当前位置:文档之家› 实数完备性的等价命题及证明

实数完备性的等价命题及证明

实数完备性的等价命题及证明
实数完备性的等价命题及证明

一、问题提出

确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的

还有五大命题,这就是以下的定理1.2至定理1.6.

定理1.2 (单调有界定理)任何单调有界数列必定收敛.

定理1.3 (区间套定理)设为一区间套:

则存在唯一一点

定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆

盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.

定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要

恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)

这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.

下图中有三种不同的箭头,其含义如下:

:(1)~(3) 基本要求类

:(4)~(7) 阅读参考类

:(8)~(10) 习题作业类

下面来完成(1)~(7)的证明.

二、等价命题证明

(1)(用确界定理证明单调有界定理)

(2)(用单调有界定理证明区间套定理)

(3)(用区间套定理证明确界原理)

*(4)(用区间套定理证明有限覆盖定理)

*(5)(用有限覆盖定理证明聚点定理)

*(6)(用聚点定理证明柯西准则)

*(7)(用柯西准则证明单调有界定理)

(1)(用确界定理证明单调有界定理)

〔证毕〕

(返回)

(2)(用单调有界定理证明区间套定理)设区间套.

若另有使,则因

.[证毕]

[推论]设为一区间套,.则当时,恒有

用区间套定理证明其他命题时,最后常会用到这个推论.

(返回)

(3) (用区间套定理证明确界原理)证明思想:构造一个区间套,使其公共点即为数集的上确界.

设, 有上界.取;,再令

如此无限进行下去,得一区间套.

可证:因恒为的上界,且,故,必有

这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕]

(返回)

*(4)(用区间套定理证明有限覆盖定理)设为闭区间的一个无限开覆盖.反证法假设:

“不能用中有限个开区间来覆盖”.

对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.

由区间套定理,.

导出矛盾:使

记由[推论],当足够大时,

这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.[证毕]

[说明]当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.

(返回)

*(5)(用有限覆盖定理证明聚点定理)设为实轴上的有界无限点集,并设.

由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即

在内至多只有.这样,

就是的一个无限开覆盖.

用有限覆盖定理导出矛盾:据定理9,存在

为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.

所以,有界无限点集必定至少有一个聚点.[证毕]

[推论(致密性定理)]有界数列必有收敛子列.即若为有界数列,则使有

子列的极限称为原数列的一个极限点,或称聚点.

(返回)

*(6)(用聚点定理证明柯西准则)柯西准则的必要性容易由数列收敛的定义直接证得,这里只证其充分性.

已知条件:当时.欲证收敛..首先证有界.对于当时,有

令,则有

.由致密性定理,存在收敛子列,设.

.最后证,由条件,当时,有

于是当(同时有)时,就有

.[证毕]

(返回)

*(7)(用柯西准则证明单调有界原理) 设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.

对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有

倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使

依次取

把它们相加,得到

故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ]

在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.

[例]证明“是点集的聚点”的以下三个定义互相等价:

(i) 内含有中无限多个点(原始定义);

(ii) 在内含有中至少一个点;

(iii) ,时,使.

证:(i)(ii) 显然成立.

(ii)(iii) 由(ii),取,;

再取;

……

一般取;

……

由的取法,保证,,.

(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]

关于实数完备性相关定理等价性的研究

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1.1确界存在定理的证明 (1) 1.2 确界存在定理证明单调有界定理 (3) 1.3单调有界定理证明区间套定理 (3) 1.4 区间套定理证明有限覆盖定理 (4) 1.5有限覆盖定理证明聚点定理 (4) 1.6聚点定理证明致密性定理 (5) 1.7致密性定理证明柯西收敛准则 (5) 1.8柯西收敛准则证明确界存在定理 (6) 致谢 (7) 参考文献 (7)

关于实数完备性相关定理等价性的研究 数学与应用数学专业学生xxx 指导教师 xxx 摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础。可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理。与之相关的七个基本定理(确界存在定理、单调有界定理、区间套定理、致密性定理、聚点定理、闭区间有限覆盖定理以及柯西收敛准则)是彼此等价的。本文主要是讨论证明这七个定理的等价性。在这里我们首先论证确界存在定理,然后由此出发依次论证实数系的其它六个基本定理,并最终形成一个完美的论证“环”。 关键词:实数集完备性基本定理等价性证明 Research about the equivalence theorems of completeness of real numbers Student majoring in Mathematics and Applied Mathematics .Bing Liu Tutor Shixia Luan Abstract: Completeness of the set of real numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, so there are considerable fundamental theorems about it. Fundamental Theorems of seven related about completeness of the set of real numbers,which are existence theorem of supremum, monotone defined management,interval sequence theorem,Bolzano-Weierstrass theorem, convergence point theorem,Heine-Borel theorem and Cauchy convergence rule are Equivalent. This paper is to discuss the proof of the equivalence of the seven theorems. Here we first Prove the existence theorem of supremum, then prove the other correlative theorems based of existence theorem of supremum and form a ideal proof “loop”. Key words: set of real numbers,completeness,fundamental theorem,equivalence,proof. 引言: 我们知道实数的完备性在理论上有很大的价值,与之相关的七个基本定理从不同的角度描述了实数的基本性质。并且这七个基本定理是相互等价的,在这里我们先证明出实数的确界存在定理,然后以此为基础顺次证明其他的六个定理最后再回到确界存在定理得到一个完美的“环”状结构的证明。本文的论证结构为确界存在定理证明单调有界定理证明区间套定理证明有限覆盖定理证明聚点定理证明致密性定理证明柯西收敛准则证明确界存在定理。 1实数完备性相关定理的论证 1.1确界存在定理的证明

实数完备性证明

一.七大定理循环证明: 1.单调有界定理→区间套定理 证明:已知n a ≤1+n a (?n ), n a ≤n b ≤1b ,∴由单调有界定理知{n a }存在极限,设∞ →n lim n a = r , 同理可知{n b }存在极限,设∞ →n lim n b =r ' ,由∞ →n lim (n n a b -)=0得r r '-=0 即r r '= ?n ,有n a ≤n b ,令∞→n ,有n a ≤r r '=≤n b ,∴?n ,有n a ≤r ≤n b 。 下面证明唯一性。 用反证法。如果不然。则? 21r r ≠,同时对任意 A a ∈,1r a ≤,2r a ≤ 对任意b 有1r b ≥ 2r b ≥,不妨设21r r <, 令 2 2 1'r r r += 显然 2 '1r r r << ? A r ∈', B r ∈', 这与B A |是R 的一个分划矛盾。 唯一性得证。定理证完。 2.区间套定理→确界定理 证明:由数集A 非空,知?A a ∈,不妨设a 不是A 的上界,另外,知 ?b 是A 的上界,记[1a ,1b ]=[a , b ],用1a ,1b 的中点2 1 1b a +二等分[1 a ,1 b ],如果2 11 b a +是A 的上界, 则取[2a ,2 b ]=[1 a ,2 11 b a +];如果2 11 b a +不是A 的上界,则取[2a ,2b ]=[2 1 1b a +,1 b ];用2 a ,2 b 的中点2 22 b a +二等分[2a ,2 b ]……如此继 续下去,便得区间套[n a ,n b ]。其中n a 不是A 的上界,n b 是A 的上界。由区间套定理可得,?唯一的 ∞ =∈1],[n n n b a r , 使∞ →n l i m n a =∞ →n lim n b = r 。A x ∈?,

2.实数基本定理的等价性证明

§ 2 实数基本定理等价性的证明 证明若干个命题等价的一般方法. 本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则 确界原理 ; Ⅱ: 区间套定理致密性定理Cauchy收敛准则 ; Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 . 一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ). 1. 用“确界原理”证明“单调有界原理”: 定理 1 单调有界数列必收敛 . 2. 用“单调有界原理”证明“区间套定理”: 定理 2 设是一闭区间套. 则存在唯一的点,使对有. 推论1 若是区间套确定的公共点, 则对, 当时, 总有. 推论2 若是区间套确定的公共点, 则有↗, ↘, . 3. 用“区间套定理”证明“Cauchy收敛准则”: 定理 3 数列收敛是Cauchy列.

引理Cauchy列是有界列. ( 证 ) 定理 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅 读 . 现采用三等分的方法证明, 该证法比较直观. 4.用“Cauchy收敛准则”证明“确界原理”: 定理5 非空有上界数集必有上确界;非空有下界数集必有下确界 . 证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确 界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是 的上界, 为的上界. 依此得闭区间列. 验证为Cauchy 列, 由Cauchy收敛准则, 收敛; 同理收敛. 易见↘. 设↘.有↗. 下证.用反证法验证的上界性和最小性. 二. “Ⅱ”的证明: 1. 用“区间套定理”证明“致密性定理”: 定理6 ( Weierstrass ) 任一有界数列必有收敛子列. 证(突出子列抽取技巧) 定理7 每一个有界无穷点集必有聚点. 2.用“致密性定理”证明“Cauchy收敛准则”: 定理8 数列收敛是Cauchy列.

实数的完备性

第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:12学时 § 1 关于实数集完备性的基本定理(3学时)教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一.确界存在定理:回顾确界概念. Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界 . 二.单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 . 三.Cantor闭区间套定理 : 区间套: 设是一闭区间序列. 若满足条件 1.

ⅰ> 对 , 有 , 即 , 亦即后一个闭区间 包含在前一个闭区间中 ; ⅱ> . 即当 时区间长度趋于零. 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列 和 , 其中 递增, 递减. 例如 和 都是区间套. 但 、 和 都不是. 2. Cantor 区间套定理: Th 3 设 是一闭区间套. 则存在唯一的点 ,使对 有 . 简言之, 区间套必有唯一公共点. 四. Cauchy 收敛准则 —— 数列收敛的充要条件 : 1. 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy 列 : ⑴ . ⑵ .

实数系基本定理等价性的完全互证[1]

第38卷第24期2008年12月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R Y V o l 138 N o 124  D ecem.,2008  教学园地 实数系基本定理等价性的完全互证 刘利刚 (浙江大学数学系,浙江杭州 310027) 摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法. 关键词: 实数系;连续性;等价;极限 收稿日期:2005206210 实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[122].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从. 我们使用的教材[1]中给出的实数系的六个基本定理及其描述为: 1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界. 2)递增(减)有界数列必有极限(pp .34). 3)闭区间套定理(pp .41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1=I 2=…=I n = …,且I n 的长度 I n →0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞ n =1 I n 必不空且为单点集. 4)Bo lzano 2W eierstrass 定理(pp .44):有界数列必有收敛子列 .5)Cauchy 收敛准则(pp .299):数列{x n }收敛Ζ{x n }是基本数列. 6)有限开覆盖定理(pp .308):若开区间族{O Α}覆盖了有界闭区间[a ,b ],则从{O Α}中必可挑出有限个开区间O Α1,O Α2,…,O Αn 同样覆盖了[a ,b ]:[a ,b ]

实数完备性

课题:实数完备性问题与确界原理 (一)引入主题 数学分析研究的基本对象是定义在实数集上的函数.为此,先来讨论实数. 我们在中学数学中已经知道实数由有理数与无理数两部分组成,并知道实数有如下一些主要性质: 1.实数集R 对加、减、乘、除 ( 除数不为0 ) 四则运算是封闭的,即任意两个实数的和、差、积、商 ( 除数不为0 ) 仍然是实数. 2.实数集是有序的,即任意两实数 必满足下述三个关系之一: b a ,b a b a b a >=<,,. 3. 实数的大小关系具有传递性,即若 ,则有 . 4.实数具有阿基米德(Archimedes)性,即对任何 c b b a >>,c a >R ∈b a ,,若 ,则存在正整数 ,使得 . 5.实数集0>>a b n b na >R 具有稠密性,即任何两个不相等的实数之间必有另一个实数, 且既有有理数,也有无理数. 6.如果在一直线(通常画成水平直线)上确定一点 O 作为原点,指定一个方向为正向( 通常把向右的方向规定为正向 ),并规定一个单位长度,则称此直线为数轴.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点也都唯一地代表一个实数.于是,实数集R 与数轴上的点有着1-1对应关系. 提问: 在出现了无理数的情形下,你们对以上性质有什么疑问? ( 要善于提出疑问!请作简短讨论 ) 总结: 至少有三处存疑—— 1) 对于无理数(无限十进不循环小数),如何进行性质1中所说的四则运算? 2)在性质2、3、4中出现了比较大小关系的不等式,然而如何对无理数进行大小比较呢? 3)在性质6中所说的:“数轴上的每一点也都唯一地代表一个实数”,为什么一定是这样? 为什么在数轴上除实数点外不再有别的空隙?( 这就是实数的完备性,是实数与有理数的根本区别.) 这些问题正是我们数学专业的学人必须正视的、不可回避的根本问题, 也就是这一单元教学的主题.( 其中第一个问题这里不去说它,有兴趣的同学可以去细心阅读课本第299-302页上的七、八两段. )

实数完备性定理的证明及应用

. .. . 实数完备性定理的证明及应用 学生:xxx 学号: 数学与信息科学学院数学与应用数学专业 指导老师:xxx 职称:副教授 摘要:实数集的完备性是实数集的一个基本特征,他是微积分学的坚实的理论基础,从不同的角度来描述和刻画实数集的完备性,六个完备性定理是对实数完备性基本定理等价性的系统论述,让我们获得对实数集完备性的基本特征的进一步的认识和理解. 并用实数完备性定理证明闭区间上连续函数的若干性质.关键词:完备性;基本定理;等价性 Testification and application about Real Number Completeness Abstract: Completeness of the set of reel numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, To prove the equivalence of the six principle theorem is systematic discussion about it and make us acquire more recognition and understanding. At the same time, the theorem of completeness of real numbers testpfyies the several qualities of the continuous function in closed interval. Key Words: sigmacompleteness; fundamental theorem; equivalence 引言 在数学分析学习中,我们知道,实数完备性定理是极限的理论基础,是数学分析理论的基石,对实数完备性表达通常有六个定理.在此,我们以实数连续性为公理,顺序证明其余六个基本定理,最后达到循环,从而证明等价性,并用实

第七章 实数完备性

第七章实数的完备性 §1 关于实数完备性的基本定理 一、问题提出 定理1.1(确界原理)非空有上(下)界的数集必有上(下)确界. 确界存在定理(定理 1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6. 定理1.2 (单调有界定理)任何单调有界数列必定收敛. 定理1.3 (区间套定理)设为一区间套: . 则存在唯一一点 定理1.4 (有限覆盖定理)设是闭区间的一个无限开覆盖,即 中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成 的一个有限开覆盖. 定理1.5 (聚点定理)直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于). 定理1.6 (柯西准则)数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.) 这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下: :(1)~(3) 基本要求类 :(4)~(7) 阅读参考类 :(8)~(10) 习题作业类

二、回顾确界原理的证明 我们曾引入有界数集的确界概念,今证明它的存在性(记号a 、b 、c 表示实数) Dedekind 定理 设A/B 是R 的一个切割,则比存在实数R ε∈使得(,]A ε=-∞,(,)B ε=+∞或 (,)A ε=-∞,[,)B ε=+∞无其它可能. 1 非空有上界的数集E 必存在上确界. 证明 设}{x E =非空,有上界b : E x ∈?,b x ≤. (1) 若E 中有最大数0x ,则0x 即为上确界; (2) 若E 中无最大数,用下述方法产生实数的一个分划;取E 的一切上界归入上类 B ,其余的实数归入下类A ,则)|(B A 是实数的一个分划. ο 1 A 、B 不空.首先B b ∈.其次E x ∈?,由于x 不是E 的最大数,所以它不是E 的上界,即 A x ∈.这说明E 中任一元素都属于下类A ; ο 2 A 、B 不漏性由A 、B 定义即可看出; ο 3 A 、B 不乱.设A a ∈,B b ∈.因a 不是E 的上界,E x ∈?,使得x a <,而E 内每一元素属于 A ,所以b x a <<. ο 4 由ο 3的证明可见A 无最大数. 所以)|(B A 是实数的一个分划.由戴德金定理,知上类B 必有最小数,记作c . E x ∈?,由ο1知A x ∈,即得c x <.这表明c 是E 的一个上界.若b 是E 的一个上界,则B b ∈,由此得b c ≤,所以c 是上界中最小的,由上确界定义,c 为集合E 的上确界,记作 E c sup =.

8实数集完备性的几个等价定理及其论证方法的比较分析-宋莉

实数集完备性的几个等价定理及其证明 宋莉 (包头师范学院数学系) 中文摘要:实数集是一个“优美”的数集,其中之一在于它关于极限运算是完备的.而极限理论是展开微积分的基础,从而微积分建立在严密的基础之上.反映实数集完备性的几个基本定理是实数理论的重要组成部分也是数学分析中的一个难点,本人再次将实数完备性认真的学习了一遍,并查找资料,对其相关的命题、定理加以整理,找出几种七个基本定理的等价性证明. 关键词:实数集完备性基本定理的等价性证明 1 引言 每个人从小都要学数数,从1、2、3开始学习自然数.两个自然数相加,相乘仍然是自然数.此时可称自然数对加法和乘法两种运算完备;学到减法,当遇到“小-大”或除法时,已不是自然数.于是数系先扩充到整数集,再扩充到有理数集,在有理数集内“+”、“-”、“?”、“÷”四则运算封闭.现代人对数的认识和学习是符合数集形成和扩充的历史过程的,有理数集是一个比较完美的数集.它具有以下性质:1)稠密性; 2)对四则运算的封闭性; 3)元素的有序性;任意两数均可比较大小. 这些性质使古希腊人认为有理数集就是所有数的全体,而且设想把它们由小到大,连续无空隙地排列在一条直线上,即把有理数与数轴上的点之间建立一一对应关系.这种设想使古希腊学者毕达哥拉斯喊出他的哲理名言“万物皆有数”(有理数).但是事实并非如此.毕氏学派一学徒希帕索斯发现了正方形的边长与对角线不可公度,即2不是数(有理数),这就引发了数学史上的第一次数学危机,它动摇了古希腊几何理论的基础,也第一次向人们揭示了有理数的缺陷.它表明,虽然有理数密密麻麻地排在数轴上,但并没有铺满整条数轴,数轴上还有许许多多不能用有理数填补的“空隙”.这个问题直到牛顿、莱布尼茨建立微积分时仍未得到解决.一段时间后,关于实数连续性的公理才分别从不同的角度建立起来.

证明热力学第三定律的两种表述是等价的

证明热力学第三定律的两种表述是等价的 080311班 赵青 080311044

证明热力学第三定律的两种表述是等价的 一、热力学第三定律 英文名称: Third law of thermodynamics 热力学第三定律是在低温现象的研究中总结出来的一个普通规律。 1906年,德国物理学家能斯特(Nernst ,右图)在研究低 温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,称为能斯特定律,简称能氏定理。这个规律被表述为:“当绝对温度趋于零时,凝聚系(固体和液体)的熵(即热量被温度除的商)在等温过程中的改变趋于零。”即: 0)(lim 0 =?→T T S 式中T S )(?为可逆等温过程中熵的变化。德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常数取值的任意性。 德国物理学家普朗克(Max Karl Ernst Ludwig Planck, 1858~ 1947)(右图) 是量子物理学的开创者和奠基人,他早期的研究领域主要是热力学,他的博士论文就是《论热力学的第二定律》。他在能斯特研究的基础上,利用统计理论指出:各种物 质的完美晶体在绝对零度时熵为零。1911年普朗克也提出了对热力学第三定律的表述,即“与任何等温可逆过程相联系的熵变, 随着温度的趋近于零而趋近于零”。 1912年,能斯特又将这一规律表述为绝对零度不可能达到原理:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。 1940 年R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K ,称为0K 不能达到原理。此原理和前面所述及的热力学第三定律的几种表述是相互有联系的。但在化学热力学中,多采用前面的表述形式。 通常认为,能氏定理和绝对零度不能达到原理是热力学的两种表述。

实数完备性基本定理相互证明

关于实数连续性的基本定理 关键词:实数基本定理 确界定理 单调有界原理 区间套定理 有限覆盖定理 紧致性定理 柯西收敛定理 等价证明 以上的定理表述如下: 实数基本定理:对R 的每一个分划A|B ,都?唯一的实数r ,使它大于或等于下类A 中的每一个实数,小于或等于上类B 中的每一个实数。 确界定理:在实数系R 内,非空的有上(下)界的数集必有上(下)确界存在。 单调有界原理:若数列}{n x 单调上升有上界,则}{n x 必有极限。 区间套定理:设{ ,[n a ] n b }是一个区间套,则必存在唯一的实数r,使得r 包含 在所有的区间里,即 ∞ =∈1 ] ,[n n n b a r 。 有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖。 紧致性定理:有界数列必有收敛子数列。 柯西收敛定理:在实数系中,数列}{n x 有极限存在的充分必要条件是: ε ε<->>?>?||,,,0m n x x ,N m N n N 有时当。 这些定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互等价的,即任取其中两个定理,它们可以相互证明。那么,它们在证明过程中有哪些联系?作为工具,它们又各具有什么特点?以下先给出它们的等价证明。 (二)实数基本定理的等价证明 一.用实数基本定理证明其它定理 1.实数基本定理→单调有界定理 证明:设数列}{n x 单调上升有上界。令B 是数列}{n x 全体上界组成的集合,即B={b|n b x n ?≤,}, 而A=R ﹨B ,则A|B 是实数的一个分划。事实上,由单调上升}{n x ,故1x -1∈A ,即A 不空,由A=R ﹨B ,知A 、B 不漏。又对任给a ∈A ,b ∈B ,则存在0 n ,使 a < 0n x ≤ b ,即A 、B 不乱。故A|B 是实数的一个分划。根据实数基本定理, A ,a R r ∈?∈?使得对,b r a B ,b ≤≤∈有。

实数完备性定理的证明及应用

实数完备性定理的证明及应用 学生姓名:xxx 学号:072 数学与信息科学学院数学与应用数学专业 指导老师:xxx 职称:副教授 摘要:实数集的完备性是实数集的一个基本特征,他是微积分学的坚实的理论基础,从不同的角度来描述和刻画实数集的完备性,六个完备性定理是对实数完备性基本定理等价性的系统论述,让我们获得对实数集完备性的基本特征的进一步的认识和理解. 并用实数完备性定理证明闭区间上连续函数的若干性质.关键词:完备性;基本定理;等价性 Testification and application about Real Number Completeness Abstract: Completeness of the set of reel numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, To prove the equivalence of the six principle theorem is systematic discussion about it and make us acquire more recognition and understanding. At the same time, the theorem of completeness of real numbers testpfyies the several qualities of the continuous function in closed interval. Key Words: sigmacompleteness; fundamental theorem; equivalence 引言 在数学分析学习中,我们知道,实数完备性定理是极限的理论基础,是数学分析理论的基石,对实数完备性表达通常有六个定理.在此,我们以实数连续性为公理,顺序证明其余六个基本定理,最后达到循环,从而证明等价性,并用实数完备性定理证明闭区间上连续函数的若干性质. 1. 基本定义[1]

第七章 实数的完备性

第七章实数的完备性 § 1 关于实数集完备性的基本定理 一区间套定理与柯西收敛准则 定义1 区间套: 设是一闭区间序列. 若满足条件ⅰ)对, 有, 即, 亦即后一个闭区间包含在前一个闭区间中; ⅱ). 即当时区间长度趋于零. 则称该闭区间序列为闭区间套, 简称为区间套 . 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列和, 其中递增,递减. 例如和都是区间套. 但、和都不是. 区间套定理 定理7.1(区间套定理) 设是一闭区间套. 则在实数系中存在唯一的点, 使对有 . 简言之, 区间套必有唯一公共点. 二聚点定理与有限覆盖定理

定义设是无穷点集. 若在点(未必属于)的任何邻域内有的无穷多个点, 则称点为的 一个聚点. 数集=有唯一聚点, 但; 开区间的全体聚点之集是闭区间; 设是中全体有理数所成之集, 易见的聚点集是闭区间. 定理 7.2 ( Weierstrass ) 任一有界数列必有收敛子列. 聚点原理 :Weierstrass 聚点原理. 定理7.3 每一个有界无穷点集必有聚点. 列紧性: 亦称为Weierstrass收敛子列定理. 四. Cauchy收敛准则——数列收敛的充要条件 : 基本列 : 回顾基本列概念 . 基本列的直观意义 . 基本列亦称为Cauchy 列. 例1 验证以下两数列为Cauchy列 : ⑴. ⑵. 解⑴ ;

对,为使,易见只要. 于是取. ⑵ . 当为偶数时 , 注意到上式绝对值符号内有偶数项和下式每个括号均为正号 , 有 , 又 . 当为奇数时,

. 综上 , 对任何自然数, 有 . …… Cauchy 列的否定: 例2 . 验证数列不是Cauchy列. 证对, 取, 有 . 因此, 取,…… 三 Cauchy收敛原理: 定理数列收敛是Cauchy列. ( 要求学生复习函数极限、函数连续的Cauchy准则,并以Cauchy收敛原理为依据,利用Heine归并原 则给出证明 )

数学分析之实数的完备性

数学分析之实数的完备性 《数学分析》教案 第七章实数的完备性 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础,并能应用基本定理证明闭区间上连续函数的基本性质和一些有关命题,从而掌握应用基本定理进行分析论证的能力。 教学重点难点:本章的重点是实数完备性的基本定理的证明;难点是基本定理的应用。 教学时数:14学时 ? 1 关于实数集完备性的基本定理(4学时) 教学目的: 1.使学生掌握六个基本定理,能准确地加以表述,并深刻理解其实质意义; 2.明确基本定理是数学分析的理论基础。 教学重点难点:实数完备性的基本定理的证明。 一(确界存在定理:回顾确界概念( Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 . 二. 单调有界原理: 回顾单调和有界概念 . Th 2 单调有界数列必收敛 . - 1 - 《数学分析》教案 三. Cantor闭区间套定理 : 1. 区间套: 设是一闭区间序列. 若满足条件

?> 对, 有 , 即 , 亦即后 一个闭区间包含在前一个闭区间中 ; ?> . 即当时区间长度趋于零. 则称该闭区间序列为一个递缩闭区间套,简称为区间套 . 简而言之, 所谓区间套是指一个“闭、缩、套” 区间列. 区间套还可表达为: . 我们要提请大家注意的是, 这里涉及两个数列和 , 其中递增, 递减. 例如和都是区间套. 但、 和都不是. 2. Cantor区间套定理: Th 3 设是一闭区间套. 则存在唯一的点,使对有 . 简言之, 区间套必有唯一公共点. 四( Cauchy收敛准则——数列收敛的充要条件 : - 2 - 《数学分析》教案

实数完备性的等价命题及证明

一、问题提出 确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的 还有五大命题,这就是以下的定理1.2至定理1.6. 定理1.2 (单调有界定理)任何单调有界数列必定收敛. 定理1.3 (区间套定理)设为一区间套: . 则存在唯一一点 定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆 盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖. 定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要 恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.) 这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具. 下图中有三种不同的箭头,其含义如下: :(1)~(3) 基本要求类

:(4)~(7) 阅读参考类 :(8)~(10) 习题作业类 下面来完成(1)~(7)的证明. 二、等价命题证明 (1)(用确界定理证明单调有界定理) (2)(用单调有界定理证明区间套定理) (3)(用区间套定理证明确界原理) *(4)(用区间套定理证明有限覆盖定理) *(5)(用有限覆盖定理证明聚点定理) *(6)(用聚点定理证明柯西准则) *(7)(用柯西准则证明单调有界定理) (1)(用确界定理证明单调有界定理) 〔证毕〕 (返回) (2)(用单调有界定理证明区间套定理)设区间套.

第七章 实数的完备性

第七章 实数的完备性 (6学时) §1 关于实数完备性的基本定理 教学目的要求: 掌握实数完备性的基本定理的内容,知道其证明方法. 教学重点、难点:重点实数完备性的基本定理. 难点是定理的证明,特别是柯西收敛准则和充分性的证明.. 学时安排: 4学时 教学方法: 讲授法. 教学过程如下: 一、区间套定理与柯西收敛准则 定义1 设闭区间列{[,]}n n a b 具有如下性质: (1)11[,][,],1,2,;n n n n a b a b n ++?=L (2)lim()0n n n b a →∞ -= 则称{[,]}n n a b 为闭区间套,或简称区间套. 定理7.1(区间套定理) 若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ使得 [,],1,2,n n a b n ξ∈=L ,即 ,1,2,.n n a b n ξ≤≤=L 证: 先证存在性 Q {[,]}n n a b 是一个区间套, 所以 1221,n n a a a b b b ≤≤≤≤≤≤≤≤L L L ∴可设 lim n n a ξ→∞ = 且由条件2有 lim lim()lim n n n n n n n n b b a b a ξ→∞ →∞ →∞ =-+== 由单调有界定理的证明过程有,1,2,.n n a b n ξ≤≤=L 再证唯一性 设ξ'也满足,1,2,.n n a b n ξ'≤≤=L 那么,,1,2,.n n b a n ξξ'-≤-=L 由区间套的条件2得 lim()0n n n b a ξξ→∞ '-≤-=故有ξξ'= 推论 若[,](1,2,)n n a b n ξ∈=L 是区间套{[,]}n n a b 所确定的点,则对任给的0ε>,存在0N >,使得当 n N >时有 [,](,)n n a b U ξε? 柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对,m n N >有

实数系基本定理的等价性证明

实数系基本定理的等价性证明 摘 要 说明了确界原理、单调有界定理、闭区间套定理、致密性定理、柯西收敛原理、有限覆盖定理这六个定理是等价的.也就是说,以这六个定理中的任意一个作为公理都可以推出另外五个.本文把闭区间套定理作为公理,证明了这六个定理之间是相互等价的. 关键词 上、下确界、闭区间套、有限覆盖、收敛、等价性 在数学分析课程中我们学习了实数系的六个基本定理,即确界原理、单调有界定理、闭区间套定理、致密性定理、柯西收敛原理和有限覆盖定理.实数系这六个基本定理是相互等价的,即以其中任何一个定理作为公理都可推出另外五个定理. 在《数学分析》教材中,一般都是以确界原理作为公理,然后去证明其余 的五个定理.我们现以“闭区间套定理”作为公理,然后去推证其余的五个定理,并证明这六个定理是等价的. 六个定理的顺序: ① 确界原理 ② 单调有界定理 ③ 闭区间套定理 ④ 致密性定理 ⑤ 柯西收敛原理 ⑥ 有限覆盖定理 按以下顺序给予证明: ③?⑥?④?⑤?①?②?③ 1 闭区间套定理?有限覆盖定理[]1 闭区间套定理 若闭区间列][{}n n b a ,满足: ①[]n n b a ,?[]11,++n n b a ,n =1,2,3,…; ②∞ →n lim ()n n a b -=0 ; 则存在唯一ξ,使得∞ →n lim n a =∞ →n lim n b =ξ,ξ是所有区间的唯一公共点. 有限覆盖定理 若开区间所成的区间集E 覆盖一个闭区间[]b a ,,则总可从E 中选出有限个区间,使这有限个区间覆盖[]b a ,.

证明 用反证法 设[]b a ,不能被E 中有限个区间所覆盖.等分区间[]b a ,为两个区间,则至少有一个部分区间不能被E 中有限个区间所覆盖,把这一区间记为 []11,b a .再等分[]11,b a ,记不能被E 中有限个区间所覆盖的那个部分区间为 []22,b a .照这样分割下去,得到一个区间列][{}n n b a ,,这区间列显然适合下面两 个条件: (i ) 每一[]n n b a ,皆不能被E 中有限个区间所覆盖; (ii ) []b a ,?[]11,b a ?[]22,b a ?…; (iii )n b -n a = n a b 2-→0; 有条件(ii )及(iii ),于是由闭区间套定理,必有唯一点ξ∈[]b a ,使n a →ξ, n b →ξ.按覆盖概念及定理所设条件,在E 中至少存在一个开区间,设为)(βα,,使 ξ∈)(βα, 即 α<ξ<β 有数列极限的性质知道,?正整数N ,当n >N 时,有 α<n a <n b <β 即当n >N 时,有 []n n b a ,?)(βα, 也就是用E 中一个区间)(βα,就可覆盖所有形如[]n n b a ,﹙n >N ﹚的区间,与(i )矛盾. 定理证毕 2 有限覆盖定理?致密性定理[]2 致密性定理 有界数列必有收敛的子列. 证明 设{}n x 为有界数列,a 是它的一个下界,b 是它的一个上界,于是下列两种情形之一成立: (i ) α∈[]b a ,,使在α的任何邻域中都有{}n x 的无穷多项;

第5讲实数的完备性

第五讲实数的完备性 I 基本概念与主要结果 实数空间 1 无理数的定义 人类最先只知道自然数,由于减法使人类认识了负整数,又由除法认识了有理数,最后 由于开方与不可公度问题①发现了无理数,可惜的是无理数不能用有理数的开方形式主义来定 义.事实上,有理数开方所得到的无理数只占无理数中很小的一部分.为了让实数与数轴上 的点 对应起来,充满全数轴,必须用别的方法. 方法之一是用无限小数,我们知道任何有理数都可表为无限循环小数,这样可以把无限 不循环小数定义为无理数. 一个无限不循环小数 x ,取其n 位小数的不足近似值 a n 与过剩近似值 久,a n 与P n 均 为有理数,且P n -叫0 ( n T 处),x j 比,(\】.可见以无限不循环小数定义 10n 无理数等价于承认:以有理数为端点的闭区间套,必有且仅有唯一的公共点,此乃区间套定 理,即承认它是正确的. 历史上引进无理数的传统方法有两种: 理数列的基本序列法. 戴德金分割法具有很强的直观性, 假如在数轴上任意一点处将数轴截成两段, 果折断处是有理点,那么它不在左子集, 最大数或B 的最小数.如果 A 中没有最大数, 的一个“空隙”,称之为无理数,显然它是有序的, 系沈燮昌编写的《数学分析》,高等教育出版社, 康托用有理数基本序列的等价类来定义实数,其方法虽没有分割法直观,但其思想在近 毕达哥拉斯(公元前约 580~约500):古希腊数学家、唯心主义哲学家,其招收 300门徒组织了一个 “联盟”,后称之为“毕达哥拉斯学派”,宣扬神秘宗教和唯心主义.在西方首次提出勾股定理,并把数的概 念神秘化,认为“万物皆数”,即数是万物的原型,也构成宇宙的“秩序” ,这里的数指的是自然然及自然数 戴德金( Dedekind )分割法和康托(Cantor )的有 其思想是:每个有理数在数轴上已有一个确定的位置, 那么全体有理数被分为左、右两个子集 就在右子集,这样分割就确定了一个有理数, A,B .如 即A 的 B 中也没有最小数,这个分割就确定了直线上 可定义其四则运算(可参见北京大学数学 1986 年).

浅谈实数的完备性

本科毕业论文 题目浅谈实数的完备性 专业信息与计算科学 作者姓名唐星星 学号2013201334 单位数学科学学院 指导教师张冬梅 2017 年 5 月 教务处编

原创性声明 本人郑重声明:现提交的学位论文是本人在导师指导下,独立进行研究取得的成果.除文中已经注明引用的内容外,论文中不含其他人已经发表或撰写过的研究成果,也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料.对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明.本人承担本声明的相应责任. 学位论文作者签名:日期: 指导教师签名:日期:

目录 摘要 (3) Abstract (4) 前言 (1) 1.实数完备性定理在《数学分析》中所占的地位 (2) 2. 实数集的完备性 (2) 3.实数六个基本定理的描述和证明 (2) 3.1闭区间套定 (2) 3.2.确界的叙述 (3) 3.3有限开覆盖 (5) 定理3(有限覆盖定理) (6) 聚点的定义 (7) 定理4(聚点定理) (7) 3.5致密性定理 (8) 3.6柯西收敛准则 (8) 3.7单调有界定理 (9) 4.实数循环定理的证明 (10) 4.1确界定理?闭区间套定理 (10) 4.2区间套定理?有限覆盖定理 (10) 4.3有限覆盖定理?聚点定理 (11) 4.4聚点定理?致密性定理 (11) 4.5致密性定理?柯西收敛准则 (11) 4.7单调有界?确界定理 (12) 5.实数的完备性的发展状况 (12) 6.实数完备性定理过程中的一些注示 (13) 6.1关于实数完备性定理的循环证明过程 (13) 6.2关于实数完备性定理的起点 (13) 参考文献 (16) 致谢 (17)

实数完备性的六大基本定理的相互证明 共 个

1 确界原理非空有上(下)界数集,必有上(下)确界。 2 单调有界原理 任何单调有界数列必有极限。 3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点 ξ,使得 ,2,1],,[=∈n b a n n ξ。 4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。 5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。) 直线上的有解无限点集至少有一个聚点。 6 Cauchy 收敛准则数列}{n a 收敛?对任给的正数ε ,总存在某一个自然数N ,使得 N n m >?,时,都有ε<-||n m a a 。 一.确界原理 1.确界原理证明单调有界定理 证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记 a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N 时有a - ε < a N ≤ a n . 另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有 a - ε < a n < a + ε, 这就证得 a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界. 2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)?n,[an+1,bn+1]?[an,bn]; 2) bn-an = 我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,?) 存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S

相关主题
文本预览
相关文档 最新文档