遥感导论考试复习提纲
- 格式:doc
- 大小:1.82 MB
- 文档页数:17
第一章遥感:从远处探测感知物体或事物的技术。
即不直接接触物体本身,从远处通过各种传感器探测和接收来自目标物体的信息,经过信息的传输及其处理分析,来识别物体的属性及其分布特征的综合技术。
遥感技术系统:是一个从地面到空中直至空间,从信息收集,存储,传输处理到分析判读,应用的完整技术系统。
遥感系统包括:被测目标的信息特征、信息的获取、信息的接收、信息的处理、信息的应用。
遥感的类型:1.按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感2.按传感器的探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感3.按工作方式分:主动遥感和被动遥感、成像遥感和非成像遥感4.按遥感的应用领域分:外层空间遥感、大气层遥感、陆地遥感......遥感的特点:1.大面积的同步观测2.时效性3.数据的综合性和可比性4.经济性5.局限性第二章电磁波:是通过电场和磁场相互作用产生的,由振源发生的电磁振荡在空气中传播。
电磁波具有波粒二象性(波动性,粒子性)。
电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减的排列,则构成了电磁波谱。
f · λ=cE=h · fE为能量,单位:J;h为普朗克常数,h=6.626×10∧-34J/s;f为频率;λ为波长;c为光速,c=3×10∧8m/s。
黑体辐射:黑体的热辐射称为黑体辐射。
绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收(吸收率为100%),则这个物体是绝对黑体。
斯忒藩-玻尔兹曼定律:M=σT4σ为斯忒藩-玻尔兹曼常数,σ=5.67×10-8W·m-2·K-4;维恩位移定律:λmax · T=bb为常数,b=2.898×10-3m·K。
太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量:I⊙=1.360×10³W/m²瑞利散射:当大气中粒子的直径比波长小得多时发生的散射。
《遥感导论》期末复习资料一.名词解释1.遥感:广义的遥感泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测;狭义的遥感是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱。
3.辐照度:即被辐射的物体表面单位面积上的辐射通量。
4.辐射亮度:辐射源在某一方向的单位投影面积在单位立体角内的辐射通量,称为辐射亮度。
5.朗伯源:辐射亮度与观测角无关的辐射源,称为朗伯源。
6.反照率:是把太阳光作为入射光时的反射率。
7.地物反射波谱:地物的反射波谱指地物反射率随波长的变化规律。
8.反差:指胶片的明亮部分与阴暗部分的密度差。
9.反差系数:是指拍摄后负片影像与景物亮度差之比,即特征曲线上的斜率。
10.扫描成像:扫描成像是依靠探测元件和扫描镜对目标地物以瞬时视场为单位进行的逐点、逐行取样,以得到目标地物电磁辐射特性信息,形成一定谱段的图像。
11.标准假彩色合成:绿波段赋蓝,红波段赋绿,红外波段赋红时,这一合成方案被称为标准假彩色合成。
12.植被指数:比值运算常用于突出遥感影像中的植被特征、提取植被类别或估算植被生物量。
这样算法的结果称为植被指数。
13.目视解译:又称目视判读,或目视判译,它指专业人员通过直接观察或借助辅助判读仪器在遥感图像上获取特定目标地物信息的过程。
14、光谱模式识别:是指根据这种像元到像元的光谱信息来自自动划分土地覆盖类型的分类过程的总称。
二.知识要点1.遥感系统的组成:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分。
2.遥感的优缺点⑴大面积的同步观测⑵时效性⑶数据的综合性和可比性⑷经济性⑸局限性3.大气窗口的组成通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口。
大气窗口的光谱段主要有:0.3~1.3um,即紫外、可见光、近红外波段。
填空1.微波是指波长在1mm-1m之间的电磁波。
2.就遥感而言,被动遥感主要利用可见光、红外等稳定辐射,使太阳活动对遥感的影响减至最小。
3.1999年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原发射成功。
ndsat和SPOT的传感器都是光电成像型,具体是光机扫描仪、CCD阵列。
5.SPOT1、2、3卫星上有HRV高分辨率可见光扫描仪,可以用作两种观测垂直观测、倾斜观测也是SPOT卫星的优势所在。
6.美国高分民用卫星有IKONOS、QUICK BIRD。
7.灰度重采样的方法有:最邻近法、双线性内插法、三次卷积内插法。
8.四种分辨率来衡量传感器的性能:空间分辨率、时间分辨率、光谱分辨率、辐射分辨率9.数字图像增强的主要方法有:对比度变换、空间滤波、彩色变换、图像运算、多光谱变换。
10.常用的彩色变换方法有:单波段彩色变换、多波段彩色变换、HLS变换。
11.遥感系统包括五种:目标物的电磁波特性、信息的获取、信息的传输、信息的处理、信息的运用。
12.遥感传感器的探测波段分为:紫外遥感、可见光波段、红外遥感、微波遥感、多波段遥感。
13.常用的锐化方法有:罗伯特梯度、索伯尔梯度、拉普拉斯算法、定向检测。
14.目标地物识别特征包括:色调、颜色、阴影、形状、大小、纹理、图形、位置、拓扑结构。
15.地物的空间关系主要表现为:方位、包含、相邻、相交、相贯。
16.地质遥感包括:岩性识别、地质构造的识别、构造运动的分析。
17.试举三个陆地卫星:Landsat、SPOT、CBERS。
18.遥感影像变形的原因有:遥感平台位置和运动状态变化的影响、地形起伏的影响、地球曲率的影响、地球自转的影响、大气折射。
19.平滑是为了达到什么目的:去除噪声。
20.热红外影像的阴影是:目标地物与背景之间辐射差异造成的。
21.遥感扫描影像的特征有:综合概括性强、信息量大、动态观测。
22.微波影像的阴影是:与目标地物之间存在障碍物阻挡了雷达波的传播。
第一章绪论第一节遥感概述一、遥感的概念及特点1、概念2、特点①感测范围大②信息量大③获取信息快④其他特点:用途广、效益高、全天候、全方位、资料性二、遥感的分类1、根据遥感平台的高度和类型分类①地面遥感:1.5~300m,车、船、塔,主要用于究地物光谱特征②航空遥感:9~50km,飞机、气球,较微观地面资源调查③航天遥感:100~36000km,卫星、飞船、火箭、天飞机、空间站2、根据传感器的工作方式分类①主动遥感:雷达②被动遥感:被动接受地物反射、发射的电磁波:摄影机、扫描仪3、根据遥感信息的记录方式分类①成像遥感:以图象方式记录:航空性片、卫星图象②非成像遥感:图形、电子数据:数字磁带、光盘4、根据遥感使用的探测波段分类①紫外遥遥:0.3~0.4μm②可见光遥感:0.4~0.76μm③红外遥感:0.76~14μm④微波遥感:1000μm ~30cm⑤多波段遥感:0.5-0.6,0.6-0.7,0.7-0.8,0.8-0.95、根据遥感的应用领域分类:气象、海洋、地质、军事三、遥感过程及其技术系统1、遥感实验:前期工作,主要获得地物的光谱特性。
2、遥感信息的获取:中心工作。
传感器3、遥感信息的接受和处理:利用各种技术手段4、遥感信息的应用:最终目的。
遥感信息的认识(判读、解译)第二节遥感的发展与应用一、遥感的发展1、国外遥感的发展概况“遥感”:①无记录的地面遥感阶段(1608-1838)望远镜的产生:②有记录的地面遥感阶段(1839-1857)摄影技术的发明:③空中摄影的遥感阶段(1858-1956)系留气球、飞机、彩色摄影技术产生④航天遥感阶段(1957-)人造地球卫星产生、计算机技术的应用、GIS⑤遥感的发展趋势:platform:气球-飞机-卫星-飞船-航天飞机-空间站传感器:分辨率变高、稳定性变好、手段变多遥感信息的接收和处理:自动解译、自动分类遥感的应用:广、深入2、我国遥感的发展概况起步晚、发展快①20世纪60年代末设立遥感学科②20世纪70年代,航空测量应用③20世纪70年代末,引进美国卫星技术和卫星资料、设备仪器,促进我国遥感技术与国际领先水平接近。
第一章;1.遥感的基本概念是什么?应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用.3.作为对地观测系统,遥感与常规手段相比有什么特点?①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。
②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。
因此,遥感大大提高了观测的时效性。
这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。
(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。
由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。
同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。
与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。
④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。
⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。
第二章:1.大气的散射现象有几种类型?根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云浮透雾能力而可见光不能。
①瑞利散射(大气中粒子的直径比波长小得多时发生的散射).②米氏散射(当大气中粒子的直径与辐射的波长相当时发生的散射)③无选择性散射(当大气中粒子的直径比波长大的多时发生的散射).大气散射类型是根据大气中分子或其他微粒的直径小于或相当于辐射波长时才发生。
《遥感导论》总复习第一章绪论1、遥感广义理解,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
实际工作中,重力、磁力、声波、地震波等的探测被划为物探(物理探测)的范畴。
因而,只有电磁波探测属于遥感的范畴。
狭义的遥感:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。
2、遥感技术系统遥感系统包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分3、遥感平台转载传感器的平台4、主动遥感传感器从遥感平台主动发射出能源,然后接收目标反射或辐射回来的电磁波。
5、被动遥感传感器不向目标发射电磁波,仅接收目标地物反射及辐射外部能源的电磁波。
如对太阳辐射的反射和地球辐射。
·问答题6、作为对地观测系统,遥感与常规手段相比有什么特点?一、宏观观测,大范围获取数据资料,不受地形阻隔二、时效性(动态监测),快速更新监控范围数据三、技术手段多样,可获取海量数据,数据的综合性和可比性四、应用领域广泛,经济效益高五、局限性穿透性有限第二章电磁辐射与地物光谱特征7、电磁辐射电磁波是电磁振动的传播。
当电磁振荡进入空间时,变化的磁场激发了变化的电场,使电磁振荡在空间传播,形成电磁波,也称电磁辐射.8、电磁波的性质一、电磁波是横波,质点的震动方向与波的传播方向垂直.二、电磁波的性质与光波相同,在真空中传播速度c为3*108m/s满足:c=f*, f三、具有波粒二象性9、电磁波谱按照电磁波在真空中传播的波长或频率排列形成的一个连续谱带10、电磁波遇到介质(气体、液体、固体),发生一系列现象:反射:镜面反射、漫反射折射:射入介质,折射角一般不等于入射角吸收:部分被介质吸收透射:从入射延伸方向射出介质散射:辐射传播中,若遇到小粒子,会向四面八方散去,电磁波强度和方向发生各种变化,即散射。
遥感导论期末复习资料(1)按遥感平台分地⾯遥感:传感器设置在地⾯平台上,如车载、船载、⼿提、固定或活动⾼架平台等;航空遥感:传感器设置于航空器上,主要是飞机、⽓球等;航天遥感:传感器设置于环地球的航天器上,如⼈造地球卫星、航天飞机、空间站、⽕箭等;航宇遥感:传感器设置于星际飞船上,指对地⽉系统外的⽬标的探测。
(2)按传感器的探测波段分紫外遥感:探测波段在0.05⼀0.38µm之间;可见光遥感:探测波段在0.38⼀0.76µm之间;红外遥感:探测波段在0.76⼀1000µm之间;微波遥感:探测波段在1mm⼀1m之间;多波段遥感:指探测波段在可见光波段和红外波段范围内,再分成若⼲窄波段来探测⽬标。
(3)按⼯作⽅式分主动遥感和被动遥感成像遥感与⾮成像遥感4)按遥感的应⽤领域分从⼤的研究领域可分为外层空间遥感、⼤⽓层遥感、陆地遥感、海洋遥感等;从具体应⽤领域可分为资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、⽓象遥感、⽔⽂遥感、城市遥感、⼯程遥感及灾害遥感、军事遥感等,还可以划分为更细的研究对象进⾏各种专题应⽤。
2、被动遥感:传感器本⾝不产⽣电磁波,⽽是被动地接收和反射其它物体的电磁辐射⽽获取地物信息的遥感⽅式。
3、朗伯源:4、⽆选择性散射:当质点直径⼤于电磁波波长时(质点的直径d >λ(电磁波波长)), 散射率与波长没有关系5、⽶⽒散射:质点直径和电磁波波长差不多时,即d≈λ时,发⽣⽶⽒散射。
主要是⼤⽓中的⽓溶胶引起的散射。
云、雾等的悬浮粒⼦的直径和0.76-15 µm之间的红外线波长差不多,需要注意。
6、空间分辨率:空间分辨率指像素所代表的地⾯范围的⼤⼩,即扫描仪的瞬时视场或者地⾯物体能分辨的最⼩单元。
常见得TM5 波段的空间分辨率为28.5m*28.5m7、波谱分辨率:传感器能分辨的最⼩波长间隔。
间隔越⼩,波谱分辨率越⾼。
如MODIS有36个波段,它⽐AVHRR的波谱分辨率⾼8、辐射分辨率:指传感器接受波谱信号时,能分辨的最⼩辐射度差。
遥感导论复习提纲绪论1.遥感的定义,广义遥感、狭义遥感。
遥感是指非接触的,远距离的探测技术。
一般指运用传感器/遥感器对物体的电磁波的辐射、反射特性的探测,并根据其特性对物体的性质、特征和状态进行分析的理论、方法和应用的科学技术。
狭义遥感:主要指空对地的遥感,利用电磁波进行遥感,运用探测仪器,不与目标物相接触,从远距离把目标物的电磁波特性记录下来,通过分析,揭示出目标物本身的特征、性质及其变化规律的综合性技术广义遥感:主要指空对地、地对空、空对空遥感,泛指一切无接触地远距离探测,除了电磁波外、还包括对电磁场、力场、机械波等的探测。
2.遥感的分类。
按遥感平台距地面的高度大体上可分为三类:地面平台遥感-100米以下,航空平台遥感100米以上100km以下,航天平台遥感240km以上,按遥感的工作方式:主动遥感被动遥感成像遥感非成像遥感按传感器的工作波段分类:可见光遥感红外遥感紫外遥感微波遥感高光谱遥感常规遥感按应用领域可分为:城市遥感地质遥感、地貌遥感、林业遥感、水文遥感、测绘遥感、草原遥感、土地遥感、海洋遥感、大气遥感、军事遥感3.论述遥感的特点。
宏观性、时效性、综合性(概括性)、经济性、局限性,多时相性电磁基础1.电磁波(太阳辐射)与大气主要的相互作用。
大气对太阳辐射的吸收散射及反射作用,散射造成太阳辐射的衰减。
大气吸收对可见光影响不大主要吸收紫外、红外、微波,主要造成遥感影像暗淡。
引起大气吸收的主要成分是氧气、臭氧、水、二氧化碳。
2.大气散射的几种形式:选择性散射(瑞利散射、米氏散射)、非选择性散射大气散射性质与强度取决于大气中分子或微粒半径及被散射光的波长。
包括选择性散射与非选择性散射。
1.选择性散射瑞利散射(Raileigh scattering):由远小于光波长的气体分子引起,如由O2、N2等;散射强度与波长的4次方成反比;“蓝天”效应。
米氏散射(Mie scattering):也称为气溶胶散射,主要有霾、水滴、尘埃、烟、花粉、微生物、海上盐粒、火山灰等气溶胶引起的散射,引起散射的大气粒子直径约等于入射电磁波波长。
遥感复习资料
1.什么是遥感?
2.电磁波?电磁波谱?反射率?发射率?绝对黑体?
3.黑体发射的规律?
4.遥感平台按照距离地面的高度,可以分为哪几种类型?
5.遥感卫星运行轨道特点以及作用?
6.各种传感器空间分辨率情况?哪些国家研发的?举例说明,TM,MSS,MODIS,SPOT
7.传感器的基本部件?有何作用?
8.光学图像?数字图像?
9.光学图像转换为数字图像的两个过程
10.几何变形?几何处理?
11.直接法和间接法纠正?
12.重采样三种方法?优缺点?
13.图像融合?精纠正处理步骤?
14.HIS变换的融合过程?H?I?S?
15.全景投影的特点?侧视雷达投影特点?
16.直方图的定义
17.光谱特性曲线?光谱响应曲线?二者有什么区别?
18.景物特征和对应的判读标志
19.空间分辨率?时间分辨率?光谱分辨率?
20.如何判读多光谱影像?热红外影像?单波段影像?举例说明
21.测试雷达影像上色调高低和哪些因素有关?图像特征?
22.判别函数和判决准则?最大似然法?最小距离法?
23.最小距离分类法,分别指的是什么距离?
24.监督分类?非监督分类?
25.监督分类的主要步骤?
26.遥感应用举例说明。
遥感导论复习提纲绪论1.遥感的定义,广义遥感、狭义遥感。
测,并根据其特性对物体的性质、特征和状态进行分析的理论、方法和应用的科学技术。
狭义遥感:主要指空对地的遥感,利用电磁波进行遥感,运用探测仪器,不与目标物相接触,从远距离把目标物的电磁波特性记录下来,通过分析,揭示出目标物本身的特征、性质及其变化规律的综合性技术广义遥感:主要指空对地、地对空、空对空遥感,泛指一切无接触地远距离探测,除了电磁波外、还包括对电磁场、力场、机械波等的探测。
2.遥感的分类。
按遥感平台距地面的高度大体上可分为三类:地面平台遥感-100米以下,航空平台遥感100米以上100km以下,航天平台遥感240km以上,按遥感的工作方式:主动遥感被动遥感成像遥感非成像遥感按传感器的工作波段分类:可见光遥感红外遥感紫外遥感微波遥感高光谱遥感常规遥感按应用领域可分为:城市遥感地质遥感、地貌遥感、林业遥感、水文遥感、测绘遥感、草原遥感、土地遥感、海洋遥感、大气遥感、军事遥感3.论述遥感的特点。
宏观性、时效性、综合性(概括性)、经济性、局限性,多时相性电磁基础1.电磁波(太阳辐射)与大气主要的相互作用。
大气对太阳辐射的吸收散射及反射作用,散射造成太阳辐射的衰减。
大气吸收对可见光影响不大主要吸收紫外、红外、微波,主要造成遥感影像暗淡。
引起大气吸收的主要成分是氧气、臭氧、水、二氧化碳。
2.大气散射的几种形式:选择性散射(瑞利散射、米氏散射)、非选择性散射大气散射性质与强度取决于大气中分子或微粒半径及被散射光的波长。
包括选择性散射与非选择性散射。
1.选择性散射瑞利散射(Raileigh scattering):由远小于光波长的气体分子引起,如由O2、N2等;散射强度与波长的4次方成反比;“蓝天”效应。
米氏散射(Mie scattering):也称为气溶胶散射,主要有霾、水滴、尘埃、烟、花粉、微生物、海上盐粒、火山灰等气溶胶引起的散射,引起散射的大气粒子直径约等于入射电磁波波长。
散射强度与波长的二次方成反比。
非选择性散射大气中的云、雾、水滴、尘埃以及大小超过波长10倍的颗粒引起的散射,散射粒子的直径远大于入射波长,对各种波长予以同等散射。
3.生活中的散射现象及形成原因。
在空气条件好的情况下,即空气比较洁净,悬浮尘埃较少时,主要的散射是瑞利散射,散射光中蓝色成份较多。
这就是我们所期望看到的蓝天白云。
而在一些城市里,特别是大气污染较严重的大城市里,由于空气中充满了线度较大的悬浮尘埃粒子,此时的散射光有很大一部分是丁达尔散射产生的,呈白色。
因此,天空就是白茫茫的白色的太阳光包含着从红到蓝紫各色的光,在太阳光经过大气层时,会发生散射,而且主要是与光波长有关的瑞利散射。
在这种散射的作用下,短波长(蓝光)的成份被散射掉了,透射的光中长波长(红光)的成份就较多。
透射光中的红光成份比例是与光线穿过大气层的行程长短有关的。
从下图我们可以看出早晨和黄昏时的太阳光穿过大气层的行程比中午时长得多(一般来说要长6-10倍),被散射掉的蓝光也要多得多。
因此,早晚的太阳看上去就是偏红色的。
山中的雾气实际上是悬浮在空气中的小液滴,是一种很理想的散射源。
由于液滴的尺寸比光波波长大得多,主要是丁达尔散射,散射光呈白色。
4.大气窗口太阳辐射与大气相互作用产生的效应,使得能够穿透大气的辐射局限在某些波长范围内,通常把通过大气而较少被反射、吸收或散射的透射率较高的电磁辐射波段称为大气窗口。
5.地物的反射光谱曲线地物反射光谱是指地物的反射率随入射波长而变化的规律。
根据地物的反射光谱所绘制的曲线成为地物反射光谱曲线,通过地物反射光谱曲线的不同辨别地物是遥感识别地物性质的基本原理地物的反射光谱有如下特征:(1)不同的地物在不同波段反射率存在差异(如雪地、小麦地的光谱曲线)(2)相同地物光谱曲线有相似性,但是也存在差异性(如患虫害的小麦与正常小麦的光谱曲线)(3)地物光谱特征具有事件性和空间性(不同时间与空间光谱特征不同)6.画出植被的反射光谱曲线及其曲线形态的影像因素植被的光谱曲线(配图)植被的光谱反射率曲线特征:色素吸收决定着可见光波段的光谱反射率,细胞结构决定近红外波段的光谱反射率,而水汽吸收决定了短波红外的光谱反射率特性。
一般情况下,植被在350 - 2500nm范围内具有如下典型反射光谱特征:(1 )3 50一490nm谱段:由于400一450nm谱段为叶绿素的强吸收带,425一490nm谱段为类胡罗卜素的强吸收带,380nm波长附近还有大气的弱吸收带,故350一490nm谱段的平均反射率很低,一般不超过10%,反射光谱曲线的形状也很平缓;(2) 4 90一600mn谱段:由于550nm波长附近是叶绿素的强反射峰区,故植被在此波段的反射光谱曲线具有波峰的形态和中等的反射率数值(约在8-28%之间);(3) 6 00一700nm谱段:650一700nm谱段是叶绿素的强吸收带,610、660nm谱段是藻胆素中藻蓝蛋白的主要吸收带,故植被在600一700nm的反射光谱曲线具有波谷的形态和很低的反射率数值(除处于落叶期的植物群落外,通常不超过10%);(4) 7 00一750nm谱段:植被的反射光谱曲线在此谱段急剧上升,具有陡而近于直线的形态。
其斜率与植物单位面积叶绿素(a+b)的含量有关,但含量超过4一5mg.cm'2后则趋于稳定;(5)750一1300nm谱段:植被在此波段具有强烈反射的特性(可理解为植物防灼伤的自卫本能),故具有高反射率的数值。
此波段室内测定的平均反射率多在35一78%之间,而野外测试的则多在25一65%之间。
由于760nm, 850nm,910nm,960nm和1120nm等波长点附近有水或氧的窄吸收带,因此,750.1300nm谱段的植被反射光谱曲线还具有波状起伏的特点;(6) 1300一1600nm谱段:与1360一1470nm谱段是水和二氧化碳的强吸收带有关,植被在此谱段的反射光谱曲线具有波谷的形态和较低的反射率数值(大多在12一18%之间):(7) 1600一1830nm谱段:与植物及其所含水分的波谱特性有关,植被在此波段的反射光谱曲线具有波峰的形态和较高的反射率数值(大多在20一39%之间);(8) 1830一2080mn 谱段:此谱段是植物所含水分和二氧化碳的强吸收带,故植被在此谱段的反射光谱曲线具有波谷的形态和很低的反射率数值(大多在6一10%之间);(9) 2080一2350nm谱段:与植物及其所含水分的波谱特性有关,植被在此波段的反射光谱曲线具有波峰的形态和中等的反射率数值(大多在10一23%之间):(10) 2350一2500mn谱段:此谱段是植物所含水分和二氧化碳的强吸收带,故植被在此谱段的反射光谱曲线具有波谷的形态和较低的反射率数值(大多在8一12%之间)。
图1 植被的光谱反射率曲线图7.影响植物反射率的主要因素植物:在蓝光波段(0.38~0.50μm)反射率低,绿光波段(0.50~0.60μm)的中点0.55μm左右,形成一个反射率小峰,这就是植物叶子呈绿光的原因。
在红光波段(0.60~0.76μm),起先反射率甚低,在0.65μm附近达到一个低谷,随后又上升,在0.70~0.80μm反射率陡峭上升,到0.80μm附近达到最高峰。
绿色植物具有一系列特有的光谱响应特征,绿叶中的叶绿素在0.5~0.7μm的可见光波段有2个强吸收谷,反射率一般小于20%;但在0.7~1.3μm的近红外波段,由于叶肉海绵组织结构中有许多空腔,具有很大的反射表面,反射率较高。
影响植物反射率的主要因素包括叶绿素、细胞结构和含水量等。
植物反射光谱曲线8.当水中含有其他物质时,水体反射光谱曲线会如何变化。
考虑水的光谱反射率时,也许最明显的特征是在近红外及更长波波段的能量吸收问题。
简单地说,不管我们说的是水体本身(如湖泊、河流)还是植被,土壤中含有的水都会吸收这一波段的能量。
当波长小于大约0.6um时,清澈的水只能吸收相对很少的能量,这些波长内的水具有高透射率的特点,其最大值在光谱的蓝绿区。
但随着水的浑浊程度的变化(因水中含有有机物和无机物),会引起透射率继而反射率的急剧变化。
例如,因土壤侵蚀而含有大量悬浮沉积物的水,其可见光的反射率一般比相同地区内的“洁净水”高得多。
同样,水的反射率会随着所含叶绿素浓度的变化而变化。
叶绿素浓度的增加会降低蓝波段的反射率而提高绿波段的反射率。
利用遥感数据中这种反射率的变化可监测藻类是否存在,并且可估算其浓度。
许多有关水的重要特性,如溶解氧浓度、PH值和盐浓度等,并不能直接通过水的反射率来观察到。
但是这些参数有时与观察到的反射率有关。
总之,水的光谱反射率与这些特性之间存在着复杂的关系。
因此,我们必须适当的参考数据去正确的解释水的反射率测定值9.影响土壤反射光谱曲线的主要因素土壤反射率显得很少有“峰和谷”的变化。
这是因为影响土壤反射率的因素较少作用在固定的波段范围。
影响土壤反射率的因素有:含水量、土壤结构(砂、壤、粘土的比例)、表面粗糙度、铁氧化物的存在以及有机物的含量。
这些因素是复杂的、可变的、彼此相关的。
例如,土壤的含水量会降低反射率。
对于植被在大约1.4um、1.9um和2.7um处水的吸收波段上,这种影响最为明显(粘土在1.4um和2.2um处也有氢氧基吸收带)。
土壤含水量与土壤结构密切相关:粗粒砂质土壤常常排水性好,因而含水量低,反射率相对高;反之,排水性不好的细粒结构土壤一般具有较低的反射率。
然而,在缺水情况下,土壤自身会出现相反的趋势:粗粒结构土壤比细粒土壤看上去更深。
所以,土壤的反射属性仅在特殊条件下才出现一致性。
另外两个降低土壤反射率的因素是表面粗糙度和有机物的含量。
在土壤中含有铁的氧化物也会明显降低反射率,至少在可见光波段如此。
常用的遥感平台1.TM数据、环境卫星CCD数据以及其他主要介绍的遥感数据的主要波段、空间分辨率,主要用途。
2.传感器的主要分辨率及其定义。
分辨率-----传感器最具实用意义的指标。
传感器的分辨率是指传感器区分自然特征相似或光谱特征相似的相邻地物的能力。
是衡量遥感数据质量特征的一个重要指标。
分为:辐射分辨率;空间分辨率;时间分辨率;光谱分辨率。
辐射分辨率:指传感器能区分两种辐射强度最小差别的能力。
在遥感图像上表现为每一个像元的辐射量化级空间分辨率:每个像元对应空间的大小。
表征影像分辨地面目标细节能力的指标。
空间分辨率单位以米表示。
空间分辨率数值越大分辨率越低光谱分辨率是指传感器在接收目标辐射的波谱时能分辨的最小波长间隔。
间隔愈小,分辨率越高。
波段数越多,分辨率越高时间分辨率指对同一地点进行遥感采样的时间间隔,即采样的时间频率,也称重访周期。