当前位置:文档之家› 实验五 激活剂

实验五 激活剂

实验五  激活剂
实验五  激活剂

实验五激活剂、抑制剂、温度及PH对酶活性的影响

一、目的要求

通过实验加深对酶性质的认识,了解测定α-淀粉酶活力的方法。

二、实验原理

酶是生物体内具有催化作用的蛋白质,通常称为生物催化剂。酶催化的反应称为酶促反应。生物催化剂催化生化反应时具有:催化效率好、有高度的专一性、反应条件温和、催化活力与辅基,辅酶,金属离子有关等特点。

能提高酶活力的物质,称为激活剂。激活剂对酶的作用有一定的选择性,其种类多为无机离子和简单的有机化合物。使酶的活力中心的化学性质发生变化,导致酶的催化作用受抑制或丧失的物质称为酶抑制剂。氯离子为唾液淀粉酶的激活剂,铜离子为其抑制剂。应注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则为该酶的抑制剂。如氯化钠达到约30%浓度时可抑制唾液淀粉酶的活性。

酶促反应中,反应速度达到最大值时的温度和PH值称为某种酶作用时的最适温度和PH值。温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低。同样,反应中某一PH范围内酶活力可达最高,在最适PH的两侧活性骤然下降,其变化趋势呈钟形曲线变化。

食品级α-淀粉酶是一种由微生物发酵生产而制备的微生物酶制剂,主要由枯草芽孢杆菌、黑曲霉、米曲霉等微生物产生。但不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。

本实验通过淀粉遇碘显蓝色,糊精按其分子量的大小遇碘显紫蓝、紫红、红棕色,较小的糊精(少于6个葡萄糖单位)遇碘不显色的呈色反应,来追踪α-淀粉酶作用于淀粉基质的水解过程,从而了解酶的性质以及动力学参数。

三、激活剂和抑制剂对唾液淀粉酶活力的影响

(一)试剂及材料

1、1:30唾液淀粉酶配置用蒸馏水漱口,1min后收集唾液,以1:30倍蒸馏水稀释。

2、0.2%可溶性淀粉

3、1%NaCl溶液

4、1%CuSO4溶液

5、标准稀碘液吸取

(二)仪器设备电热恒温水浴锅。

(三)操作方法

取试管3根,编号后按下表配置实验样液。

用点滴管并不断从试管中吸取样液于比色白瓷板,用稀碘液检验试管内淀粉被淀粉酶水解的程度,记录各试管内样液遇碘不显蓝色的先后顺序,解释实验现象的原因。

四、温度与PH值对α-液化淀粉酶活力的影响

(一)试剂与材料

1、2%可溶性淀粉溶液称取可溶性淀粉2.0g(预先在105℃烘干),预加20mL蒸馏水调匀,然后倾入80mL沸水中煮沸至溶液透明,冷却后定容至100mL。

2、PH4.0 、5.0、6.0、7.0、8.0 磷酸氢二钠–柠檬酸缓冲溶液

(1)0.2 mol /mL Na2HPO4 称取35.60g Na2HPO4.2H2O,用水溶解定容至100mL。

(2)使用酸度计,用柠檬酸调整至所需的PH值。

3、供试酶液的制备称取固体α-液化淀粉酶1.00g,加入PH6.0磷酸氢二钠–柠檬酸缓冲溶液100mL (缓冲液的加入量视酶活力大小而定,控制酶解反应在5-10min内完成),于40℃恒温水浴中活化0.5小时,然后用3000rpm / min离心机离心分离5min,酶提取液于冰箱保存,供试验用。

4、标准比色液

甲液:称取氯化钴(CoCl.6H2O)40.2439g、干燥重铬酸钾0.4748 g,溶解并定容至500mL。

乙液:称取铬黑T 40.00mg,溶解并定容至100mL。

使用时取甲液40.0mL、乙液5.0 mL,混合。混合比色液宜放置冰箱保存,使用7天后重新配置。

5、标准稀碘液。

(二)仪器设备电热恒温水浴锅。

(三)操作方法

1、用滴管吸取一定量标准比色液于白色瓷比色板空穴中,作为判断酶解反应终点的标准色。

2、不同温度对α-液化淀粉酶活力的影响

取4根Φ25×200mm 试管,按下表配制反应溶液。

加入供试酶液后,立即用秒表或手表记时,充分要匀,定时用点滴管从各反应试管中分别吸取1-2滴反应液,滴入预先盛有2/3 稀碘液的比色白瓷板孔穴内 ,从淀粉遇碘显色的变化情况,跟踪淀粉在淀粉酶作用下被水解的过程,当穴内颜色反应由紫色逐渐变为红棕色,与标准比色液的颜色相同时,即达反应终点,记录酶解反应完成所需时间。 3

、不同PH 值对α-液化淀粉酶活力的影响

取5根Φ25×200mm 试管,按下表配制反应溶液。 其它操作与温度对酶活力影响实验相同。 五、结果计算和讨论

淀粉酶活力单位定义为 在一定条件下,1 g 酶制剂1小时内液化可溶性淀粉的克数。

酶活力单位(U/g)=

n t ????5

.01

02.02060 (n ——酶制剂稀释倍数, 取200) 式中:20——可溶性淀粉的用量(mL ); t ——酶解反应完成所需的时间(min ); 0.5——测定时稀释酶液用量(mL ); 0.02——可溶性淀粉溶液的浓度(g/mL ); 1、不同温度对α-液化淀粉酶活力影响的结果记录

温度—酶活力单位图

α-液化淀粉酶活力影响的结果记录

2、不同pH值对

讨论分析实验结果。

由第一个实验可验证激活剂与抑制剂对反应速度的影响,其中的常见的激活离子:①无机阳离子,如钠离子、钾离子、等;

②无机阴离子,如氯离子、溴离子、碘离子等;实验试剂取NaCl溶液与淀粉酶反应,可见反应速率是最快的,因为当中的钠离子与氯离子都可促反应的发生。导致溶液不显蓝。

对于抑制剂对酶促反应速度的影响,是可以减弱、抑制甚至破坏酶活性的物质称为酶的抑制剂。它可降低酶促反应速度。可见CuSO4的不显色时间已经超过15分钟,酶己娙失效。结论为低浓度的CuSO4 是抑制剂,低浓度的NaCl是激活剂。

第二个实验,影响酶促反应速度的因素:[S]、[E]、pH、温度、激活剂与抑制剂,过酸过碱都能使酶蛋白变性而使其丧失活性。在不致使变性的pH值范围内,酶的活性会因pH值不同而不同。每种酶均有各自的最适温度和最适pH 值,如符合这最适条件,酶的活性便最高。相反,偏离这最适条件,酶变的不活跃。由温度—酶活力单位图可见,最适温度为在60℃,低于适当的温度会使酵素失去活性,但是升高温度后可以恢复酵素活性。当温度达到60~80℃时,大部分酶被破坏,发生不可逆变性;由PH值—酶活力单位可见,淀粉酶在pH4中具有最好活性,酶在最适pH范围内表现出活性,大于或小于最适pH,都会降低酶活性。并由图可见,到了pH7,8中性时已经较pH4时活性下降了不少,由此可判断淀粉酶在微酸性时活性高。但正常的酶的变化趋势呈钟形曲线变化,而人体的消化酶ph值大概在6~8,微酸和微碱,可推断这次实验的结果有误差,可推测是人为计时有问题,因为溶液的调配没有问题。,我们应该从放下酶的时候开始计数,估计误差出在溶液滴入比色皿才开始计时,导致显色时间缩短,导致误差。

六、思考题

1、从实验操作技能方面考虑,做好本实验的操作要点是什么?

要注意的是,时间的计时方面,因为溶液众多,许多同学为了加快完成实验,导致计时失误,因为这次计酶的活性就体验在显色的时间,时间是关键。两个人的配合很重要,分工要明确,不然会导致不停重做。另外需在下酶就开始计时,并隔一会就滴另一个格,观察显色。记好格是属于那个溶液,不要贪快同时做几支试液,很易搞混。在温度对酶的影响时,因为为了方便,同枱的四个炉一齐运作,每个炉有不同温度,又因炉的功能简单,需要留意着温度计,因为如果不留神就会令烧杯升温或降温,影响酶的活性。在计pH值对酶影响时,因为四支溶液共浴在一个60度的烧杯中,建议在试管做好标记,虽然结果会呈钟形,可推判出那个支的pH值,但会影响实验的准确度。

4、用酶前对酶进行活力进行测定,对实验有何实际指导意义?

1可以确定酶是否可用

2使用酶的时候提供参考,以便明确具体要使用多少酶用于底物的催化。

无机混凝剂的制备实验报告

实验4 无机混凝剂的制备 姓名:学号: 1.前言 1.1目的与意义 聚合硫酸铁(PFS)是 2O世纪 80年代发展起来的一种新型无机高分子絮凝剂。相比传统的铝系絮凝剂,具有水解速度快、絮凝体密度大、适用pH值范围宽(4~i0)等特点,且成本低、使用方便、无残留,因而广泛用于工业用水、工业废水及城市污水的净化处理【1】。 通过制备聚硫酸铁的综合实验,不但使学生了解混凝剂在水处理中的原理及重要作用,掌握合成无机混凝剂的操作技术,并且学会通过金属含量、碱化度、Zata电位的测定,评价混凝剂的水处理产品稳定性和混凝性能。 1.2文献综述与总结 絮凝净化法具有适应范围广、工艺简单、处理成本低等特点,目前广泛应用于饮用水、生活污水和工业废水的处理中。 聚合硫酸铁PFS是20世纪80年代出现的一种新型无机高分子絮凝剂具有水解速度快、絮凝体密度大、适用pH范围宽等特点具有很强的中和悬浮颗粒上电荷的能力,有很大的比表面积和很强的吸附能力,能很好地去除水中悬浮物、有机物、硫化物、重金属离子等杂质。具有脱色、除臭、破乳化及污泥脱水等功能,因而被广泛应用于矿山印染、造纸等工业废水处理。相比传统的铝系絮凝剂而言PFS在反应过程中无离子水相转移和残留积累使用更方便、价格更便宜、用量更省【2】。 直接氧化法虽然工艺简单、操作简便,但存在氧化剂用量大、成本高、氧化剂引入的离子需分离除去、反应中产生的有害气体需专门设备吸收处理等问题。因而难于在工业化生产中普及和应用,但试验研究中需要少量聚合硫酸铁时,采用此类方法制备简便易行【1】。 2.实验部分 2.1 实验原理 二价铁离子在酸性条件下,经催化氧化、水解、聚合三步反应,可制得聚合硫酸铁:(1)氧化反应 2FeSO4 +1/2 O2 + H2SO4=Fe2(SO4)3 + H2O 氧化反应控制着整个反应过程,其目的是将Fe2+氧化为Fe3+。氧化反应中要控制H2SO4/Fe的比例为0.3~0.45。 (2)水解反应 Fe2(SO4)3 + nH2O=Fe2(OH)n(SO4)3-n/2 + n/2H2SO4 当整个反应体系中硫酸根数量不足时,氧化后的;三价铁离子会发生水解,生成高价羟基铁络离子,同时羟基相互交联,形成聚合硫酸铁。 (3)聚合反应 mFe2(OH)n(SO4)3-n/2=[Fe2(OH)n(SO4)3-n/2]m 水解和聚合反应的顺利进行,消耗了氧化反应的产物Fe2(SO4)3,使氧化反应的平衡向右移动,FeSO4不断被氧化为Fe2(SO4)3,直至反应完全。由于三价铁离子水解产生了羟基铁络离子,因此聚合硫酸铁作为中性分子所需的硫酸根量要少一些。 (4)碱化度:以氟化钾作掩蔽剂,采用酸碱中和滴定来测定。计算公式为:[3]

絮凝剂

聚合氯化铝[PAC] 分子式:[Al2OH)n Cl6-n·xH2O]m,式中m≤10,n=3—5 一、特性 该产品分固体和液体两种,液体产品分为无色或淡黄色的透明或半透明液体。固体产品为黄色粉末状,易容于水,固体产品易吸潮结块。 二、用途 该产品在工业给水和生活饮用水的净化处理中,做为絮凝剂使用。最佳絮凝pH 范围在5-9以上,最好与碱性药剂或有机高分子絮凝剂联合使用效果最佳。 注:工业具有的聚合氯化铝不检验砷和重金属 四、使用方法 该产品腐蚀性较强,投加设备需做防腐处理,操作人员应配备劳动保护用具。 五、包装、贮运 固体用内衬塑料袋、外套编织袋双层包装,内袋扎口或热合,外袋牢固封口。液体用塑料桶包装或玻璃钢罐贮存及运输。

聚合氯化铝铁 分子式:[Al2(OH)n Cl6-n]m·[Fe2(OH)n Cl6-n]m,式中n.m.N.M为整数。 一、特性 该产品为黄色和黄褐色粉末状固体,易容于水,有较强的架桥、吸附性能。 二、用途 该产品在工业给水合生活饮用水的净化处理中,做为絮凝剂使用。集铝盐铁盐絮凝剂优点于一体,是聚合铝和聚合铁的良好替代品。最佳使用pH在4~10.投加量根据原水水质而定。 四、使用方法 该产品腐蚀性较强,设备需做防腐处理,操作人员应配备劳动保护用具。 五、包装、贮运 用内衬塑料薄膜的编织袋包装,净重25kg。运输及贮存时应注意防水、防潮。禁止与有毒有害物质同运。 聚合硫酸铁[PFS] 分子式:[Fe2(OH)n(SO4)3-n/2]m,式中n≤2m=f(n) 一、特性 本厂产品为液体聚合硫酸铁,为红褐色的粘稠液体,相对相对密度(d420)1.450,水解后可产生多种高价和多络离子,对水中悬浮胶体颗粒进行电性中合,降低其电位,促使颗粒相互凝聚,同时产生吸附、架桥、交联等作用。该产品使用pH

实验一 除草剂田间药效试验

实验一除草剂田间药效试验 本实验方法适用于除草剂防治果园及非耕地杂草的登记用田间药效小区试验及药效评价。 一、实验目的 学习除草剂田间药效试验的基本过程,掌握除草剂田间试验设计和评价药效的方法。 二、实验材料与仪器 1.实验材料 供试作物:果树品种和砧木在当地应具代表性的常规品种,如柑桔等; 试验对象:各种有代表性的阔叶杂草、禾本科杂草和莎草等种群; 供试药剂:试验药剂10%草甘膦SL; 对照药剂: 2.实验仪器喷雾器,水桶,移液管,量筒,烧杯,天平等。 三、实验内容与方法 1.田间试验设计本试验设试验药剂10%草甘膦SL(2250 g a.i./hm2)、中(1500 g a.i./hm2)、低(975 g a.i./hm2)3个剂量,对照药剂20%百草枯SL 750 g a.i./hm2,另设空白对照共5个处理,每处理4次重复,小区面积30 m2,每小区间50 cm隔离带,随机区组排列。 2.施药方法采用背负式工农-16型喷雾器(操作压力0.3~0.4 MP a,喷孔口径0.8 mm)施药,药液用量为675 L/hm2。施药选择天气晴朗时进行,确保用药后24 h不遇降水。记录用药时的日期和时间,以及杂草和果树两者的生长状态(萌芽、生育期)。 3.调查方法用绝对值法或估计值法记录小区的杂草种群量,如杂草种类、杂草株数、覆盖度或杂草重量等,并详细地描述造成杂草伤害的症状(如生长抑制、失绿、畸形等),以准确说明药剂作用方式。 (1) 绝对值调查法调查每种杂草总株数或重量,对整个小区进行调查或在每个小区随机选择3~4个点,每点0.25~1 m2进行抽样调查。 (2) 估计值调查法每个药剂处理区同邻近的空白对照区或对照带进行比较,估计相对杂草种群量,包括杂草群落总体和单种杂草,可用杂草数量、覆盖度、高度和茁壮长势(例如实际的杂草量)等指标,其结果可用简单的百分比表示(0为无草,100 %为与空白对照区杂草同等),也可等量换算成杂草防除百分比效果(0为无防治效果,100%为杂草全部防治),还应记录空白对照区或对照带的杂草株数覆盖度的绝对值。 为了克服准确估计百分比和使用齐次方差的困难,可以采用下列分级标准进行调查: 1 级:无草; 2 级:相当于空白对照区的0~2.5%; 3 级:相当于空白对照区的2.6%~5%; 4 级:相当于空白对照区的5.1%~l0%; 5 级:相当于空白对照区的10.1%~15%; 6 级,相当于空白对照区的15.1%~25%; 7 级:相当于空白对照区的25.1%~35%;

凝胶剂

附录ⅠM凝胶剂 凝胶剂系指以生物制品原液或经干燥后制成的干粉为原料药物,与能形成凝胶的辅料制成溶液均一、混悬或乳状液型的稠厚液体或半固体制剂。除另有规定外,凝胶剂限局部用于皮肤及体腔如鼻腔、阴道和直肠。乳状液型凝胶剂又称为乳胶剂。小分子无机药物(如氢氧化铝)凝胶剂是由分散的药物胶体小粒子以网状结构存在于液体中,属两相分散系统,也称混悬型凝胶剂。混悬型凝胶剂可有触变性,静止时形成半固体而搅拌或振摇时成为液体。 凝胶剂基质属单相分散系统,有水性与油性之分。水性凝胶基质一般由水、甘油或丙二醇与纤维素衍生物、卡波姆和海藻酸盐、西黄蓍胶、明胶、淀粉等构成;油性凝胶剂基质由液状石蜡与聚氧乙烯或脂肪油与胶体硅或铝皂、锌皂构成。 凝胶剂在生产与贮藏期间应符合下列有关规定。 一、所用生物制品原液、半成品和成品的生产和质量控制应符合相关品种要求。 二、混悬型凝胶剂中胶粒应分散均匀,不应下沉、结块。 三、凝胶剂应均匀、细腻,在常温时保持胶状,不干涸或液化。 四、凝胶剂根据需要可加入保湿剂、防腐剂、抗氧剂、乳化剂、增稠剂和透皮促进剂等。 五、凝胶剂一般应检查pH 值。 六、凝胶剂基质不应与药物发生理化作用。 七、混悬型凝胶剂在标签上注明“用前摇匀”。 七、凝胶剂用于严重损伤的皮肤、鼻腔和阴道内应无菌。 八、凝胶剂所用内包装材料不应与药物或基质发生理化作用。 九、除另有规定外,凝胶剂应遮光密封,于2~8℃避光密封贮存和运输,并应防止冻结。 凝胶剂应进行以下相应检查。 【粒度】除另有规定外, 混悬型凝胶剂取适量的供试品,涂成薄层,薄层面积相当于盖玻片面积,共涂三片,照粒度测定法(附录ⅤG 第一法)检查, 均不得检出大于180μm的粒子。 【装量】照最低装量检查法(附录ⅤF)检查,应符合规定。 【微生物限度】照微生物限度检查法(附录ⅫG)检查,应符合规定。 凡规定进行无菌检查的凝胶剂,可不进行微生物限度检查。 【无菌】A)检查,应符合规定。

药剂学实验指导——混悬剂的制备

实验十一 混悬剂的制备 实训目的 ● 掌握混悬剂的一般制备方法。 ● 会对混悬剂进行质量评定。 ● 解释助悬剂、润湿剂、絮凝剂及反絮凝剂等在混悬液中的应用。 实训器材 药品 炉甘石、氧化锌、甘油、羧甲基纤维素钠、三氯化铝、枸橼酸钠、沉降硫、硫酸锌、樟脑醑、5%苯扎溴铵溶液、吐温80、纯化水。 器材 天平、乳钵、50ml 带塞量筒(或带刻度有塞比浊管)、量筒、量杯、称量纸、滤纸、漏斗、小烧杯或投药瓶等。 实训指导 混悬剂制备工艺流程如下: (一)炉甘石洗剂 1.方法步骤 [处方] 按下列处方配制炉甘石洗剂,见表11-1。 表11-1 炉甘石洗剂四处方 处方 1 2 3 4 炉甘石(120目) 4g 4g 4g 4g 氧化锌(120目) 4g 4g 4g 4g 甘油 5ml 5ml 5ml 5ml 羧甲基纤维素钠 0.25g 三氯化铝 0.1g 枸橼酸钠 0.25g 纯化水加至 50ml 50ml 50ml 50ml [制法] (1)处方1的制法:加液研磨制备。先将炉甘石、氧化锌置乳钵中,加甘油和适量水研磨成糊状,逐渐加水至全量。 (2)处方2的制法同处方1,羧甲基纤维素钠应先用少量水溶胀后加热溶解,加入前者的糊状物。

(3)处方3的制法是将炉甘石、氧化锌置乳钵中,加甘油和适量水研磨成糊状,加水至全量后再加入三氯化铝 (4)处方4的制法同处方3,但最后加入枸橼酸钠而不是三氯化铝。 2.注意事项 (1)炉甘石与氧化锌为典型的亲水性药物,可以被水润湿,故先加入适量水和甘油研成细腻的糊状,使粉末为水分散,以阻止颗粒的凝聚,振摇时易悬浮。加水的量以成糊状为宜。 (2)本处方中的炉甘石和氧化锌应研细混合过120目筛。 (3)羧甲基纤维素钠应先用少量水溶胀后,水浴加热至完全溶解成为胶浆后使用。 (4)炉甘石洗剂作为混悬剂若配制不当或助悬剂使用不当,不易保持良好的悬浮状态,且涂用时也会有沙砾感,久贮颗粒易聚结,虽振摇也不易再分散。改进措施有:①应用高分子物质(如纤维素衍生物)作助悬剂;②用控制絮凝的方法来改进,常采用0.25~0.5mmol/L 的三氯化铝作絮凝剂或采用0.5%枸橼酸钠作反絮凝剂等。 3.质量检查 将配制好的几种炉甘石洗剂分别置于有刻度的具塞量筒中,密塞,用力振摇1min,记录混悬液的开始高度H0,并放置,按照5min、15min、30min、60min分别测定沉降物的高度H,计算各个放置时间的沉降体积比,记入表11-2中。 (二)复方硫洗剂 1.方法步骤 [处方]按下列处方配制复方硫洗剂,见表11-3。 [制法] (1)处方1的制法:取沉降硫置乳钵中加甘油研匀,缓缓加入硫酸锌水溶液,研匀,然后缓缓加入樟脑醑,边加边研,最后加适量纯化水至全量,研匀即得。 (2)处方2的制法:取沉降硫置乳钵中加甘油和聚山梨酯80研匀,缓缓加入硫酸锌水溶液,研匀,然后缓缓加入樟脑醑,边加边研,最后加适量纯化水至全量,研匀即得。 (3)处方3的制法同2只把聚山梨酯80改为苯扎溴铵溶液即可。 2.注意事项 (1)硫磺为典型的疏水性药物,不被水润湿但能被甘油润湿,故应先加入甘油使之充分分散,便于与其他药物混悬均匀,也可应用聚山梨酯80及5%(ml/ml)苯扎溴铵代替甘油作润湿剂。 (2)硫磺有升华硫、精制硫和沉降硫三种,以沉降硫的颗粒最细,易制得细腻制品,故复方硫洗剂最好选用沉降硫。 (3)硫酸锌水溶液系将硫酸锌溶于12.5ml纯化水中并过滤制得。本制剂因含有硫酸锌而不能加入软皂作为润湿剂,因二者有可能产生不溶性的二价锌皂。

蔗田除草剂新品种的筛选试验

蔗田除草剂新品种的筛选试验 云南德宏蔗区,地处祖国西南边陲,云南省西部,位于东经97°31′~98°43′,北纬23°50′~25°20′,热量丰富,气候温和,属南亚热带季风性气候。蔗区主要分布区域年均温19.2℃~20.2℃,年均雨量1417~1629mm,年温差小,日温差大,蔗区立体气候明显,具有冬热优势,春温回升快,夏季长,秋多雨,雨热同期,干凉同季,既有利于甘蔗丰产、高糖,同时又是各种甘蔗杂草滋生蔓延、繁衍生息的天然温床,加之,随着甘蔗种植年限的增长,人们长期习惯使用同一剂型的除草剂进行防治,杂草的发生愈来愈重,防治效果愈来愈差,用药量则愈来愈多,不断加大了农民的种蔗成本,严重制约着蔗糖产业的持续健康发展。为改变蔗农的用药习惯,筛选出高效、低毒、安全、环保、广谱的农药新品种和剂型,为甘蔗田间除草用药提供科学依据。 1材料及方法 1.1试验概况 试验地点:云南省陇川县景罕镇,德宏州甘科所良繁基地蔗田进行。供试甘蔗品种为粤糖60 号,1 年新植 1 年宿根。试验时间:2013 年5 月28 日上午,甘蔗大培土后,甘蔗杂草多处于4~7 叶期时用药剂防治。 1.2参试剂药与设计 试验共8 个处理,A.雷斯利(40%莠灭净+15%敌草隆+10%二甲四氯),上海威敌生化(南昌)有限公司生产;B.首丰(8%硝磺草酮+72%莠去津),广西田园生化股份有限公司生产; C.玉三金(38%硝磺莠去津+40%烟嘧磺隆),沈阳科创化学品有限公司生产; D.玉尔好(15%硝磺草酮+48%莠去津),江苏瑞帮农药厂生产;CK(对照):20%百草枯+38%莠去津胶悬剂; E.苞卫(30%苯唑草酮+助剂),巴斯夫欧洲公司生产; F.老草灭(40%莠灭净+80%敌草隆+56%二甲四氯); G.耕杰(5%硝磺草酮+50%莠去津)+助剂,先正达(苏州)作物保护有限公司生产。各处理用量见表1。 采用随机区组设计,南北走向,3 行区,试验地行长6.67m,行距1.1m,小区面积为22.01m2,试验地杂草种类多,分布均匀,土壤肥力中等,水肥管理一致。 1.3调查时间和方法 试验前进行1 次杂草基数及种类调查,试验后20d 进行茎叶处理情况调查;药后30d 调查杂草封闭情况。每小区 3 点取样,每点0.5m2,分别调查单子叶、双子叶杂草株数及鲜草总重,计算防除效果。同时不定期观察蔗株药害发生和恢复生长情况。喷药时间及天气情况:2013年5 月28 日上午9:00-11:00 喷药;下午15:00-15:50 下阵雨(药后 4 个小时)。 2试验结果及分析 2.1药前杂草发生情况调查 2013 年5 月27 日划小区、插牌,5 月28 日上午喷药前调查杂草种类及数量(表2)。药前草种主要有:香附子、牛筋草、升马唐(熟地草)、胜红蓟(臭草)、日本草(解放草)、孔明草、空心莲子、冰粉草、粟米菜、牵牛花等。杂草以双子叶为主,且大多处于4~7 叶期。 2.2药后杂草药害表现 药后24h,A(雷斯利)、CK(对照)、F(老草灭)3 个处理杂草有药害表现,其它处理没有;药后5d 观察,B(首丰)、C(玉三金)、D(玉尔好)、G(耕杰)4 个处理杂草有药害表现,E(苞卫)处理单子叶杂草有一定药害,双子叶未见药害,A(雷斯利)处理有

外加剂试验方法

一、定义 1 1 外加剂 混凝土外加剂的定义见GB 8075-87《混凝土外加剂分类、命名与定义》。 1 2 基准水泥 符合本标准附录A“混凝土外加剂性能检验用基准水泥技术条件”要求的、专门用于检验混凝土外加剂性能的水泥。 1 3 基准混凝土 按照本标准试验条件规定配制的不掺外加剂的混凝土。 二、技术要求 2 1 掺外加剂混凝土性能指标 掺外加剂砼性能指标应符合表1的表示。 外加剂种类普通减水剂高效减水剂早强减水剂 性能指标 试验项目一等品合格品一等品合格品一等品合格品减水率,% ≥8 ≥5 ≥12 ≥10 ≥8 ≥5 泌水率比,% ≤95 ≤100 ≤100 ≤100 ≤95 ≤100 含气量,% ≤3.0 ≤4.0 ≤3.0 ≤4.0 ≤3.0 ≤4.0 -60~-60~-60~-60~-60~-60~ 凝结时间之差初凝+90 +120 +90 +120 +90 +120 min 终凝-60~-60~-60~-60~-60~-60~ +90 +120 +90 +120 +90 +120

1D - - ≥140 ≥130 ≥140 ≥130 3D ≥115 ≥110 ≥130 ≥125 ≥135 ≥120 抗压强度比,% 7D ≥115 ≥110 ≥125 ≥120 ≥120 ≥115 28D ≥110 ≥105 ≥120 ≥115 ≥110 ≥105 90D ≥100 ≥100 ≥100 ≥100 ≥100 ≥100 收缩率比,% 90D ≤120 ≤120 ≤120 相对耐久性指标,% 钢筋锈蚀应说明对钢筋有无锈蚀危害 缓凝减水剂引气减水剂早强剂缓凝剂引气剂 一等品合格品一等品合格品一等品合格品一等品合格品一等品合格品 ≥8 ≥5 ≥10 ≥10 - - - - ≥6 ≥6 ≤95 ≤100 ≤70 ≤80 ≤100 ≤100 ≤100 ≤110 ≤70 ≤80 ≤3.0 ≤4.0 3.5~5.5 3.5~5.5 - - - - 3.5~5.5 3.5~5.5 +60~ +60~ -60~ -60~ -60~ -60~ +60~ +60~ -60~ -60~ +210 +210 +90 +120 +90 +120 +210 +210 +60 +60 ≤+210 ≤+210 -60~ -60~ -60~ -120~ ≤+210 ≤+210 +60~ -60~ +90 +120 +90 +120 +60 +60 - - - - ≥140 ≥125 - - - - ≥110 ≥100 ≥115 ≥110 ≥130 ≥120 ≥100 ≥90 ≥95 ≥80 ≥110 ≥110 ≥110 ≥110 ≥115 ≥110 ≥100 ≥90 ≥95 ≥80 ≥110 ≥105 ≥110 ≥110 ≥100 ≥100 ≥100 ≥90 ≥90 ≥80

絮凝剂

混凝包括混合、凝聚、絮凝三个工艺。混合是指絮凝剂向水中扩散、并与全部水混合均匀的过程。凝聚是指水中悬浮颗粒与絮凝剂的作用,通过压缩双电层和电中和等机理,失去稳定性而相互结合生成微小絮粒的过程。 絮凝是指凝聚生成的微小絮粒在水流的搅动和絮凝剂的架桥作用下通过吸附架桥和沉淀网捕等机理,逐渐成长为大的絮体的过程。 工艺原理及过程: 水中的胶体颗粒细小、表面水化和带电使其具有稳定性。带电胶体与周围的离子组成双电子层结构的胶团,所有带电胶体都是带负电,在静电斥力作用,相互排斥且自身右极为细小,只能在水中做不规则的高速运动而不能依靠重力下沉。向水中加絮凝剂后产生大量的正三价的离子和不溶于水的带正电荷的氢氧化物胶体,前者可以压缩胶体双电层,后者可以与水中的杂质发生吸附架桥、网捕等,从而使水中胶体脱稳,并逐渐形成就较大的颗粒矾花,最终在重力的作用下从水中分离出来。 絮凝剂的投加和配制: 配制一定浓度的溶液投入水中,溶解池一般配以机械搅拌装置,通过搅拌加速药剂的溶解。絮凝剂的投加设备包括计量设备、药液提升设备、投药箱、必要的水封箱以及注入设备,插入原水管内的加药管切口与逆水流方向成60°。 工艺控制

水力条件:充分的絮凝时间和必要的速度梯度。其速度梯度大了会产生较大的剪力,已经絮凝的大矾花由于剪力而破碎且难以再重新组合。絮凝时间长则颗粒的平碰撞的机会就多。混合要快速、充分,是絮凝和固液分离的前提,混合时间一般为10~30s,最长为120s,适宜的速度梯度为500~1000/s.絮凝剂的水解作用极短所以一般的混合时间为10~60s。要求水流平稳延续的时间较长,对絮凝的效果有利的帮助。 碱度 絮凝剂水解氢离子的数量会增加,需要碱的中和才能保证水中的PH 值不会下降从而影响混凝效果。 水温 水温低,化学反应速度慢,影响絮凝剂的水解,水中的杂质和氢氧化物胶体的碰撞机会减少,水的粘度液大,颗粒下降的阻力增加,矾花不易下沉。 沉淀池及时排泥原因:因为排泥不及时、池内积泥厚度升高,会缩小沉淀池的过水断面、相应缩短沉淀时间,降低沉淀效果,最终导致出水水质变坏。排泥过于频繁又会增加自耗水量 压缩双电层是指在胶体分散系中投加能产生高价反离子的活性电解质,通过增大溶液中的反离子强度来减小扩散层厚度,从而使ζ电位降低的过程。该过程的实质是新增的反离子与扩散层内

除草剂田间药效试验

除草剂田间小区药效试验施药技术探讨 田间药效试验是我国农药登记管理工作重要内容之一,是制定农药产品标签的重要技术依据。除草剂田间小区药效试验对施药技术的要求相对较高,这需要综合考虑多方面因素的影响,如对喷雾设备的要求、施药技术人员的操作水平、施药时的天气状况等。小区药效试验的技术关键是施药方式方法,因为不同的施药方法在作物上的药液沉积量和药剂分布状况有很大差异,必然会对药效产生重大影响,从而会使药效的评估发生明显偏差(屠豫钦,1993)。 除草剂田间小区药效试验施药技术的问题 1施药设备不完善 田间小区药效试验主要采用背负式手动喷雾器,这也是目前我国占绝对地位的喷雾机械。据统计,1996年,我国共有喷药器械484.7万架,其中80%以上是小型背负式喷雾器(傅泽田,祁力钧,王秀,2002)。受国内对喷雾器生产和开发情况的影响,手动喷雾器几十年来一直变化不大,主要是以工农-16型为主,尤其是雾化部件也只有一种切向涡流芯喷头,这种情况造成了许多问题(袁会珠,齐淑华,杨代斌,1998;屠豫钦,2004)使用者面临最普遍的问题是喷雾器的质量不过关,使用中存在着跑冒滴漏的现象,另外喷嘴型号不全。最近两年,北京、山东、河北都有新型的手动背负式喷雾器问世,在加工质量和选材方面有所改善,但可供选择的喷嘴类型仍然较少。此外,这些改进后的背负式手动喷雾器普遍不具有压力表和稳压器,只能通过手动摇杆来控制喷雾压力,这样不能把压力很好的控制在某一具体的数值,使得输出的流量不稳定。 2喷嘴的选择不当 国内手动背负式喷雾器大都配有空心或实心锥雾喷嘴,也有配扇形喷嘴的。但问题是可供选择的喷嘴型号范围较小,而有些使用者对农药应用技术的了解有限,往往是不论针对作物的何种生长时期,用何种除草剂,自始至终就用同一个喷嘴。喷洒苗前除草剂为尽量避免飘移,可选择流量大一点的喷嘴,苗后除草剂的喷洒要考虑药液的均匀度和沉积率,可选择流量小的喷嘴。 3不重视施药时的气象条件 药剂能否很好的沉积,与施药时的天气情况密不可分,包括施药时的温度、湿度和风速等。当施药时温度超过27℃时,易引起药害或造成飘移、挥发而降低药效,温度低于15℃时也易产生药害(王险峰,关成宏,2001)。白天有太阳直射时,湿度较低,笔者曾在施药季节于哈尔滨市郊做过测试,在上午9点30分和下午4点时田间实际相对湿度只有20%左右,特别不利于除草剂的喷洒。风速过大容易产生雾滴飘移,既不能保证正在喷洒小区的药效,而且飘移的药液有可能落到邻近的小区内,这对小区试验药效评价尤为不利。 4行走速度和喷液量的控制不严格 小区试验是要求将少量甚至微量的农药准确无误地施用到单位面积小区上。人们通常在施药前计算好了单位面积小区所需的药量和喷液量,但对行走速度没有在田间进行实际测量(且每次施药前都必须重新测量,即使是长期的同一施药者),造成了药液的剩余或缺少,这些都影响药效的评估。也有施药者为了能使得药液分布均匀,放慢了行走速度,这样喷液量也就加大了。而过去传统的大容量喷雾往往往往造成了药液滴淌(draining)和滚落(running off),沉积率较差(屠豫钦,1993;袁会珠,1999)。喷液量并非越大越好,每公顷200L即可满足农艺要求(袁会珠,1999;王险峰,2002),加大喷液量也不可能解决干旱的问题。施药技术规范化 “硬件”的选择 小区药效试验要尽量选择质量好、精确度高的喷雾器,最好具有稳压装置或带有压力表,压力可调最好,而要避免选择那些在药液少量的情况下压力不足、喷不彻底的手动喷雾

软膏剂与凝胶剂

第五章软膏剂与凝胶剂 一、问答题 1、什么是软膏剂?作用特点?处方组成? 2、软膏剂的透皮吸收过程怎样?影响因素有哪些? 3、软膏基质可分为哪几类?各有何应用特点?举例说明。 4、软膏常用制备方法?适用性? 5、软膏应进行哪些质量检测? 6、软膏基质通常分为哪几类?简述常用基质成分的性质及用途。 7、试述药物透皮吸收的影响因素。 8、设计O/ W型硫酸新霉素乳膏剂的处方及制备方法。 9、下列物质起何种类型的乳化作用: 硬脂酸铝(铝皂);油酸与氢氧化钠;羊毛脂;阿拉伯胶;胆固醇;十二烷基硫酸钠-十六醇(1:9);吐温80-司盘80(3:1) 10、大量制备时如何对凡士林等基质进行预处理? 11、软膏剂制备过程中加入的药物有哪些? 12、制备乳状膏基质时应注意什么问题?为什么要将二相均加温至70-80℃? 13、用于治疗大面积烧伤的软膏剂在制备时应注意什么? 14、影响药物从软膏和乳膏中释放的因素有哪些? 二、单选题 1、软膏剂稳定性考察时,其性状考核项目中不包括() A、酸败 B、异嗅 C、变色 D、涂展性与分层 E、沉降体积比 2、软膏剂可用于下列情况,除了() A、慢性皮肤病 B、对皮肤起保护作用 C、对皮肤起润滑作用 D、对皮肤起局部治疗作用 E、急性损伤皮肤 3、羊毛脂作软膏基质有许多特点,除了() A、熔点适宜 B、吸水性好 C、穿透性好 D、涂展性好 E、稳定性好 4、用聚乙二醇作软膏基质时常采用不同分子量的聚乙二醇混合,其目的是() A、增加药物在基质中溶液解度 B、增加药物穿透性 C、调节吸水性 D、调节稠度 E、减少吸湿性 5、有一种水溶性软膏剂基质的处方是由400g PEG4000和600g PEG400组成,现因天气变 化,需要增加稠度,可以采取下列哪一种方法: A、增加PEG400的用量; B、增加PEG4000的用量;

絮凝剂在污水处理中的应用

中国石油大学(华东)油田化学实验报告 实验日期:2015.05.13成绩: 班级:石工12-班学号:12021367姓名:善人教师: 同组者: 实验九絮凝剂在污水处理中的应用 一、实验目的 1. 观察絮凝剂(即混凝剂与助凝剂)净化水的现象,了解絮凝剂在污水处理中的作用机理和使用性质。 2. 掌握一种寻找絮凝剂最适宜质量浓度的方法。 二、实验原理 水的净化可使用各种絮凝剂。在絮凝剂中,能使水中泥沙聚沉的物质叫混凝剂。常用的混凝剂主要有无机阳离子型聚合物,如羟基铝、羟基锆等,这些无机阳离子型聚合物可在水中解离,给出多核羟桥络离子,中和固体悬浮物表面的负电性。此外,也可用三氯化铁、三氯化铝和氧氯化锆等化学剂通过水解、络合、羟桥作用,形成多核羟桥络离子,起到羟基铝、羟基锆同样的作用。 混凝剂并非用得越多越好。因混凝剂使用浓度过高将使泥沙表面吸附过量的铁离子而带正电,致使铁的多核羟桥络离子对它失去聚沉作用。因此,混凝剂的使用应有一个最适宜的质量浓度。 配合混凝剂使用,从而使它的净化效果提高、用量减少的物质叫助凝剂。助凝剂多是水溶性高分子。高分子的分子(或其缔合分子)可将被混凝剂聚结起来的泥沙颗粒进一步聚结,从而加快它的聚沉速度。常用的助凝剂有部分水解聚丙烯酰胺、钠羧甲基纤维素和褐藻酸钠等。 同样,助凝剂也并非用得越多越好。因助凝剂超过一定质量浓度,就可在水中形成网状结构,反而妨碍了泥沙颗粒的聚沉。因此,助凝剂的使用也有一个最适宜的浓度。 三、实验仪器、药品与材料 1. 实验仪器 电子天平(感量0.001g)、具塞比色管、小滴瓶、小烧杯、温度计。

2. 药品与材料 三氯化铁(化学纯)、部分水解聚丙烯酰胺(工业品)。污水(在1L 水中加入60g 高岭土,高速搅拌20min 后,在室温下密闭养护24h) 四、设计实验内容 实验过程中用目视比色法观察絮凝剂的净水现象和作用效果,以表格形式记录实验现象和实验数据。 1、单独使用混凝剂,测定实验条件下净化污水所需混凝剂的最适宜浓度。 2、单独使用助凝剂,测定实验条件下助凝剂的最适宜使用浓度。 3、助凝剂配合混凝剂使用,确定在助凝剂存在下混凝剂的最适宜浓度。 五、数据处理 计算净化污水所用混凝剂和助凝剂的最适宜质量浓度(用mg/L表示)。 絮凝剂在污水处理中的作用与原始数据记录表 混 (滴) 凝 剂

除草剂田间药效试验报告

田间试验批准证书号: 协议备案号: 验试验样品封样编号:农药田间药效试验报告 (错误!未定义书签。) 农药类别:除草剂 试验名称: 委托单位: 承担单位: 试验地点: 总负责人: 技术负责人: 参加人员: 报告完成日期: 地址: 电话: 传真: 邮编: E-mail:

田间药效试验报告摘要试验名称: 试验作物: 防治对象: 供试药剂: 施药方法及用水量(升/公顷): 试验结果: 使用方法: 安全性:

田间药效试验报告1试验目的 2试验条件 2.1作物和栽培品种的选择 2.2试验对象杂草的选择 2.3栽培条件 2.4其他条件 3试验设计和安排 3.1药剂 3.1.1试验药剂 3.1.2对照药剂 设人工除草和空白对照处理。 3.1.3供试药剂试验设计 表1供试药剂试验设计 3.2.1小区排列 3.2.2小区面积和重复 小区面积:错误!未定义书签。 重复次数:错误!未定义书签。 3.3施药方法 3.3.1使用方法 3.3.2施药器械 3.3.3施药时间和次数 3.3.4使用量

3.4防治病虫和非靶标杂草药剂资料 4调查、记录和测量方法 4.1气象及田间管理资料 4.1.1气象资料 4.1.2田间管理资料 4.2杂草调查4.2.1调查时间和次数4.2.2调查方法 4.2.3药效计算方法 4.3作物调查 4.3.1调查时间和次数 4.3.2调查方法 4.4对其他生物影响 4.5作物产量和质量 5结果与分析

(单位盖章)

表5施药当日试验地天气状况(或设施栽培条件)表(错误!未定义书签。) 表6试验期间气象资料表(错误!未定义书签。)

凝胶制剂及总结(精选.)

凝胶制剂概况 凝胶制剂由药物溶解或均匀分散于凝胶中制成。因凝胶能与作用部位紧密黏附,有较好的生物相容性,多通过皮肤、黏膜给药,也可口服发挥药效。由于凝胶吸水溶胀后形成的水化凝胶层对药物有一定的控制释放作用,现广泛用于缓释、控释系统,加上凝胶制剂本身具有透气性佳,不污染衣物,作用持久,使用方便等特点,近来对凝胶制剂的研究日益增多。 1.制剂类型 1.1按作用部位分 ①皮肤用:此类制剂非常多,所用药物主要涉及抗细菌、抗病毒、抗真菌、解热镇痛激素、局部麻醉、解毒、维生素类以及许多具有祛瘀镇痛、活血通经、清热燥湿、泻火解毒、疗疮等作用的中药。 ②口腔黏膜用:多用于治疗口腔厌氧菌感染及促进溃疡愈合,以硝咪唑类药物为主。 ③眼贴膜用:盐酸地匹福林眼用凝胶剂,阿昔洛韦眼用凝胶。 ④鼻粘膜用:复方环麻滴鼻凝胶剂,用于治疗急慢性鼻窦炎、过敏性鼻炎及感冒引起的鼻塞等。 ⑤直肠粘膜用:直肠用凝胶剂来治疗小儿哮喘。 ⑥口服:口服云南白药凝胶治疗消化道大出血。 1.2按剂型分 ①普通亲水凝胶:凝胶制剂大多采用亲水性高聚物为基质,制成含药的普通亲水凝胶。 ②复乳型凝胶:司盘.80和三乙醇胺为复乳的乳化剂,以羧甲基纤维素钠(CMC.Na)和聚乙烯醇(PVA.124)作为混合型亲水凝胶基质,制成W/O/W 复乳凝胶剂,具有 药物浓度高、不易挥发、作用持久的特点。 ③脂质体凝胶:为解决皮肤或黏膜给药所致的药物不良反应问题,将剂型改作脂质体。有报道对硝酸益康唑脂质体凝胶和盐酸丁卡因脂质体凝胶进行研究,取得满意效果。 2.常用基质 凝胶是由大分子材料交联成网状结构作为骨架,凝胶基质多为单独或联合使用亲水性高聚物的大分子材料,基质的选择对凝胶剂的流变学性质及释药性有重要影响。常用基质有以下几种。 ①丙烯酸树脂类:以卡波姆为代表,还有以1%交联聚丙烯酸钠-400(SDL-B一400) 为基质的。卡波姆,又名卡波普(carbopo1)为一类由丙烯酸与烯丙基蔗糖或季戊四醇交联而成的高分子聚合物,根据聚合度的不同,形成了多种规格的产品。卡波姆易溶于水形成酸性胶体溶液,加无机碱或有机碱可将卡波姆中和成透明且稠厚的凝胶,释药快,无毒,无刺激,与皮肤、黏膜具有良好的藕合性,所成的凝胶还具有良好的乳化性和成膜性,目前已成为最常用的理想的凝胶基质。 ②纤维素衍生物:常用的有CMC—Na、羟丙基甲基纤维素(HPMC)、羟丙基纤维素(HPC)羧甲基淀粉钠等。 ③乙烯聚合物:常用的有聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)等。 ④天然树胶:有西黄耆胶、果胶、明胶、海藻酸、黄原胶、琼脂等。 3.几种凝胶基质的配方举例 ①芩柏凝胶的最佳基质配方为:羟丙甲基纤维素2.5%,卡波姆0.75%,三乙胺0.75%,甘油5%,丙二醇5%,,氮酮2%。(加入药物、蒸馏水等总重的比例) ②盐酸米诺环素微球凝胶基质处方:卡波姆940 1.0 g,丙二醇10 g,甘油10g,氢氧化纳钠0.2 g,加纯化水至100 g。制法:取1.0 g卡波姆940,加入适量纯化水中充分溶胀,另取纯化水适量,溶解丙二醇和甘油,并与上述卡波姆溶液混合均匀,边搅拌边加入氢氧化钠溶液,使其成为凝胶基质。取基质7.8 g,加入2.2 g微球搅拌均匀即得2%

絮凝剂在污水处理中的应用

中国石油大学油田化学实验报告 实验日期: 2011/11/1 成绩: 班级:石工09-10 学号: 09021452 姓名:任 婷教师: 同组者:周霞 絮凝剂在污水处理中的应用 一、实验目的 1.观察絮凝剂(即混凝剂与助凝剂)净化水的现象,了解絮凝剂在污水处理中的作用机理和使用性质。 2.掌握一种寻找絮凝剂最适宜质量浓度的方法。 二、实验原理 水的净化可使用各种絮凝剂。在絮凝剂中,能使水中泥沙聚沉的物质叫混凝剂。常用的混凝剂主要有无机阳离子型聚合物,如羟基铝、羟基锆等,这些无机阳离子型聚合物可在水中解离,给出多核羟桥络离子,中和固体悬浮物表面的负电性。此外,也可用三氯化铁、三氯化铝和氧氯化锆等化学剂通过水解、络合、羟桥作用,形成多核羟桥络离子,起到羟基铝、羟基锆同样的作用。 混凝剂并非用得越多越好。因混凝剂使用浓度过高将使泥沙表面吸附过量的铁离子而带正电,致使铁的多核羟桥络离子对它失去聚沉作用。因此,混凝剂的使用应有一个最适宜的质量浓度。 配合混凝剂使用,从而使它的净化效果提高、用量减少的物质叫助凝剂。助凝剂多是水溶性高分子。高分子的分子(或其缔合分子)可将被混凝剂聚结起来的泥沙颗粒进一步聚结,从而加快它的聚沉速度。常用的助凝剂有部分水解聚丙烯酰胺、钠羧甲基纤维素和褐藻酸钠等。 同样,助凝剂也并非用得越多越好。因助凝剂超过一定质量浓度,就可在水中形成网状结构,反而妨碍了泥沙颗粒的聚沉。因此,助凝剂的使用也有一个最适宜的浓度。 三、仪器、药品与材料 1.实验仪器 电子天平(感量0.001g)、具塞比色管、小滴瓶、小烧杯、温度计。 2.药品与材料 三氯化铁(化学纯)、部分水解聚丙烯酰胺(工业品)。

混凝土外加剂匀质性试验方法

混凝土外加剂匀质性试 验方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

混凝土外加剂匀质性试验方法 本标准适用于普通减水剂、高效减水剂、早强减水剂、缓凝减水剂、引气减水剂、早强剂、缓凝剂、引气剂等混凝土外加剂的生产控制、质量检验和质量仲裁。 本标准参照采用国际标准ISO4316—1977《表面活性剂——水溶液的pH值测定——电位 测定法》、ISO304—1978《表面活性剂——用拉起液膜法测定表面张力》、ISO672—1978《肥皂——水分的挥发物含量的测定——烘箱法》、ISO696—1975《表面活性剂——起泡力的测量——改进罗氏法》、ISO4323—1977《肥皂——氯化物含量测定——电位滴定法》和ISO6889—1982《表面活性剂——用拉起液膜法测定界面张力》。 本标准规定溶液浓度均为重量体积百分比浓度(即1g外加剂固体物溶于水中,稀释至100 mL,称为1%浓度溶液)。溶液均和蒸馏水配制。 1固体含量试验方法 本方法适用于测定混凝土外加剂的固体物的百分含量。 11仪器 a.分析天平(称量200g,分度值01mg); b.鼓风电热恒温干燥箱(1~200℃); c.带盖称量瓶(25×65mm); d.干燥器(内盛变色硅胶)。 12试验步骤 121将洁净带盖称量瓶放入烘箱内,于100~105℃烘30min,取出置于干燥器内,冷

却30min后称量,重复上述步骤直至恒重,其质量为m0。 122将被测试样装入已经恒重的称量瓶内,盖上盖称出试样及称量瓶的总质量为m1。试样称量:固体产品10000~20000g;液体产品30000~50000g。 123将盛有试样的称量瓶放入烘箱内,开启瓶盖,升温至100~105℃烘干,盖上盖置于干燥器内冷却30min后称量,重复上述步骤直至恒重,其质量为m2。 13结果计算 固体物含量按式(1)计算: m2-m0 固体含量(%)=---------×100 (1) m1-m0 式中:m0——称量瓶的质量,g; m1——称量瓶加试样的质量,g; m2——称量瓶加烘干后试样的质量,g。 固体含量试验结果取三个试样测定数据的平均值并精确到01mg。 2密度试验方法 本方法适用于在温度20±1℃下测定混凝土外加剂溶液的密度。 21比重瓶法 211测试条件 a.被测溶液的浓度为1%或5%; b.被测溶液必须清澈,如有沉淀应滤去。 212仪器 a.比重瓶(25或50mL); b.分析天平(称量200g,分度值01mg); c.干燥器(风盛变色硅胶); d.鼓风电热恒温干燥箱(0~200℃);

试验员-混凝土外加剂试验

试验员-混凝土外加剂试验 (总分:126.00,做题时间:90分钟) 一、判断题(总题数:16,分数:16.00) 1.泵送剂在进行试验时,应至少提前24h将各种混凝土材料移入环境温度为20℃±3℃的试验室。( ) (分数:1.00) A.正确√ B.错误 解析: 2.防冻剂是指能使混凝土在负温下硬化,并在规定养护条件下达到预期性能的外加剂。( ) (分数:1.00) A.正确√ B.错误 解析: 3.所有混凝土外加剂均能减少混凝土的单位用水量。( ) (分数:1.00) A.正确 B.错误√ 解析: 4.高效减水剂一等品的减水率指标要求大于12%。( ) (分数:1.00) A.正确√ B.错误 解析: 5.在混凝土中加入减水剂,可提高混凝土的强度,同时还可以增大流动性并节约水泥。( ) (分数:1.00) A.正确 B.错误√ 解析: 6.外加剂只能改善混凝土的一种性能。( ) (分数:1.00) A.正确 B.错误√ 解析: 7.同一种外加剂用于不同强度等级的混凝土时,其掺量也不同。( )

(分数:1.00) A.正确√ B.错误 解析: 8.高效减水剂在混凝土中主要起减水作用。( ) (分数:1.00) A.正确√ B.错误 解析: 9.混凝土掺入引气剂,使混凝土的密实度降低,因而使其抗冻性降低。( ) (分数:1.00) A.正确 B.错误√ 解析: 10.混凝土中掺入早强剂,可提高混凝土的早期强度,但对后期强度无影响。( ) (分数:1.00) A.正确√ B.错误 解析: 11.混凝土中掺入减水剂,在保持工作性和强度不变的条件下,可节约水泥的用量。( ) (分数:1.00) A.正确√ B.错误 解析: 12.缓凝减水剂是指兼有缓凝及大幅度减少拌和用水量的外加剂。( ) (分数:1.00) A.正确 B.错误√ 解析: 13.建筑结构用混凝土高效减水剂的必试检验项目包括钢筋锈蚀、28d抗压强度比、减水率。( ) (分数:1.00) A.正确√ B.错误 解析: 14.仲裁试验可以不选用基准水泥。( )

絮凝剂的种类及作用

絮凝剂的种类及作用 1 无机絮凝剂无机絮凝剂也称凝聚剂,主要应用于饮用水、工业水的净化处理以及地下水、废水淤泥的脱水处理等。无机絮凝剂主要有铁盐系和铝盐系两大类, 按阴离子成分又可分为盐酸系和硫酸系, 按相对分子量又可分为低分子体系和高分子体系两大类。 1.1 无机低分子絮凝剂 传统的无机絮凝剂为低分子的铝盐和铁盐, 其作用机理主要是双电层吸附[4]。铝盐中主要硫酸铝(Al(SO4)3·18H2O)、明矾(Al2(SO4)3·K2SO4·24H2O)、铝酸钠(NaAlO3)。铁盐主要有三氯化铁(Fe-Cl3·6H2O)、硫酸亚铁(FeSO4·6H2O)和硫酸铁(Fe2(SO4)3·2H2O )。硫酸铝絮凝效果较好, 使用方便,但当水温低时, 硫酸铝水解困难, 形成的絮凝体较松散, 效果不及铁盐。三氯化铁是另一种常用的无机低分子絮凝剂, 具有易溶于水, 形成大耳中的絮体、沉降性能好、对温度、水质和pH 的适应范围广等优点, 但其腐蚀性较强, 且有刺激性气味, 操作条件差[5~9]。无机低分子絮凝剂的优点是经济、用法简单, 但用量大、残渣多。絮凝效果比高分子絮凝剂的絮凝效果低 1.2 无机高分子絮凝剂无机高分子絮凝剂是20 世纪60 年代以来在传统的铁盐和铝盐基础上发展起来的一类新型水处理药剂。其絮凝效果好, 价格相对较低, 已逐步成为主流絮凝药剂。在日本、西欧和中国, 目前都已有相当规模的无机高分子絮凝剂的生产和应用, 其产量约占絮凝剂总产量的30%~60%[10]。近年来, 我国高分子絮凝剂的发展趋势主要是向聚合铝、铁、硅及各种复合型絮凝剂方向发展, 并已逐步形成系列: 阳离子型的有聚合氯化铝(PAC)、聚合硫酸铝(PAS)、聚合磷酸铝(PAP)、聚合硫酸铁(PFS)、聚合氯化铁(PFC)、聚合磷酸铁(PFP)等; 阴离子型的有活化硅酸(AS)、聚合硅酸(PS);无机复合型的有聚合氯化铝铁(PAFC)、聚硅酸硫酸铁(PFSS)、聚硅酸硫酸铝(PFSC)、聚合氯硫酸铁(PFCS)、聚合硅酸铝(PASI)、聚合硅酸铁(PFSI)、聚合磷酸铝铁(PAFP)、硅钙复合型聚合氯化铁(SCPAFC)等。生物聚合铁(BPFS) 2

实验二 投加铁盐的化学除磷实验报告

高碑店污水处理厂化学除磷小试总结 北京工业大学 北京城市排水集团高碑店污水处理厂

一、研究背景 根据废水碳源在满足生物反硝化需求后是否有VFA余量,本课题组将市政污水分为碳源不受限型和碳源受限型两类。高碑店污水处理厂污水为碳源受限型市政污水。针对碳源受限型废水(C/N较低),在现场进行的缺氧-厌氧-好氧连续流小试试验确认:碳源是限制该工艺脱氮除磷效率的关键因素,在非曝气区的缺氧段、厌氧段分点进水方式并不能改善系统生物脱氮除磷效果。将乙酸分别投加至非曝气区始端和非曝气区中部,连续流试验结果表明:聚磷菌只能利用挥发性脂肪酸,而反硝化菌可利用的碳源类型较多,当多种有机基质存在时,两者都优先利用短链脂肪酸有机物。投加较少数量的乙酸进入非曝气区中部就能达到同等程度的生物过量除磷。非曝气区内缺氧和厌氧环境的分隔是“自然”形成的。缺氧-厌氧运行模式下,只有在反硝化菌利用废水中的碳源完成反硝化后,非曝气区的反应容积才可能转变为深度厌氧环境,而污泥混合液中是否有VFA存在以及数量将决定微生物环境转变为深度厌氧环境所需要的时间,并进一步决定系统是否能诱导并维持稳定的生物过量除磷功能。 前期试验表明:碳源尤其是VFA是影响碳源受限型废水脱氮除磷效果的最主要因素;碳源(VFA)可以由初沉污泥水解酸化后产生。因此,有必要针对高碑店污水处理厂水质(碳源受限型)和二期A/O工艺,进行初沉污泥水解酸化后初沉出水A/O工艺脱氮除磷模拟试验研究。同时,为了提高脱氮效率、强化生物脱氮功能,因此建议进行分段进水多级A/O工艺强化生物脱氮试验;此外,由于A/O工艺不具备生物除磷功能,因而需进行辅助化学除磷试验研究,从而为高碑店污水处理厂的改造及优化运行提供技术支持。 二、进水水质、试验方法及运行参数: 2.1 进水水质 本试验进水采用初沉池出水,进水水质指标见表1-1。 表1-1 进水水质单位mg/l 2.2 试验方法 本试验测定指标如表1-1种所述,其中COD采用标准重铬酸钾法; NH4+-N

相关主题
文本预览
相关文档 最新文档