判断题 1. 体型缩聚的产物具有可溶可熔性。 ( ) 2. 不饱和聚酯不是结构预聚物。( ) 3.聚对苯二甲酸乙二酯中不存在单体单元。( )

2教材习题的参考答案-第二章缩聚和逐步聚合.doc

教材各章习题的参考答案 第二章缩聚和逐步聚合 思考题 3.己二酸于下列化合物反应,哪些能形成聚合物? a.乙醇 b.乙二醇 c.甘油 d.苯酐 e.己二胺 key:b c e 4.写并描述下列缩聚反应所形成的聚酯结构。b-d聚酯结构与反应物配比有无关系? 答: 与反应物配比有关系。 15.体形缩聚时有哪些基本条件?平均官能度如何计算? 答:首先体系应是多官能度体系,即f>2.然后进一步交联,从而生成体形聚合物。 平均官能度:若等基团数,则f=∑N if i∕∑N i 若两基团数不等,则f=2NAf A∕NA+NB 17.简述不饱和聚酯的配方原则和固化原理。 答:不饱和聚酯是主链中含有双键的聚酯,双键可与苯乙烯共聚而交联,用来生产玻璃纤维,增强塑料。其固化原理:其固话原理分两个阶段:一是预聚缩,制备分子量数若干的线性聚合物。二是玻璃纤维的粘结,成型和交联固化。 配方原则:如以对苯磺酸作催化剂,可令1.2mol丙二醇,0.67mol马来酸酐,0.33mol邻苯二甲酸酐。其中丙二醇过量可弥补挥发损失,并封锁两端。加甲苯或二甲苯作溶剂,帮助脱水,通氮或二氧化碳以防氧化变色。 18.比较合成涤纶聚酯的两条技术及其选用原则。说明涤纶聚合度的控制方法和分段聚合的原因。 答:酯交换法:

分三步 1.甲酯化:对苯二甲酸与少过量甲醇反应,的对苯二甲酸二甲酯。 2.酯交换:对苯二甲酸二甲酯与乙二醇进行酯交换反应,形成聚酯低聚物。 3.终缩聚:使聚酯低酸物自缩聚或酯交换,借减压和高温,逐步提高聚合度。 直接酯化:对苯二甲酸与过量乙二醇在200c下先酯化成低聚合度的聚对苯二甲醇酯,而后在280c下终缩聚成高聚合度的最终聚酯产品。 控制方法: 间接酯化。甲酯化和酯交换阶段,并不考虑等基团数比。终缩聚阶段根据乙二醇的馏出量,自然调节两基团数比,逐步逼近等当量,达到预定聚合度。 间接酯化:前段预缩聚条件270c,2000-3300pa,后段缩聚条件:280-285c,60-130pa 分段聚合原因:能使副产物乙二醇不断流出,是对苯二甲酸乙二醇自缩聚或酯交换,逐步提高聚合度。 26.从原料配比,预聚物结构,预聚条件,固化特性等方面来比较碱催化和酸催化酚醛树脂。 答:碱催化酚醛树脂:要求醛过量,形成酚醛无规预聚物。 预聚条件:将苯酚,40%甲醛水溶液,氢氧化钠或氨等混合,回流1-2h。 固化特性:主要用作粘结剂。 酸催化酚醛预聚物:要求苯酚过量,形成结构预聚物 预聚条件,将熔融状态的苯酚加入反应釜内,加热到95c。先后加入草酸和甲醛水 溶液,在回流温度下反应1-2h。 固化特性:主要用于模塑粉。 第二章缩聚和逐步聚合 计算题 1.通过碱滴定法和红外光谱法,同时测得21.3 g聚己二酰己二胺试样中含有 2.50 10-3mol羧基。根据这一数据,计算得数均分子量为8520。计算时需作什么假定?如何通过实验来确定的可靠性?如该假定不可靠,怎样由实验来测定正确的值?

五章_逐步聚合反应(终稿)

第五章逐步聚合反应 5.1 学习目的 (1)熟悉线型缩聚反应平衡及相对分子质量控制与分布。 (2)熟悉缩聚反应机理及缩聚反应动力学。 (3)熟悉缩聚反应影响因素及获得高相对分子质量缩聚物的基本条件。 (4)熟悉体型缩聚反应特点、基本条件及凝胶点的计算。 (5)熟悉几种重要缩聚物如涤纶、尼龙、聚氨酯等的合成反应。 (6)了解其他缩聚反应。 5.2 内容提要 5.2.1 逐步聚合反应的基本概念 一、逐步聚合反应的一般特征 与连锁聚合反应相比,逐步聚合反应的一般特征如下:(1)逐步聚合反应是通过单体功能基之间的反应逐步进行的;(2)每一步反应的速率和活化能大致相同;(3)反应体系始终由单体和相对分子质量递增的一系列中间产物组成,单体和中间产物、以及任何中间产物两分子间都能发生反应;(4)聚合产物的相对分子质量是逐步增大的。 二、逐步聚合类型 逐步聚合反应(step-growth polymerization, step reaction polymerization)主要有缩聚反应和逐步加成聚合反应。 缩聚反应(condensation polymerization):带有两个或两个以上官能团的单体之间连续、重复进行的缩合反应,即缩掉小分子而进行的聚合。聚酰胺、聚酯、聚碳酸酯、有机硅树脂、醇酸树脂等都是重要的缩聚物。聚酰亚胺、梯形聚合物等耐高温聚合物也由缩聚而成。蛋白质、淀粉、纤维素、糊精、核酸等天然生物高分子也是通过缩聚反应合成。硅酸盐玻璃和聚磷酸盐可以看作无机缩聚物。 逐步加成聚合(step addition polymerization):单体分子通过反复加成,使分子间形成共价键,逐步生成高相对分子质量聚合物的过程,其聚合物形成的同时没有小分子析出。如,聚氨酯的合成。 逐步聚合反应的所有中间产物分子两端都带有可以继续进行缩合反应的官能团,而且都是相对稳定的。当某种单体所含有官能团的物质的量多于另一种单体时,聚合反应就无法再继续进行下去。 其他逐步聚合反应还有氧化偶联缩聚、自由基缩聚、分解缩聚、环化缩聚、开环缩聚、Diels-Alder反应等。比如Diels-Alder反应是指共轭双烯烃与另一个被吸电子基团活化的烯类或炔类化合物发生加成反应,生成环状聚合物的过程。 三、缩聚反应的分类 1. 按反应热力学分类 (1)平衡缩聚(或可逆缩聚):通常指平衡常数小于103的缩聚反应。如涤纶的生成反应。 (2)不平衡缩聚(或不可逆缩聚):通常指平衡常数大于103的缩聚反应。如大部分耐高温缩聚物的生成反应、二元酰氯和二元胺或二元醇的缩聚反应。 2. 按生成聚合物的结构分类

第二章缩聚和逐步聚合

第二章缩聚和逐步聚合 思考题简述逐步聚合和缩聚、缩合和缩聚、线形缩聚和体形缩聚、自缩聚和共缩聚的关系和区别。 解 (1)逐步聚合和缩聚逐步聚合反应中无活性中心,通过单体中不同官能团之间相互反应而逐步增长,每步反应的速率和活化能大致相同。 缩聚是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,缩聚物为主产物,同时还有低分子副产物产生,缩聚物和单体的元素组成并不相同。 逐步聚合和缩聚归属于不同的分类。按单体—聚合物组成结构变化来看,聚合反应可以分为缩聚、加聚和开环三大类。按聚合机理,聚合反应可以分成逐步聚合和连锁聚合两类。大部分缩聚属于逐步聚合机理,但两者不是同义词。 (2)缩合和缩聚缩合反应是指两个或两个以上有机分子相互作用后以共价键结合成一个分子,并常伴有失去小分子(如水、氯化氢、醇等)的反应。 缩聚反应是缩合聚合的简称,是指带有两个或两个以上官能团的单体间连续、重复进行的缩合反应,主产物为大分子,同时还有低分子副产物产生。 l-1、1-2、1-3等体系都有一种原料是单官能度,只能进行缩合反应,不能进行缩聚反应,缩合的结果,只能形成低分子化合物。醋酸与乙醇的酯化是典型的缩合反应,2-2、2-3等体系能进行缩聚反应,生成高分子。 (3)线形缩聚和体形缩聚根据生成的聚合物的结构进行分类,可以将缩聚反应分为线形缩聚和体形缩聚。 线形缩聚是指参加反应的单体含有两个官能团,形成的大分子向两个方向增长,得到线形缩聚物的反应,如涤纶聚酯、尼龙等。线形缩聚的首要条件是需要2-2或2官能度体系作原料。 体形缩聚是指参加反应的单体至少有一种含两个以上官能团,并且体系的平均官能度大于2,在一定条件下能够生成三维交联结构聚合物的缩聚反应。如采用2-3官能度体系(邻苯二甲酸酐和甘油)或2-4官能度体系(邻苯二甲酸酐和季戊四醇)聚合,除了按线形方向缩聚外,侧基也能缩聚,先形成支链,进一步形成体形结构。

相关主题
文本预览
相关文档 最新文档