当前位置:文档之家› 苯酚分子印迹微球的制备及吸附性能研究

苯酚分子印迹微球的制备及吸附性能研究

苯酚分子印迹微球的制备及吸附性能研究
苯酚分子印迹微球的制备及吸附性能研究

分子印迹技术

1.4.3 传统分子印迹技术 传统分子印迹聚合物的制备一般包括以下四个过程:(1) 按一定比例将功能单体与模板分子混合,使两者通过共价键或非共价键作用结合,形成主-客体配合物;(2) 加入合适的交联剂,在引发剂、热或光的引发下,使单体产生聚合反应,即可制得“捕获”模板分子的高交联度的刚性聚合物合物;(3) 将聚合物中的模板分子洗脱或解离,从而在聚合物内部留下大量与模板分子空间大小、形状结构完全一致的三维空穴,同时空穴内按一定顺序排列的功能基团能提供具有一定方向性、与模板分子作用位置相对应的作用位点;(4) 印迹聚合所得的产物均为大块物料,要经过粉碎、研磨及筛分去杂后得到粒度适合的印迹聚合物微粒。MIPs分子印迹的原理图如图1.5所示。 图1.5 分子印迹基本原理示意图 Fig 1.5 The sketch map of preparing MIPs 传统分子印迹聚合物的制备方法主要是包埋法,该方法存在以下问题:(1)粉碎过程可控性差,破坏部分印迹位点,造成大量印迹空穴损坏,经筛分后获得的合格粒子一般低于制备总量的50%,造成载药量低。(2)由于所制备的是高度交联的聚合物网络,对模板药物分子包埋过深、过紧,洗脱比较困难。(3)印迹位点分布不均一,位于印迹聚合物孔道壁上的,模板分子向其传质速率较快;而包埋于聚合物本体中的印迹空穴,受位阻影响,可接近性差,从而降低了印迹位点的利用率。并且,传统印迹聚合物的制备过程比较费时、复杂,不

利于该技术的推广及工业化。 1.4.4新型分子表面印迹技术 分子表面印迹技术是把具有识别位点的印迹层结合在基质表面的印迹方法。近年来,采用分子表面印迹技术来制备分子印迹聚合物越来越受到人们的重视。分子表面印迹聚合物能有效地克服传统印迹技术中印迹空穴包埋过深与过紧的现象、结合位点不均一、可接近性差、识别动力学慢和产物需要粉碎研磨等缺点。本课题组曾采用“接枝到”法或“接枝出”法,创建了一种“先接枝聚合后吸附再印迹”新型的分子表面印迹方法。该方法是先将与模板分子具有次价键力的功能大分子,接枝到硅胶(微米级)微粒表面,得到功能接枝微粒;再凭借模板分子与接枝微粒表面的功能大分子形成次价键力,饱和吸附模板分子;再使用两端具有双反应性基团的特殊交联剂使功能大分子交联,并实现模板分子的印迹;将模板分子除去,在硅胶微粒表面的接枝聚合物薄层中,就留下了大量与模板分子匹配的印迹空穴,获得了对模板分子具有特异识别选择性和高度亲和性的高性能印迹聚合物微粒。该方法制备的分子表面印迹聚合物已经广泛应用于生物代谢分子、生物碱、农药分子、氨基酸、稀土离子等的识别得到了非常满意的结果。 分离研究,都 在分子设计的基础上,本课题组又提出并建立了另一种新型的分子表面印迹方法。该方法是基于“表面引发接枝聚合”,以药物分子为模板分子在固体微粒表面单体的接枝聚合与药物分子的表面印迹同步进行,制得了5-氟尿嘧啶与甲硝唑两种药物分子表面印迹材料,用于结肠定位释放系统,实验结果显示具有良好的结肠定位效果。

磁性微球的生物医学进展

磁性微球的生物医学进展 1、磁性微球的制备 磁性微球的制备方法较多,不同类型的磁性微球制备方法不同。大致可分为物理法和化学法。物理法有喷雾干燥、热处理法和冷冻凝聚法。化学法有乳液聚合法、悬浮聚合法、分散聚合法、自组装法和生物合成法等。 1.1喷雾干燥法 喷雾干燥法是将磁流体分散在基体材料的溶液中,利用喷雾干燥制得磁性微球。王强斌等〔7〕将纳米磁流体分散在聚丙烯腈的N,N-二甲基甲酰胺(DMF)溶液中,混合均匀后进行喷雾,得到外形规整、粒径分布较窄、磁含量约15% 的聚丙烯腈磁性微球,得到的磁性微球可作为固定化酶的载体。 1.2热处理法 热处理法是将蛋白质分散在磁流体中,在超声激烈搅拌下加热,使蛋白质稳定,可得到蛋白质包覆的磁性微球。Jchatterjee等〔8〕采用此法得到了分散性良好的人血清白蛋白(HSA)磁性微球。将HSA加入到磁流体中,然后将混合液倒入棉子油中,先在低温(4℃)下高速超声搅拌,然后加热到130℃,同时保持高速的搅拌,持续一定时间,然后冷却洗涤。得到的磁性微球分散良好,稳定性较化学交联蛋白质得到的磁性微球更好。 1.3冷冻凝聚法 冷冻凝聚法是将磁流体分散在基体材料中,再加入液体石蜡,搅拌。低温冷却后加入有机溶剂搅拌、过滤、洗涤可得到包覆Fe3O4的磁性微球。张胜〔9〕等利用冷冻法制备了包裹超微Fe3O4和平阳霉素的明胶磁性微球。此微球具有较好的靶向性和缓释性。 1.4乳液聚合法 乳液聚合法是将磁流体分散在高分子单体中,加入乳化剂,高速搅拌剪切乳化。同时高分子单体在乳液滴中发生聚合反应,形成了磁性颗粒均匀分散的磁性高分子微球。谢钢〔10〕采用乳液聚合法制备了PS(聚苯乙烯)/Fe3O4复合微球,并研究了不同的分散稳定剂对所制备的复合磁性微球的影响。悬浮聚合和乳液聚合类似,将磁流体加入到高分子单体中,不加乳化剂的情况下,借助高速搅拌的作用将单体分散成小液滴,单体在小液滴中反应,得到磁性高分子微球。王胜林〔11〕等采用悬浮聚合法制备了聚苯乙烯磁性微球。将Fe3O4磁性粒子用一种复合分散剂进行表面处理后分散到苯乙烯中,从而形成苯乙烯磁流体,在磁流体中加入引发剂单体二乙烯基苯(DVB),然后将磁流体分散在水中,经过高速剪切

磁性壳聚糖微球的制备及其应用_杨晋青

现代食品科技 Modern Food Science and Technology 2008, Vol.24, No.10 1079 磁性壳聚糖微球的制备及其应用 杨晋青,叶盛权,郭祀远 (华南理工大学轻工与食品学院,广东广州 510640) 摘要:由新型的高分子材料制成的磁性壳聚糖微球具有很多优良的应用特性。本文着重综述磁性壳聚糖微球的制备方法和性能表征, 介绍其在生物医学,食品工程和废水处理方面的应用进展, 并展望其研究和开发的光明前景。 关键词:磁性壳聚糖微球;改性;医学;食品工程;废水处理 中图分类号:TQ333.99;文献标识码:A ;文章篇号:1673-9078(2008)10-1079-04 Review of Preparation and Application of Magnetic Chitosan Microspheres YANG Jin-qing, YE Sheng-quan, GUO Si-yuan (College of Light Industry & Food Sciences, South China University of Technology, Guangzhou 510640) Abstract: Magnetic chitosan microspheres made from novel polymer materials showed outstanding applied characteristics. In this paper, the preparation and characterization of magnetic chitosan microspheres were reviewed. The applications of magnetic chitosan microspheres in biomedical, food engineering and wastewater treatment were also introduced and their bright futures were prospected for further research and development. Key words: magnetic chitosan microspheres; modification; medicine; food engineering; wastewater treatment 新型的高分子微球材料因其具有很多优良特性为而被广为应用。如粒径小、表面积大、吸附性强,可通过共聚、表面改性赋予其多种功能性基团(如-OH 、-COOH 、-CHO 、-NH2、-SH 等),进而可结合各种物质,使高分子微球具有多种功能。对于磁性高分子微球,由于其具有磁响应性,在外加磁场的作用下可以很方便地分离、回收。因此,在许多领域有广阔的开发前景[1,2]。 壳聚糖(CTS)是自然界存在的唯一碱性多糖,可由蟹、虾壳中的甲壳素经脱乙酰化反应而制得。其资源丰富,安全无毒,具有独特的分子结构和易于化学修饰、生物可相容性和可再生性等功能。它的胺基极易形成四级胺正离子,有弱碱性阴离子交换作用。壳聚糖在酸性溶液中会溶解,稳定性差[3,4]。将壳聚糖进行交联制成磁性壳聚糖(MCS )微球[5,6],不但可提高其稳定性及机械强度,而且使其易与介质分离,利于广泛应用于医学、食品、化工等领域[7]。本文通过对磁性壳聚糖微球的制备方法和性能表征方法及其在生物医药,食品工程和废水处理方面应用的综述,介绍磁性 收稿日期:2008-04-27 基金项目:高等学校博士学科点专项科研基金资助项目(20050561014) 作者简介:杨晋青(1983-),硕士研究生,研究方向:糖类分离提纯新方法新技术 通讯作者:郭祀远,教授 壳聚糖微球有关领域的研究进展情况,并展望其发展 的前景。 1 磁性壳聚糖微球的制备及表征 1.1 乳化交联法 常用的磁性壳聚糖微球制备方法有乳化交联法[8]。将磁性Fe 3O 4粒子加到一定浓度的壳聚糖溶液中,经均质分散,再在适当的温度,pH 和搅拌条件下逐滴加入含有乳化剂的水相中,产生乳液,在常压下自由挥发或用真空抽提使溶剂挥发,通过洗涤、过滤和干燥等过程即可制得磁性壳聚糖微球[9,10]。 1.2 包埋法 1.2.1 磁性高分子微球的制备 运用机械搅拌、超声分散等方法将磁性粒子分散于高分子溶液中,通过雾化、絮凝、沉积、蒸发等过程得到内部包有磁性粒子的高分子微球,常用的包埋材料有壳聚糖、纤维素、尼龙、磷脂、聚酰胺、聚丙烯酰胺等。徐慧显利用葡聚糖制备了具有较好的单分散性磁性葡聚糖微球[11],董聿生采用反相悬浮包埋技术合成了多分散性的磁性葡聚糖微球[12]。 1.2.2 改性磁性壳聚糖微球的制备 以(NH 4)2Fe(SO 4)2·6H 2O 、NH 4Fe(SO 4)2·12H 2O 和壳聚糖为原料,经羟丙基化、胺基化,采用一步包埋法制备了一种新型的多胺基化磁性壳聚糖微球[13]。此方 DOI:10.13982/j.mfst.1673-9078.2008.10.005

分子印迹技术

分子印迹技术研究进展 摘要分子印迹技术是结合高分子化学、生物化学等学科发展起来的一门边缘学科。它对于研究酶的结构、认识受体-抗体作用机理及在分析化学等方面有重要的意义。本文从分子印迹聚合物的识别机理、分子印迹聚合制备条件和制备技术三个方面综述了分子印迹的研究进展,最后展望了分子印迹发展前景。 关键词:分子印迹聚合物;印迹分子;综述 40年代,Pauling。试图用锁匙理论解释免疫体系。虽然他的理论经后人的实践证明是错误的,但是在他的这种错误的理论中仍有两点是正确的:(1)生物体所释放的物质与外来物质有相应的结合位点;(2)生物体所释放的物质与外来物质在空间上相互匹配。正是基于这两点假设,化学家们发展了一项有效的分析技术称为分子印迹技术(molecularimprinting, MIP),在国内也有人把它称为“分子烙印”。1949年,Dickey首先提出了“分子印迹”这一概念,但在很长一段时间内没有引起人们的重视。直到1972年由Wulff研究小组首次报道了人工合成的有机分子印迹聚合物之后,这项技术才逐渐人们所认识,并于近10年内得到了飞速的发展。 MIPs具有三个特性: (ⅰ)预定性,可根据不同目的制备相应的MIPs; (ⅱ)识别性,MIPs是依据模板定做的,它具有与模板分子的立体结构和官能团相符的孔穴,所以选择性地识别模板分子;(ⅲ)实用性,它可以与天然的生物识别系统如酶与底物、抗原与抗体等相媲美,具有抗恶劣环境、稳定性高和使用寿命长等优点。二十多年来,在固相萃取、膜分离技术、异构体的分离等方面获得广泛研究,展现了良好应用前景。本文综述了MIPs的识别机理、制备技术条件及应用方面新进展. 1.分子印迹技术的基本概念和原理 分子印迹技术是指为获得在空间结构和结合位点上与某一分子(模板分子)完全匹配的聚合物的实验制备技术。它是通过以下方法实现的:(1)首先以具有适当功能基的功

(完整word版)分子印迹技术-1

分子印迹技术 分子印迹,又称分子烙印(molecular imprinting),属超分子化学范畴,是源于高分子化学,生物化学,材料科学等学科的一门交叉学科。分子印迹技术(molecular imprinting technique, MIT)是指制备对某一特定的目标分子(模板分子,印迹分子或烙印分子)具有特异选择性的聚合物的过程。它可以被形象地描绘为制造识别“分子钥匙”的“人工锁”的技术。 分子识别在生物进化中起着特别重要的作用,是从分子水平研究生物现象的重要化学概念,已成为当今研究的热点课题之一。选择性是分子识别的重要特征。人们利用一些天然花合屋如环糊精,或合成化合物如冠醚,杯芳烃和金刚烷等模拟生物体系进行分子识别研究,取得了一些可惜的进展,一定意义上构成了分子印迹技术的雏形。 分子印迹技术的出现直接来源于免疫学的发展,早在20世纪30年代,Breinl,Haurowitz和Mudd就相继提出了一种当抗体侵入时生物体产生抗体的理论。后来在20世纪40年代,由著名诺贝尔奖获得者Pauling对上述理论做了进一步的阐述,并提出了以抗原为模板来合成抗体的理论。该理论认为:抗原物质进入机体后,蛋白质或多肽链以抗原为模板进行分子自组装和折叠形成抗体。虽然Pauling的理论被后来的“克隆选择理论”所推翻,但是在他的理论中仍有两点具有一定的合理性,也为分子印迹的发展奠定了一定的理论基础,同时激发了人们以抗原或待测物为模板合成抗体模拟物的设想;(1)生物体所释放的物质与外来物质在空间上相互匹配。 1949年,Dickey首先提出了“专一性吸附”这一概念,实际上可以视为“分子印迹”的萌芽,但在很长一段时间内没有引起人们足够的重视。直到1972年由德国Heinrich Heine大学的Wulff研究小组首次报道了人工合成分子印迹聚合物之后,这项技术才逐步为人们所认识。特别是1993年瑞典Lund大学的Mosbach等在《Nature》上发表有关茶碱分子印迹聚合物(molecularly imprinted polymers,MIPs)的研究报道后,分子印迹技术得到了蓬勃的发展。迄今,在分子印迹技术的作用机理,分子印迹聚合物制备方法以及分子印迹技术和分子印迹聚合物在各个领域的应用研究都取得了很大的进展,尤其是分析化学方面的应用更是令人瞩目。分子印迹技术的应用研究所涉及的领域非常宽泛,包括分离纯花,

四种分子杂交的原理及方法

Southern杂交 基本概念及原理:Southern印迹杂交(Southern blot)是1975年由英国人southern创建,是研究DNA图谱的基本技术,在遗传病诊断、DNA图谱分析及PCR产物分析等方面有重要价值。 Southern印迹杂交是进行基因组DNA特定序列定位的通用方法。一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA 片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量。 Southern印迹杂交技术是分子生物学领域中最常用的具体方法之一。其基本原理是:具有一定同源性的两条核酸单链在一定的条件下,可按碱基互补的原则形成双链,此杂交过程是高度特异的。由于核酸分子的高度特异性及检测方法的灵敏性,综合凝胶电泳和核酸内切限制酶分析的结果,便可绘制出DNA分子的限制图谱。但为了进一步构建出DNA分子的遗传图,或进行目的基因序列的测定以满足基因克隆的特殊要求,还必须掌握DNA分子中基因编码区的大小和位置。有关这类数据资料可应用Southern 印迹杂交技术获得。 Southern印迹杂交技术包括两个主要过程:一是将待测定核酸分子通过一定的方法转移并结合到一定的固相支持物(硝酸纤维素膜或尼龙膜)上,即印迹(blotting);二是固定于膜上的核酸同位素标记的探针在一定的温度和离子强度下退火,即分子杂交过程。该技术是1975年英国爱丁堡大学的E.M.Southern首创的,Southern印迹杂交故因此而得名。 早期的Southern印迹是将凝胶中的DNA变性后,经毛细管的虹吸作用,转移到硝酸纤维膜上。印迹方法如电转法、真空转移法;滤膜发展了尼龙膜、化学活化膜(如APT、ABM纤维素膜)等。利用Southern印迹法可进行克隆基因的酶切、图谱分析、基因组中某一基因的定性及定量分析、基因突变分析及限制性片断长度多态性分析(RFLP)等。 下面以哺乳动物基因组DNA为例,介绍Southern印迹杂交的基本步骤。 步骤:一、待测核酸样品的制备 (一)制备待测DNA 基因组DNA是从动物组织(或)细胞制备。1.采用适当的化学试剂裂解细胞,或者用组织匀浆器研磨破碎组织中的细胞;2.用蛋白酶和RNA酶消化大部分蛋白质和RNA;3.用有机试剂(酚/氯仿)抽提方法去除蛋白质。 (二)DNA限制酶消化 基因组DNA很长,需要将其切割成大小不同的片段之后才能用于杂交分析,通常用限制酶消化DNA。一般选择一种限制酶来切割DNA分子,但有时为了某些特殊的目的,分别用不同的限制酶消化基因组DNA。切割DNA的条件可根据不同目的设定,有时可采用部分和充分消化相结合的方法获得一些具有交叉顺序的DNA片段。消化DNA 后,加入EDTA,65℃加热灭活限制酶,样品即可直接进行电泳分离,必要时可进行乙醇沉淀,浓缩DNA样品后再进行电泳分离。

磁性高分子微球的制备及应用

作者简介:吴颉,1978年生,硕士研究生,研究方向为高分子材料化学。 开发与应用 磁性高分子微球的制备及应用 吴 颉 王 君 景晓燕 张密林 (哈尔滨工程大学化学工程系,哈尔滨 150001) 摘 要  本文对新型功能材料磁性高分子微球的组成、制备方法、应用及其发展前景进行了 简要介绍。 关键词 磁性高分子微球,磁性载体,固定化酶 The preparation and utilization of magnetic microspheres Wu Jie Wang J un Jing Xiaoyan Zhang Milin (Department of Chemical Engineering ,Harbin Engineering University ,Harbin 150001)Abstract The composition ,preparation ,application and development prospect of magnetic microspheres are re 2 viewed in this article 1 K ey w ords magnetic microspheres ,magnetic carrier ,immobilized enzyme 磁性高分子微球是最近发展起来的一种新型功 能高分子材料。它兼具磁性粒子和高分子粒子的特性,既可方便地从介质中分离,又可对其表面进行修饰从而赋予其表面多种功能团。因为其具有优异的特性,得以广泛地应用于精细化工、生物医学、生物工程学、细胞学等诸多领域。近年来适应不同要求的磁性高分子微球已成为一个新的研究热点。本文就磁性高分子微球的制备及应用作简要介绍。 1 磁性高分子微球的制备 111 组成材料 目前制备的磁性高分子微球主要有核-壳式结构和壳-壳-核结构。核-壳式结构中,核既可为 磁性材料,也可由聚合物组成,壳则相应为聚合物或无机物。通过单体共聚可以在磁性微球表面载上一定的功能团,实现磁性微球的表面功能化。如果单体共聚反应困难或表面无功能团,则可通过功能团 的转化得到所需的功能团。 制备磁性微球通常应用的磁性物质有:纯铁粉、羰基铁、磁铁矿、正铁酸盐、铁钴合金等,尤以Fe 3O 4磁流体居多。与磁性材料结合的高分子材料中天然高分子材料有壳聚糖、明胶、纤维素等,合成高分子材料最常用的是聚丙烯酰胺(PAM )和聚乙烯醇(PVA )。其中天然高分子材料因具有价廉易得、生物相容性好、可被生物降解等优点,得到了广泛的研究和应用。112 制备方法 磁性高分子微球的制备方法主要有包埋法、单体聚合法、化学转化法、生物合成法等。11211 包埋法 包埋法是运用机械搅拌、超声分散等方法使磁性粒子均匀悬浮于高分子溶液中,通过雾化、絮凝、沉积、蒸发等手段制得磁性高分子微球。磁性粒子表面与亲水性高分子之间存在一定的亲和力,所以 第30卷第8期 化工新型材料 Vol 130No 182002年8月 N EW CHEMICAL MA TERIAL S Aug.2002

分子印迹技术的原理与研究进展

分子印迹技术的原理与研究进展 (08生微(1)班雷丽文 080548011) 摘要分子印迹是制备具有分子特异识别功能聚合物的一种技术,近年来,这项技术取得了重大的突破和进展,影响到社会多方面的领域。本文介绍了分子印迹技术的基本原理,综述了该技术在环境领域、农药残留检测应用、食品安全检测、药学应用的研究进展。 关键词分子印迹技术,分子印迹聚合物,基本原理,研究进展 1 前言 分子印迹技术是二十世纪八十年代迅速发展起来的一种化学分析技术,属于泛分子化学研究范畴,通常被人们描述为创造与识别“分子锁匙”的人工“锁”技术[1]。分子印迹技术也叫分子模板技术,最初出现源于20世纪40年代的免疫学[1]。分子印迹聚合物以其通用性和惊人的立体专一识别性,越来越受到人们的青睐。近年来,该技术已广泛应用于色谱分离、抗体或受体模拟、生物传感器以及生物酶模拟和催化合成等诸多领域,并由此使其成为化学和生物学交叉的新兴领域之一,得到世界注目并迅速发展。 2 分子印迹技术的基本原理 分子印迹技术是将要分离的目标分子作为模板分子,将它与交联剂在聚合物单体溶液中进行聚合制备得到单体、模板分子复合物,然后通过物理或化学手段除去模板分子,便得到“印迹”下目标分子的空间结构的分子印迹聚合物(MIP) ,在这种聚合物中形成了与模板分子在空间和结合位点上相匹配的具有多重作用位点的空穴,这样的空穴对模板分子具有选择性[11]。 目前,根据印迹分子与分子印迹聚合物在聚合过程中相互作用的机理不同,分子印迹技术分为两种基本类型: (1) 共价法(预组织法,preorganization),主要由Wulff 及其同事创立。在此方法中,印迹分子先通过共价键与单体结合,然后交联聚合,聚合后再通过化学途径将共价键断裂而去除印迹分子[1]。使用的共价结合作用的物质包括硼酸酯、席夫碱、缩醛酮、酯和螯合物等[14]。其中最具代表性的是硼酸酯,其优点是能够生成相当稳定的三角形的硼酸酯,而在碱性水溶液中或在有氮(NH3、哌啶) 存在下则生成四角形的硼酸酯[1]。采用席夫碱的共价键作用也进行了广泛的研究。由于共价键作用力较强,在印迹分子自组装或识别过程中结合和解离速度较慢,难以达到热力学平衡,不适于快速识别,而且识别水平与生物识别相差甚远[13]。因此,共价法发展较为缓慢。

免疫磁性微球的制备和应用

免疫磁性微球(Immunomagnctic beads,IMB)是免疫学和磁载体技术结合而发展起来的一类新型材料。IMB是包被有单克隆抗体的磁性微球,可与含有相应抗原的靶物质特异性地结合形成新的复合物。通过磁场时,这种复合物可被滞留,与其它组分相分离,该过程称为免疫磁性分离法(Immunomagnctic Separation)。免疫磁性分离简便易行,分离纯度高,保留靶物质活性,且高效、快速、低毒,可广泛应用于细胞分离和提纯、免疫检测、核酸分析和基因工程、作靶向释药的载体等领域。 磁性微球由载体微球和配基结合而成。理想的磁性微球为均匀的球形、具有超顺磁性及保护性壳的粒子。 一、磁性微球性能介绍 1、磁性材料 γ-Fe2O4、Me-Fe2O4(Me = Co,Mn,Ni)、Fe3O4、Ni、Co、Fe、Fe-Co和Ni-Fe合金等,目前被研究最多且应用最广泛的是铁及其氧化物(Fe、Fe2O4和Fe3O4等)。 2、高分子材料 聚乙烯亚胺、聚乙烯醇、多糖(纤维素、琼脂糖、葡聚糖、壳聚糖等)和牛血清白蛋白等。表面常带有化学功能的基团,如-OH、-NH2、-COOH和-CONO2等,使得磁性微载体就几乎可以偶联任何具有生物活性的蛋白。 3、功能配基 配基必须具有生物专一性的特点,而且载体和微球与配基结合后不影响或改变配基原有的生物学特性,保证微球的特殊识别功能。 磁性高分子微球决定了免疫磁性微球的大小和形状。Hirschein得到外加磁场作用力与磁性微球的关系为:

F=(Xv - Xv0)VH (dH/dX) 其中F为外加磁场作用力;Xv为磁性微球的磁化率;Xv0为介质的磁化率;H为外加磁场;V为磁性微球的体积;dH/dX为磁场强度。磁性粒子在磁场中受的力F与粒子的大小成正比。当粒子直径D>10μm时,能在弱磁场下分离,容易沉淀,吸附生物分子的量也少;在直径D<0.03μm时,粒子可以稳定分散在溶液中,分离需要很大的磁场强度。选用的粒径范围应根据分离物系的特点确定。F还与磁性微球的磁化率有关,微球的磁化率直接决定于作为磁核的磁粉的组成及大小,常用的缺氧化物,当其结构的晶体小于30nm时,成为超顺磁材料,当晶体大于30nm时,成为铁磁性。大比表面和高分散稳定性:随着微球的细化,其粒径达到纳米级时,其比表面激增,微球表面官能团密度及选择性吸附能力变大,达到吸附平衡的时间大大缩短,粒子的分散稳定性也大大提高。 4、软磁效应 在外加磁场作用下软磁性高分子微球可产生磁性,并做定向移动,磁场去出后磁性消失,由此可方便地进行分离和磁性导向。 5、生物相容性 纳米磁性微球与多数生物高分子如多聚糖、蛋白质等具有良好的生物相容性。在生物工程,特别是在生物医学领域应用,具有良好的生物相容性是非常重要的。 6、功能基特性 磁性微球表面功能化的基团能与生物高分子的多种活性基团如-OH、-COOH、-NH2共价连接,可在其表面稳定地固定生物活性物质(如抗体、抗原、受体、酶、核酸和药物等)。 由于纳米磁性高分子微球具有以上特性,可根据不同需要,通过共聚,表面改性,赋予其表面多种特定的反应性功能基,进而结合各种功能物质,广泛用于有机合成载体、亲和色谱填料、细胞的标记与分

分子印迹技术

分子印迹技术(molecular imprinting technology,MIT)是20世纪末出现的一种高选择性分离技术,这种技术的基本思想是源于人们对抗体-抗原专一性的认识,利用具有分子识别能力的聚合物材料——分子印迹聚合物(molecule imprinting polymer,MIP)来分离、筛选、纯化化合物的一种仿生技术。因为制备的材料有着极高的选择性及卓越的分子识别性能,很快在固相萃取、人工酶学、手性拆分、生物传感器、不对称催化等方面得到了广泛的应用。笔者现主要对MIT在中药提取分离中的应用作一概述。 1 分子印迹技术基本原理及聚合物的制备 1.1 基本原理 MIT是选用能与印迹分子产生特定相互作用的功能性单体,通过共价或非共价作用在溶剂中形成印迹分子-功能单体复合物,加入交联剂,在引发剂的引发下与带有特殊官能团的功能单体进行光或热的聚合,形成三维交联的聚合物网络,然后,用合适的溶剂除去印迹分子,在聚合物网络中形成空间和化学功能与印迹分子相匹配的空穴。这种空穴与印迹分子结构完全一样,可对印迹分子或与之结构相似的分子实现特异性的识别。 1.2 分子印迹聚合物的制备 分子印迹聚合物的制备过程可分为3步:第一步是印迹,将印迹分子和功能单体按比例混合,使其存在一定的分子间作用力;第二步是聚合,加交联剂,使复合物通过聚合反应形成聚合物;第三步是去除印迹分子,反复洗脱水解,使其形成具有一定空穴的分子印迹聚合物。根据功能单体和印迹分子间作用力的差异,MIP可分为以下3类。 1.2.1 共价键法 也称预先组织法。印迹分子与功能单体通过可逆的共价键结合,加入交联剂共聚后,印迹分子通过化学方法从聚合物上断开,再用极性溶剂将印迹分子洗脱下来,使其形成具有高密度空腔的分子印迹聚合物。其主要的反应类型有形成硼酸酯、西佛碱、缩醛(酮)、酯等。共价键法的优点是空间位置固定,选择性高,峰展宽和脱尾少,常用于诸如糖类、氨基酸类、芳基酮类等多种化合物的特定性识别。由于共价键比较稳定,因而会生成较多的键合位点,印迹效率要高于非共价键印迹法。其缺点是功能单体选择有限,使模板限制较大且难以除去。因此,在选择模板时共价键键能必须适当,否则会使在识别过程中结合与解离速度偏慢,难以达到热力学平衡。 1.2.2 非共价键法

分子印迹化合物的研究与进展

分子印迹化合物的研究与进展 发表时间:2019-12-27T15:13:36.137Z 来源:《知识-力量》2019年12月57期作者:李荣康吴一鸣王小双[导读] 分子印迹技术(MIT)是一种有效的在高度交联,刚性的聚合物母体中引入特定分子结合位点的技术,利用分子印迹技术制备的高分子材料叫做分子印迹聚合物(MIP)。如今,这项技术已经有了较为成熟的发展,这类聚合物具备优秀的可识别性、物理化学稳定性,目前广泛应用在色谱分离、固相萃取、催化、生物传感器等领域。在此对分子印迹技术的基本原理及应用现状,并且基于文献基础对未来 研究方向做出展望。 (江苏大学,江苏镇江 212013) 摘要:分子印迹技术(MIT)是一种有效的在高度交联,刚性的聚合物母体中引入特定分子结合位点的技术,利用分子印迹技术制备的高分子材料叫做分子印迹聚合物(MIP)。如今,这项技术已经有了较为成熟的发展,这类聚合物具备优秀的可识别性、物理化学稳定性,目前广泛应用在色谱分离、固相萃取、催化、生物传感器等领域。在此对分子印迹技术的基本原理及应用现状,并且基于文献基础对未来研究方向做出展望。 关键词:分子印迹技术;聚合物;研究与发展 引言 分子从多种多样的物质中识别和结合特定分子的能力是受人们关注的生物学特征之一。这种能力赋予了人体信号调节、催化、免疫和物质运输等各种生理机能。随着技术的成熟,关于酶、抗体等是如在体内进行特定识别的问题,吸引了众多研究人员的关注,科学家们开始尝试各种方法试图研究并且合成能模仿其功能的材料,通过化学合成具有特征结构域的生物功能材料来复制和呈现生物体特异识别功能,以此为切入点研究其作用机制,分子印迹聚合物便是其中一种极具代表性的仿生功能材料,在生物传感器、生物调节器、合成酶等许多领域的应用已经有了客观的研究进展。 分子印迹技术(Molecular Imprinting Technique or Technology,MIT)是一种通过模拟自然界中“抗原-抗体”分子识别作用的仿生分子识别技术[1~3]。该技术利用化学交联反应将模板分子与功能单体通过分子间相互作用生成稳定的聚合物,除去模板分子后生成分子印迹聚合物。MIP保留有与原模板分子大小形状完全匹配的结合位点和立体空穴[4],这样的结构就像锁与钥匙,能够对模板分子表现出特异的选择性和识别性。 1分子印迹技术的分类 按照功能单体与目标分子官能团之间不同的作用形式,可将MIT最基本的技术方法分为:共价法、非共价法以及半共价法三类[5]。 共价法也可称之为预组织法,这种方法是利用功能单体与目标分子之间共价键相互作用结合的方式,首先加入交联剂,当形成聚合物之后,再将共价键断裂出去目标分子。此类聚合物的制备以及分子识别过程的关键因素是功能单体与目标分子之间的可逆共价键的相互转化。因为共价法制备印迹聚合物的方法过于复杂导致难以成功,如今并没有广泛的应用[6]。 非共价法又名自组织法。此方法的原理为:首先,功能单体与目标分子之间依靠较弱的非共价键、氢键、疏水作用、静电等作用进行自组织,形成带有多重作用位点的分子复合物,之后经过交联剂处理,除去目标分子,得到分子印迹聚合物[7]。此方法相对简便,在实际应用比较广泛。 半共价法是介于共价法与非共价法中间的一种方法,它结合了共价法和非共价法的特点。简单的说即在制备印迹聚合物时功能单体和目标分子以共价键的方式结合,在洗脱目标分子之后,其所形成的分子印迹聚合物则是以非共价作用来识别目标分子[8]。 2分子印迹技术的应用 2.1分子印迹聚合物用于从食品基质中提取有害物质 近年来,食品安全已经逐渐成为人们关注的焦点,发展快速、高效针对有害物质残留的检测技术成为当前解决食品安全问题的关键。分子印迹聚合物作为一种能够特异性识别其对应分子的高分子材料吸附剂,具有预定性、较强识别性和较高稳定性的优点[9],MIPs以其优良的性能被广泛应用于食品领域。目前主要包括对食品中药物残留、非法添加物、环境污染物等的分离和纯化检验。 MIPs的主要制备方法有沉淀聚合,本体聚合,原位聚合,原子转移自由基聚合以及表面印迹聚合。主要采用固相萃取(SPE)的方法进行检测[10]。固相萃取技术即根据样品在溶剂及吸附剂间的不同分配,利用吸附剂将液体样品中的目标化合物吸附,与样品基质及干扰化合物分离,再用洗脱液洗脱,以分离、富集或者纯化目标化合物。通过沉淀聚合制备用于从废水中提取6种酚类化合物的 MIPs 吸附剂,得到的多模板 MIPs(平均粒径4μm) 用于填充柱SPE,对其他结构类似物化合物也有一定的选择性。固相萃取技术由于具有使用较少有机溶剂,可批量处理样品,耐极端环境、高选择性、制备简单、有机溶剂及水溶液中均可使用等优点.已被广泛应用于农残检测、食品分析中。将分子印迹技术和固相萃取技术结合起来,充分利用了二者的优势。总体而言,预计今后将开发大量材料均匀性好和孔隙率(总表面积、孔隙宽度和体积)高的新型复合MIPs 吸附剂,并且着力提高 MIPs 的可重复使用性和批次重现性,增强其可扩展性和适应性,便于供大规模生产和实验室使用[11]。 结语 本文对分子印迹的制备,应用现状做出了论述,随着分子印迹技术研究的不断发展,它的制备将会越来越简便,分子印迹聚合物的选择性也更加完善。新型聚合方法的研究也可大大提高分子印迹聚合物的理化性质。而超高效液相色谱法的普及,也为分子印迹技术的发展提供了更广阔的应用领域。分子印迹技术有望成为多组分分离及衡量组分富集的常规方法,并应用更多标准物质的定值工作。更多的应用于我们的食品安全,医疗疗健康等生活领域。 参考文献 [1]Byuns HS,YounbYN,Yunc YH.Sep Purif Technol,2014,74(1):144~153. [2]Cameron A,Hakan SA,Lars IA.JMol Recongni,2006,19(2):106~180. [3]Porkodi K,Carla M,Ana F.JChemTechnol Biotechnol,2015,90( 9):1552~1564. [4]韦寿莲,刘玲,黎京华.分析化学,2015,43(1):105~109

分子印迹技术及其研究进展

分子印迹技术及其研究进展 Malikullidin iz kaldurux tehnikisi wa uning tarakkiyati 分子印迹技术 近年来分子印迹学作为一门新兴的科学门类得到巨大的发展。分子印迹技术是 一种模拟抗体- 抗原相互作用的人工生物模板技术。它可为人们提供具有期望结构和性质的分子组合体,因此,分子印迹技术已成为当今化学研究领域的热点课题之一。分子印迹的出现源于免疫学,早在20世纪40年代由诺贝尔奖获得者Pauling 根据抗体与抗原相互作用时空穴匹配的“锁匙”现象,提出了以抗原为模板来合成抗体的理论。直到1972年德国科学家Wulff [18]研究小组首次成功制备出分子印迹聚合物,使这方面的研究得到了飞速的发展。1993年Mosbach[19]研究小组在美国《自然杂志》(《Nature》)上发表有关分子印迹聚合物的报道,更加速了分子印迹在生物传感器[20-24]、人工抗体模拟[25]及色谱固定相[26-30]分离等方面的发展,并由此使其成为化学和生物学交叉的新兴领域之一,得到了世界注目并迅速发展。分子印迹技术的应用研究所涉及的领域非常广泛,包括环境、医药、食品、 军事等。 1.分子印迹技术的基本原理及特点 分子印迹聚合物是具有特定功能基团以及孔穴大小和形状的新型高分子材料。是具有高度交联的结构,稳定性好,能够在高温、高压、有机溶剂以及耐酸碱的分子识别材料。它的制备是通过以下方法实现的:首先用功能单体(functional monomer)(funkissial tana)和模板分子(template)(izi kaldurlidigan malikulla)以共价键或非共价键形成复合物,再加入适当的交联剂 (cross-linker)(tutaxturguqi)和引发剂在加热、紫外光或其它射线照射的条件下聚合, 从而使模板分子在空间固定下来;最后通过一定的方法把模板分子洗脱,将模板分子从聚合物中除去, 这样就在聚合物中留下一个与模板分子在空间结构上完

磁性高分子微球

知识介绍 基金项目:航空基金资助项目(99G 53074); 作者简介:谢钢(1975— ),男,重庆市人,博士研究生,主要从事磁性功能材料方面的研究。磁性高分子微球 谢 钢1,张秋禹1,李铁虎2 (11西北工业大学化学工程系,西安 710072; 21西北工业大学材料科学与工程系,西安 710072) 摘要:对磁性高分子微球的研究现状进行了综述,详细探讨了目前常用的各种合成制备方法, 并对各种方法的优缺点进行了分析。在此基础上,对磁性高分子微球在细胞分离、有机合成、环境Π 食品微生物检测等领域的最新应用进展及存在的问题进行了分析,指出了该领域今后的研究方向。 关键词:磁性高分子微球;制备;细胞分离;有机合成;微生物检测 磁性高分子微球是指通过适当的方法使有机高分子与无机磁性物质结合起来形成的具有一定磁性及特殊结构的微球。因磁性高分子微球同时兼具高分子微球的众多特性和磁响应性,不但能通过共聚及表面改性等方法赋予其表面功能基(如—OH 、—C OOH 、—CH O 、—NH 2、—SH 等),还能在外加磁场下方便迅速地分离,因此自70年代以来,磁性高分子微球作为一种新型的功能材料,在磁性材料、生物医学、细胞学和生物工程、分离工程,以及隐身技术等诸多领域显示出强大的生命力。 目前有关磁性高分子微球的研究工作主要集中在制备、表征和应用几个方面,也有少量有关磁 性微球宏观物理性能的研究[1,2]。其中有关磁性高分子微球的分类、早期的一些应用等已有较详细 的综述[3~5],本文主要就磁性高分子微球的合成制备方法、研究发展状况及所存在的问题做一介绍。 1 制备方法的分类及研究现状 就目前的研究现状来看,磁性高分子微球按结构可分为三类:一是核为磁性材料,壳为聚合物的核/壳式结构,该类微球研究得最多;二是以高分子材料为核,磁性材料作为壳层的核Π壳式结构;三是内层、外层皆为高分子材料,中间层是磁性材料的夹心式结构。其中研究较多且具有广泛应用前景的主要是第一类磁性高分子微球,因此主要就第一类磁性高分子微球的制备方法及其应用情况进行介绍。 从制备方法来看,主要包括包埋法[6,7]、单体聚合法[8~28]和原位法[29]三类。 1.1 包埋法 包埋法是制备磁性高分子微球最早的一类方法,它是将磁性微粒分散于天然或合成高分子溶

分子印迹技术

分子印迹聚合物的研究现状及展望 闻军 材料与化学工程学院化学工程与工艺7班,自贡 643000 摘要:分子印迹技术是一种制备具有分子识别功能的聚合物的新技术, 是在近十几年来才发展起来的一门边缘科学技术。现已应用于色谱分离、抗体和受体模拟物、固相萃取、生物传感器等领域分子印迹技术于近十年内得到了飞速的发展,已经成为当前研究的热点之一。本文回顾了分子印迹技术近十多年来的发展过程,总结了目前的研究现状,并展望了分子印迹技术未来的发展趋势。 关键词:分子印迹聚合物; 分子印迹;研究进展 引言 每年公开发表的论文数几乎直线上升。人们研究分子印迹聚合物(也叫分子烙印聚合物,(molecularly imprinted polymers, MIP s)的历史由来已久,可以追溯到上个世纪。1940 年,Pauling 就提出以抗原为模板来合成抗体的设想,这是对分子印迹技术(即分子烙印技术,(molecule imprinting technology, MIT)的最初描述。目前主要从事, 研究工作的国家有瑞典、日本、德国、美国、英国、中国等十多个国家。国内主要研究单位有大连化物所、南开大学、兰州化物所、上海大学、军事科学院毒物所、湖南大学、东南大学、防化研究院等。之所以发展如此迅速,主要是因为它有三大特点:即预定性、识别性和实用性。由于mips具有抗恶劣环境的能力,表现出高度的稳定性和长的使用寿命等优点,因此,它在许多领域,如色谱中对映体和异构体的分离、固相萃取、化学仿生传感器、模拟酶催化、临床药物分析、膜分离技术等领域展现了良好的应用前景。近年来,已有一些文献介绍了这方面的理论和最新研究成果[1-2].本文通过对这十几年的论文 的回顾,并对该领域未来的发展方向作出展望,旨在引起国内分析化学工作者对该领域研究的关注,以便更快地赶上国际先进水平。 1.1分子印迹技术的基本概念和原理 在生物体内,分子复合物的形成通常需要借助非共价键(氢键,范德华力,离子键等)相互作用。虽然单个非共价键比单个共价键键能低,但多重非共价键的藕合和多个作用位点的协同则会形成很强的相互作用,从而使复合物具有很高的稳定性。由Pauling抗体形成理论出发,当模板分子与聚合物单体接触时会尽可能地同单体形成多重作用点,如果通过聚合,把这些多重作用点固定或“冻结”下来,当模板分子除去后,聚合物中就形成了与模板分子在空间和结合位点上相

(完整word版)分子印迹技术在药学中的应用

分子印迹技术在药学中的应用 分子印迹技术(Molecularly Impriming Technique,MIT)是近些年发展起来的一种新型技术,其核心在于制备对目标分子具有特异识别性且高度稳定的分子印迹聚合物(Molecularly imprinted polymers ,MIPs)。MIT技术的原理类似与“锁和钥匙”的理论,自1972由德国Heinrich Heine大学的Wulff [1-2]首次成功的合成了以糖类化合物为目标分子的共价型分子印迹聚合物起,这种能生动地模仿自然界自主识别过程的新技术,近年来已成为科学家们的热门研究方向。 1分子印迹聚合物制备的过程及方法 1.1分子印迹聚合物的制备过程分为以下几步[3]: (1)在特定的溶剂中,模板分子和功能单体在官能团之间的共价或非共价作用力下,结合形成配合物。(2)在溶剂中加入合适的交联剂,并引进光和热聚合,使其共聚形成高度交联的刚性聚合物。(3)将聚合物中的印迹分子用合适的溶剂去除去,这样就在聚合物中形成空间和化学功能与印迹分子相匹配,并且有预定选择性的立体孔穴。根据功能单体与印迹分子的作用机理的不同,分子印迹技术可分为共价键法,非共价键法,半共价键法。 1.2常用的制备方法 1.2.1本体聚合法 所谓本体聚合就是将印迹分子、功能单体、交联剂和引发剂按比例溶解在惰性溶剂中,脱气、通氮除氧,然后在真空下移入密封的玻璃安培瓶中,经热引发或紫外光照射引发聚合得到块状聚合物。后经粉碎、磨细、过筛等过程,使块状聚合物成合适大小的粒子,洗脱除去模板分子。这种合成操作条件易于控制,实验装置简单,便于普及,此方法由Sellergren [4]等人于1988年提出,迄今为止仍然为MIP的主要制备方法。 1.2.2 原位聚合法 原位聚合是一种将模板分子、功能单体、交联剂、致孔剂和溶剂置于某些容器中或固体表面上直接聚合的方法。聚合物不需要经研磨、过筛和沉降等繁琐过程而直接用于分析。虽然原位聚合方法简便且步骤捷简,但原位聚合法的聚合条件往往很难控制和掌握。Gu J[5]等应用原位聚合法合成印迹聚合物制备分子印迹整体柱,以大黄素为模板分子,结果表明其分离纯化大黄素的能力优良。 1.2.3悬浮聚合法

相关主题
文本预览
相关文档 最新文档