当前位置:文档之家› 铜 合 金

铜 合 金

金线和铜线的差别

铜线和金线的优缺点 1 引言丝球焊是引线键合中最具代表性的焊接技术,它是在一定的温度下,作用键合工具劈刀的压力,并加载超声振动,将引线一端键合在IC芯片的金属法层上,另一端键合到引线框架上或PCB便的焊盘上,实现芯片内部电路与外围电路的电连接,由于丝球焊操作方便、灵活、而且焊点牢固,压点面积大(为金属丝直径的2.5-3倍),又无方向性,故可实现高速自动化焊接[1]。丝球焊广泛采用金引线,金丝具有电导率大、耐腐蚀、韧性好等优点,广泛应用于集成电路,铝丝由于存在形球非常困难等问题,只能采用楔键合,主要应用在功率器件、微波器件和光电器件,随着高密度封装的发展,金丝球焊的缺点将日益突出,同时微电子行业为降低成本、提高可靠性,必将寻求工艺性能好、价格低廉的金属材料来代替价格昂贵的金,众多研究结果表明铜是金的最佳替代品[2-6]。 铜丝球焊具有很多优势:(1)价格优势:引线键合中使用的各种规格的铜丝,其成本只有金丝的1/3-1/10。(2)电学性能和热学性能:铜的电导率为0.62(μΩ/cm)-1,比金的电导率[0.42(μΩ/cm)-1]大,同时铜的热导率也高于金,因此在直径相同的条件下铜丝可以承载更大电流,使得铜引线不仅用于功率器件中,也应用于更小直径引线以适应高密度集成电路封装;(3)机械性能:铜引线相对金引线的高刚度使得其更适合细小引线键合;(4)焊点金属间化合物:对于金引线键合到铝金属化焊盘,对界面组织的显微结构及界面氧化过程研究较多,其中最让人们关心的是"紫斑"(AuAl2)和"白斑"(Au2Al)问题,并且因Au和Al两种元素的扩散速率不同,导致界面处形成柯肯德尔孔洞以及裂纹。降低了焊点力学性能和电学性能[7,8],对于铜引线键合到铝金属化焊盘,研究的相对较少,Hyoung-Joon Kim等人[9]认为在同等条件下,Cu/Al界面的金属间化合物生长速度比Au/Al界面的慢10倍,因此,铜丝球焊焊点的可靠性要高于金丝球焊焊点。 1992年8月,美国国家半导体公司开始将铜丝球焊技术正式运用在实际生产中去,但目前铜丝球焊所占引线键合的比例依然很少,主要是因此铜丝球焊技术面临着一些难点:(1)铜容易被氧化,键合工艺不稳定,(2)铜的硬度、屈服强度等物理参数高于金和铝。键合时需要施加更大的超声能量和键合压力,因此容易对硅芯片造成损伤甚至是破坏。本文采用热压超声键合的方法,分别实现Au引

自然界中含铜矿物有200多种

铜精矿(COPPER SULPHIDE CONCENTRATE) 1.概述 自然界中含铜矿物有200多种,其中具有经济价值的只有十几种,最常见的铜矿是硫化铜矿,例如:黄铜矿(CuFeS2)、辉铜矿(Cu2S)、铜兰(CuS)等,目前世界上80%的铜来自此类矿石。铜精矿是将矿石粉碎球磨后,用药剂浮选分离捕集含铜矿物,使品位大大提高,供冶炼铜用。少数铜矿中(如湖北大冶铜绿山矿),常常夹杂有孔雀石,这是一种含铜的碳酸盐矿物,色泽优美,经琢磨雕刻,可做成佩饰或项链等装饰品,属稀有宝石类,深受人们喜爱。 我国开采冶炼铜矿的历史悠久,可追溯到春秋时代,距今2700多年。大冶有色金属公司铜绿山矿在生产过程中发现的古铜矿遗址,经考古发掘,已清理出从西周至西汉千余年间不同结构、不同支护方式的竖井、斜井、盲井数百座,平巷百余条,以及一批春秋早期的炼铜鼓风竖炉,随同出土还有大量的用于采矿、选矿和冶炼的生产工具,在遗址旁近2平方公里的地表堆积着约40万吨以上的古代炼渣,渣样分析,其铜含量小于0.7%,它表明了我国古代采冶的规模和高超的技术水平。 我国现代化的大型炼铜采冶企业有:江西铜业有限公司、大冶有色金属公司(湖北)、铜陵有色金属公司(江苏)、白银有色金属公司(甘肃)、中条山有色金属公司(山西)以及云南冶炼厂、沈阳冶炼厂、葫芦岛锌厂等。由于自采铜矿的品位和数量有限,不能满足生产的需要,因而对进口铜精矿的需求日益增大,与我国有过贸易往来的铜精矿生产国有:巴布亚新几内亚、菲律宾、印尼、澳大利亚、蒙古、摩洛哥、莫桑比克、南非、波兰、秘鲁、智利、墨西哥、美国、加拿大等。 2.特性 进口硫化铜精矿一般为墨绿色到黄绿色,也有灰黑色,其中时有夹杂少许兰色粉末。铜精矿是浮选产物,粒度较细,接近干燥的铜精矿在储运过程中易扬尘散失,也不适宜远洋运输,因此生产过程中常保持10%左右的水份。气温高时,硫化铜精矿易氧化,特别是远洋运输时间长,或在夏季交接货物时,氧化现象更为严重。验收这种铜精矿时,往往铜品位降低,收货重量增加。正是由于这种原因,铜精矿在贸易的交接过程中,是以总金属量来衡量的。用于品质分析的样品,应密封于铝箔袋中存放。实验证明,封存于纸袋或聚乙烯袋中的样品,放置干燥器中保存一个月,铜的百分含量明显降低,随着保存时间的延长,铜品位还会继续下降,而封存在铝箔袋中的样品,即使存放半年,铜含量也无明显变化。 从冶炼的角度来说,铜精矿中硫和铁的含量高些好,一般要求铜硫比为1∶1左右,Fe>20% ,Si<10%,这种矿在反射炉中造渣性能和流动性能都较好。对杂质元素As,F,Cl,Cr,Hg,Pb, Zn,Bi等含量要求愈低愈好,主要是为了满足冶炼的要求和对环境的保护。 3.用途 铜精矿供炼铜用。从矿石冶炼得到的“羊角铜”即粗铜,经电解可得到纯度很高的电解铜。在冶炼和电解过程中,还可以从阳极泥、电解液、烟道灰和尾气中分别回收金、银、钯、铂、镉、铅、锌、铋、硒、碲、硫等元素或化合物,余热可发电。综合利用不仅可减少废液、废渣、废气对环境和空气的污染,同时变废为宝,提高了铜精矿的利用价值。 4.化学成分

LED 铜线和金线的优缺点

这里有一份铜线和金线的详细试验结果与分析 1引言 丝球焊是引线键合中最具代表性的焊接技术,它是在一定的温度下,作用键合工具劈刀的压力,并加载超声振动,将引线一端键合在IC 芯片的金属法层上,另一端键合到引线框架上或PCB便的焊盘上,实现芯片内部电路与外围电路的电连接,由于丝球焊操作方便、灵活、而且焊点牢固,压点面积大(为金属丝直径的2.5-3倍),又无方向性,故可实现高速自动化焊接[1]。 丝球焊广泛采用金引线,金丝具有电导率大、耐腐蚀、韧性好等优点,广泛应用于集成电路,铝丝由于存在形球非常困难等问题,只能采用楔键合,主要应用在功率器件、微波器件和光电器件,随着高密度封装的发展,金丝球焊的缺点将日益突出,同时微电子行业为降低成本、提高可靠性,必将寻求工艺性能好、价格低廉的金属材料来代替价格昂贵的金,众多研究结果表明铜是金的最佳替代品[2-6]。 铜丝球焊具有很多优势: (1)价格优势:引线键合中使用的各种规格的铜丝,其成本只有金丝的1/3-1/10。 (2)电学性能和热学性能:铜的电导率为0.62(μΩ/cm)-1,比金的电导率[0.42(μΩ/cm)-1]大,同时铜的热导率也高于金,因此在直径相同的条件下铜丝可以承载更大电流,使得铜引线不仅用于功率器件中,也应用于更小直径引线以适应高密度集成电路封装;

(3)机械性能:铜引线相对金引线的高刚度使得其更适合细小引线键合; (4)焊点金属间化合物:对于金引线键合到铝金属化焊盘,对界面组织的显微结构及界面氧化过程研究较多,其中最让人们关心的是"紫斑"(AuAl2)和"白斑"(Au2Al)问题,并且因Au和Al两种元素的扩散速率不同,导致界面处形成柯肯德尔孔洞以及裂纹。降低了焊点力学性能和电学性能[7,8],对于铜引线键合到铝金属化焊盘,研究的相对较少,Hyoung-JoonKim等人[9]认为在同等条件下,Cu/Al 界面的金属间化合物生长速度比Au/Al界面的慢10倍,因此,铜丝球焊焊点的可靠性要高于金丝球焊焊点。 1992年8月,美国国家半导体公司开始将铜丝球焊技术正式运用在实际生产中去,但目前铜丝球焊所占引线键合的比例依然很少,主要是因此铜丝球焊技术面临着一些难点: (1)铜容易被氧化,键合工艺不稳定, (2)铜的硬度、屈服强度等物理参数高于金和铝。键合时需要施加更大的超声能量和键合压力,因此容易对硅芯片造成损伤甚至是破坏。 本文采用热压超声键合的方法,分别实现Au引线和Cu引线键合到Al-1%Si-0.5%Cu金属化焊盘,对比考察两种焊点在200℃老化过程中的界面组织演变情况,焊点力学性能变化规律,焊点剪切失效模式和拉伸失效模式,分析了焊点不同失效模式产生的原因及其和力学性能的相关关系。

从含铜金精矿中提取金

从含铜金精矿中提取金、银氰化工艺试验研究方案 2009-12-27 17:22:29 中国选矿技术网浏览130 次收藏我来说两句 一、前言 对于含铜金银矿石,由于铜的干扰,如采用直接氰化浸出法,金、银的浸出率很低。目前,国内黄金冶炼厂对此类金精矿通常采用焙烧氰化工艺进行处理,但该工艺方法,设备投资大,技术要求高,操作复杂,对于中小黄金矿山难以推广应用。文中提出了一种从含铜金精矿中提取金、银的氰化浸出工艺方法。工艺试验结果表明,在氰化浸出时,加入一种助浸剂SD和新型调整剂SN调节浸出液的pH,能够使金,银氰化浸出率分别达到92.92%和35.90%,与采用常规氰化工艺方法相比,分别提高30.42%和17.63%。该工艺方法操作简便,药剂成本低,浸出率高,不增加设备投资,具有较大的经济效益和社会效益,对于中小黄金矿山具有推广价值。 二、矿样性质 广西某金矿提供的浮选金精矿,矿样颜色呈褐色,矿物主要成分为黄铁矿、黄铜矿、方铅矿等到硫化矿物,金主要以微粒,超大型微粒附存于上述矿物中,并为硫化物所包裹,经化验分析测定,该金精矿主要元素含量见表1。 表1 化学组成 由表1可见,金精矿中的铜,硫的含量较高,尤其是铜的存在,会严重影响金、银的氰化浸出,该矿样属于难氰化浸出金精矿。 三、常规氰化浸出试验 采用常规氰化法对该金精矿进行浸出试验。氰化浸出条件:NaCN质量分数为0.5%,液固比为3∶1,浸出液的pH值为11,浸出时间为48h。氰化浸出结果如表2所示。 表2 常规氰化浸出结果

从表2可以看出,按常规氰化工艺方法进行浸出,其Au、Ag的氰化浸出率较低,分别为62.50%和18.27%。其主要原因是矿样含铜较高,铜的存在消耗了大量的氰化物,影响了Au、Ag的氰化浸出。为保证Au、Ag的氰化浸出必须增加NaCN的用量,再之溶解的铜可能在矿样中Au、Ag矿物表面形成CuCN膜和铜膜。另外,矿样中的硫,除对Au、Ag产生包裹外,还与溶液中的CN-,OH-反应产生一系列的化合物,如S2-,SO32-,SCN-,S2O32-,多硫化合物Sn2-,连多硫酸盐S X O62-等,这一系列的反应不仅消耗了浸出液中的氧(有时氰化液中的氧降到2~3mg/L)、导致氰化钠用量的增加,生成的S2-还可能沉淀在金矿物表面,使其钝化,降低金的浸出速度或使金难于浸出。 四、加助浸剂氰化浸出试验 采用“提高金精矿氰化浸出工艺中金回收率”专利技术方法,对该矿样进行氰化浸出试验。该工艺方法是在氰化浸出液中加入一种助浸剂SD,清除Cu、S等到有害元素对氰化浸出的影响,促进Au、Ag的溶解。氰化浸出条件:NaCN质量分数0.5%,液固比:3∶1,浸出液的pH>11,浸出时间48h,助浸剂SD的加入量为矿样的1%。试验结果见表3。 表3 加助浸剂氰化浸出结果 从表3可见,在常规氰化浸出工艺中,加入助浸剂SD,对Au、Ag的氰化浸出是有利的,可使Au、Ag的氰化浸出率分别提高20.84%和6.41%。 五、添加调整剂SN氰化浸出试验 采用“新型调整剂氰化浸出工艺”专利技术对该金精矿进行氰化浸出试验。该工艺方法是在氰化浸出时,加入一种新型调整剂SN,改变氰化浸出介质,可有效地改进Au、Ag的氰化浸出过程。氰化浸出条件:NaCN质量分数0.5%,液固比3∶1,浸出液的pH≈10,调整剂SN的加入量为矿量的1%,浸出时间48h。试验结果见表4。 表4 新型调整剂SN氰化浸出结果

单金铜键合引线成套生产技术项目

单金铜键合引线成套生产技术项目可行性分析报告 一、概述 众所周知,在超大规模集成电路(VLSI)和甚大规模集成电路(VLSI)的芯片与外部引线的连接方法中,无论何时引线键合均是芯片连接的主要技术手段,因而键合引线已成为电子封装业四大重要结构材料之一。 鉴于键合引线的智能更新作用是将一个封装器件或两个部分焊接好并导电,以及封装设计中键合引线焊接所需间隙主要取决于丝的直径,因此对键合引线的单位体积导电率有很高的要求,同时,所选用之金属必须具有足够的延伸率,必须能够被拉伸到Ф0.016~0.050mm,且为了避免破坏晶片,该金属必须能够在足够低的温度下进行热压焊接和超声波焊接,其化学性能、抗腐蚀性能和冶金特性必须与它所焊接的材料相熔合。基于上述技术特性需求,所以用作键合引线的材料就被局限于Au、Ag、Cu、AI 四种金属之中。迄今为止,在微电子键合封装业中,最为广泛应用的键合引线是键合金丝。 随着微电子工业的蓬勃发展,集成电路电子封装业正向体积小、高性能、高密集、多芯片方向快捷推进,从而对键合引线的直径提出了超细(Ф0.018mm)的要求。由于超细的键合金丝在键合工艺中已不能胜任窄间距、长间距离键合技术指标的要求,同时也因黄金市值一路飙升,导致使用键合金丝的厂家生产成本猛增,制约了整个行业的技术提升及规模发展,因此,键合金丝

无论从质量上、数量上和成本上,均一不能满足集成电路电子封装也发展的需要。于是,开发和推广应用新型微电子封装材料势在必行,迫在眉睫。正是在这种背景下,我们决定联合开发单金铜键合引线成套生产技术,以满足不断发展的微电子封装业的需要。 顾名思义,单晶铜,即单晶体铜材,其整根铜材仅由一个晶粒组成,不存在晶粒之间产生的“晶界”。单金铜材料是经过“高温热铸模式连续铸造法”所制造的导体,也即运用凝固理论,通过热型连续铸造技术改变普通铜材微观多晶体结构而获得的一种新型材料,系无氧铜技术升级换代的新材料。该材料由于不存在“晶界”,不会对通过的信号产生折射和反射,故不会造成信号失真和衰减,因为具有稳定而优异的导电性、导热性、极好的高保真信号传输性,同时又具有稳定的化学性能及超常的物理机械加工性能,在加上过程中损耗量极低。基于这些特点,单金铜键合丝现在成为机电工业、微电子集成电路封装业相当完美极具应用价值的重要材料。 具体来说,单金铜丝用于键合引线的优势主要表现在以下几个方面: 1.单晶粒:单金铜丝只有一个晶粒,内部无晶界。单晶铜杆有 致密的定向凝固组织,消除了横向晶界,很少有缩孔、气孔等铸造缺陷,且结晶方向控丝方向相同,能够承受巨大的塑性变形能力。另外,由于没有阻碍位错滑移的晶界,变形、

铜丝引线键合技术的发展

铜丝引线键合技术的发展 摘要铜丝引线键合有望取代金丝引线键合,在集成电路封装中获得大规模应用。论文从键合工艺﹑接头强度评估﹑键合机理以及最新的研究手段等方面简述了近年来铜丝引线键合技术的发展情况,讨论了现有研究的成果和不足,指出了未来铜丝引线键合技术的研究发展方向,对铜丝在集成电路封装中的大规模应用以及半导体集成电路工业在国内高水平和快速发展具有重要的意义。 关键词集成电路封装铜丝引线键合工艺 1.铜丝引线键合的研究意义 目前超过90%的集成电路的封装是采用引线键合技术。引线键合(wire bonding)又称线焊,即用金属细丝将裸芯片电极焊区与电子封装外壳的输入/输出引线或基板上的金属布线焊区连接起来。连接过程一般通过加热﹑加压﹑超声等能量借助键合工具(劈刀)实现。按外加能量形式的不同,引线键合可分为热压键合﹑超声键合和热超声键合。按劈刀的不同,可分为楔形键合(wedge bonding)和球形键合(ball bonding)。目前金丝球形热超声键合是最普遍采用的引线键合技术,其键合过程如图1所示。 由于金丝价格昂贵﹑成本高,并且Au/Al金属学系统易产生有害的金属间化合物,使键合处产生空腔,电阻急剧增大,导电性破坏甚至产生裂缝,严重影响接头性能。因此人们一直尝试使用其它金属替代金。由于铜丝价格便宜,成本低,具有较高的导电导热性,并且金属间化合物生长速率低于Au/Al,不易形成有害的金属间化合物。近年来,铜丝引线键合日益引起人们的兴趣。 但是,铜丝引线键合技术在近些年才开始用于集成电路的封装,与金丝近半个世纪的应用实践相比还很不成熟,缺乏基础研究﹑工艺理论和实践经验。近年来许多学者对这些问题进行了多项研究工作。论文将对铜丝引线键合的研究内容和成果作简要的介绍,并从工艺设计和接头性能评估两方面探讨铜丝引线键合的研究内容和发展方向。

铜丝在引线键合技术的发展及其合金的应用

铜丝在引线键合技术的发展及其合金的应用 一、简介 目前超过90%的集成电路的封装是采用引线键合技术,引线键合,又称线焊。即用金属细丝将裸芯片电极焊区与电子封装外壳的输入,输出引线或基板上的金属布线焊区连接起来。连接过程一般通过加热、加压、超声等能量,借助键合工具“劈刀”实现。按外加能量形式的不同,引线键合可分为热压键合、超声键合和热超声键合。按劈刀的不同,可分为楔形键合和球形键合。 引线键合工艺中所用导电丝主要有金丝、铜丝和铝丝,由于金丝价格昂贵、成本高,并且Au/Al金属学系统易产生有害的金属间化合物,使键合处产生空腔,电阻急剧增大,导电性破坏甚至产生裂缝,严重影响接头性能。因此人们一直尝试使用其它金属替代金,由于铜丝价格便宜、成本低、具有较高的导电导热性,并且Cu/Al金属间化合物生长速于Au/Al,不易形成有害的金属间化合物。近年来,铜丝引线键合日益引起人们的兴趣。 二、铜丝键合的工艺 当今,全球的IC制造商普遍采用3种金属互连工艺,即:铜丝与晶片铝金属化层的键合工艺,金丝与晶片铜金属化层的键合工艺以及铜丝与晶片铜金属化层的键合工艺。近年来第一种工艺用得最为广泛,后两者则是今后的发展方向。 1. 铜丝与晶片铝金属化层的键合工艺 近年来,人们对铜丝焊、劈刀材料及新型的合金焊丝进行了一些新的工艺研究,克服了铜易氧化及难以焊接的缺陷。采用铜丝键合不但使封装成本下降,更主要的是作为互连材料,铜的物理特性优于金。特别是采用以下’3种新工艺,更能确保铜丝键合的稳定性。 (1)充惰性气体的EFO工艺:常规用于金丝球焊工艺中的EFO是在形成焊球过程中的一种电火花放电。但对于铜丝球焊来说,在成球的瞬间,放电温度极高,由于剧烈膨胀,气氛瞬时呈真空状态,但这种气氛很快和周围的大气相混合,常造成焊球变形或氧化。氧化的焊球比那些无氧化层的焊球明显坚硬,而且不易焊接。新型EFO工艺是在成球过程中增加惰性气体保护功能,即在一个专利悬空管内充入氮气,确保在成球的一瞬间与周围的空气完全隔离,以防止焊球氧化,焊球质量极好,焊接工艺比较完善。这种新工艺不需要降低周围气体的含氧量,用通用的氮气即可,因此降低了成本。

铜线键合氧化防止技术

铜线键合氧化防止技术 [摘要] 铜线以其相较传统金线更加良好的电器机械性能和低成本特点,在半导体引线键合工艺中开始广泛应用。但铜线易氧化的特性也在键合过程中容易带来新的失效问题。文中对这种失效机理进行了分析,并对防止铜线键合氧化进行了实验和研究。 [关键词] 铜线键合氧化失效 1、引言 半导体引线键合(Wire Bonding)的目的是将晶片上的接点以极细的连接线(18~50um)连接到导线架的内引脚或基板的金手指,进而籍此将IC晶片之电路讯号传输到外界。引线键合所使用的连接线一般由金制成。近年来,金价显著提升,而半导体工业对低成本材料的需求更加强烈。铜线已经在分离器件和低功率器件上成功应用。随着技术的进步,细节距铜引线键合工艺已得到逐步的改进与完善。铜作为金线键合的替代材料已经快速取得稳固地位。但由于铜线自身的高金属活性也在键合过程中容易带来新的失效问题。 引线键合技术又称为焊线技术,根据工艺特点可分为超声键合、热压键合和热超声键合。由于热超声健合可降低热压温度,提高键合强度,有利于器件可靠性,热超声键合已成为引线键合的主流。本文所讨论的内容皆为采用热超声键合。 2、铜线键合的优势与挑战 与金线连接相比,铜线连接主要有着成本低廉并能提供更好电气性能的优点。最新的研究工作已经扩展到了多节点高性能的应用。这些开发工作在利用铜线获得成本优势的同时,还要求得到更好的电气性能。随着半导体线宽从90纳米降低到65甚至45纳米,提高输入输出密度成为必需,要提高输入输出密度需要更小键合间距,或者转向倒装芯片技术。铜线连接是一个很好的解决方案,它可以规避应用倒装芯片所增加的成本。以直径20um为例,纯铜线的价格是同样直径的金线的10%左右,镀钯铜线的价格略高,但仍仅是同样直径的金线的20%左右。 如图1所示,除了较低的材料成本之外,铜线在导电性方面也优于金线。就机械性能而言,根据Khoury等人的剪切力和拉伸力实验,铜线的强度都大于金线的强度。而实验结果显示铜线的电阻率是 1.60 (μΩ/cm),电导率是0.42 (μΩ/cm)-1. 这些结果说明铜线比金线导电性强33%。铜线形成高稳定线型的能力强过金线,特别是在模压注塑的过程中,当引线受到注塑料的外力作用时,铜线的稳定性强过金线。原因是因为铜材料的机械性能优于金材料的机械性能。 另一方面,由于铜线自身的高金属活性,铜线在高压烧球时极易氧化。氧化物的存在对于键合的结合强度是致命的。氧化铜阻碍铜与铝电极之间形成共金化

单晶铜

单晶铜 单晶铜(简称OCC)用于音响线材的制作,是近年音响线材制造业的一项重大突破。科学实验证明:单晶铜是一种高纯度无氧铜,其整根铜杆仅由一个晶粒组成,不存在晶粒之间产生的“晶界”(“晶界”会对通过的信号产生反射和折射,造成信号失真和衰减),因而具有极高的信号传输性能。与之相比,被广泛用于音响线材制作的无氧铜(简称OFC),其内部晶粒数量众多,“晶界”造成信号失真和衰减,以至信号传输性能比单晶铜逊色。 一、单晶铜定义 单晶铜因消除了作为电阻产生源和信号衰减源的晶界而具有优异的综合性能: 卓越的电学和信号传输性能,良好的塑性加工性能;优良的抗腐蚀性能;显著的抗疲劳性能;减少了偏析、气孔、缩孔、压杂等铸造缺陷;光亮的表面质量;因而主要用于国防高技术、民用电子、通讯以及网络等领域。单晶铜,是经过“高温热铸模式连续铸造法”所制造的导体技术,因为铸造过程经过特殊加热处理,所以可以获得单结晶状铜导体,每一结晶可以延伸数百米以上,在实际应用之长度上结晶粒仅有一个,并没有所谓“晶粒界面”存在,在讯号传讯时,无需透过晶粒与晶粒之间的“晶界”,讯号更易于穿透与传导,因此损耗极低,堪称是相当完美的线材。其物理性能接近白银。 二、单晶铜特性: 用单晶连铸技术拉出的铜材仅由一个晶粒组成,具有超常的机械加工性能和电学特性。其特点有三: a.单晶铜纯度达到99.9999%; b.电阻比普通铜材低8%到13%; c.韧性极高,普通铜材扭转16圈即断,单晶铜材可扭转116圈。如此优势,使单晶铜产品成为制作高保真音视频信号、高频数字信号传输线缆和微电子行业用超微细丝的顶级材料,可用于手机、音响、电脑等领域,使微电子器件性能更佳、体积更小、寿命更长。 1.传输音视频信号线 各种音频视频信号在传输过程中通过晶界时,都会产生反射、折射等现象使信号变形、失真衰减,而单晶铜极少的晶界或无晶界使传输质量得到根本改善。因此,单晶铜在音视频信号传输方面得到广泛的应用。 2电脑硬盘数据线 由于高频信号的强烈集肤效应和其在晶界处的衰减和损耗,造成传输速度慢、失真度大,特别是在多晶的普通材料更为严重,随着信息产业的迅速发展,计算机速度要求越来越快,传输频率越来越高,而当今计算机速度最大瓶颈就是硬盘速度,如果采用单晶铜做硬盘数据信号线可大大提高硬盘传输速度。 3.超细线 随着电子工业的迅猛发展,各种电子元件都趋向于微型化、轻量化。作为导体主要材料的铜线,线径要求也越来越细,无氧铜杆由于其多晶组织,就不可避免存在缺陷及在晶界处的氧化物等,从而影响其进一步的拉细加工目前单晶铜线最细可拉到直径0.016mm,基本满足最高要求。由于单晶铜具有优良的机械性能、物理性能和电性能,它还将广泛应用于压制线路板、集成电路底版、通讯电缆、航天飞行器、高导电率电缆电线等领域。单晶铜丝是实现引线框架全铜化、全面替代集成电路中键合金丝的关键产品,集成电路封装产业正向全铜化迅速推进,这一革命化变革中具有重要意义。 三、行业前景: 集成电路时信息产品的发展基础,信息产品是集成电路的应用和发展的动力。伴随着集成电路制造业和封装业的兴起,必然将带动相关产业,特别是上游基础产业的蓬勃发展。作为半导体封装的四大基础材料之一的键合金丝,多年来虽然是芯片与框架之间的内引线,是集成电路封装的专用材料,但是随着微电子工业的蓬勃发展,集成电路电子封装业正快速的

规模生产中的铜引线键合

规模生产中的铜引线键合 2012-4-10 作者:Bernd K Appelt、Andy Tseng,ASE Group USA;Yi-Shao Lai、Chun-Hsiung Chen,ASE Group, Taiwan 来源: 半导体制造我要评论(0) 核心提示:引线键合实施至今已有40余年了,至今仍然是芯片与衬底互连的主流技术,所占市场份额约90%。细节距或细直径Cu引线键合已被成功地引入规模生产制造中。质量与良率的水平已与Au引线键合相当,可靠性超出标准JEDEC测试的2倍。 引线键合实施至今已有40余年了,仍然是芯片与衬底互连的主流技术,所占份额约90%。尽管一些人预言引线键合将由于互连密度的限制而终止,但设备和引线制造商以及引线键合工程师用金(Au)线键合时,已能将他们的技术推进到键合焊盘节距<40μ、引线直径0.5mil。铜(Cu)线键合也有20年以上的历史,但高功率应用受到限制,线径>2mil。因此,与Cu线有关的许多技术挑战(如硬度、易氧化和腐蚀等)已充分了解和掌握。也已用Cu引线键合仔细地设计和制造了Cu键合芯片,即对芯片焊盘结构及金属厚度相应作了优化。 只要Au商品价格在数百美元范围内,细节距Cu线键合或细Cu线键合就不会被重视。可现在Au商品价格已超过1400美元,看起来一直停留在这种水平(图1),降低成本的持续推动正要求引线键合费用减低。预期的成本降低超出用减小Au线直径能达到水平,≤0.6mil.的最细直径除外。 随着晶圆技术节点的进展,上面提到的技术挑战越发加剧。低介电常数(低K&ELK)晶圆介质的发展导致了机械性脆的芯片。每一个新的晶圆技术节点都是基于较低的K介质,因而芯片也更脆。对于Au引线键合来说,这已是很困难了,从而开发了更为可靠的焊盘堆叠结构。另一个挑战来自有源芯片区域上的键合,它要求增强的焊盘结构。在晶圆中引入Cu金属使情况得到一些缓解,它比以前的铝(Al)芯片连线更可靠。 到目前为止,所有的芯片设计与制造均针对最终的Au线键合装配。除了少数几个产品采用如镍/金或镍/钯/金焊盘外,即使Cu晶圆也是用Al焊盘。本文将主要关注用Al焊盘的芯片或Al焊盘结构。不同焊盘结构的键合参数及可靠性差别很大。 文献综述尽管Cu线键合的工程可行性研究一直进行已有25年以上,但只是近年才引起很大的关注。

年产5000kg单晶铜键合引线项目建议书

年产5000kg(13亿米)单金铜键合引线项 目建议书 一、概述 众所周知,在超大规模集成电路(VLSI)和甚大规模集成电路(VLSI)的芯片与外部引线的连接方法中,无论何时引线键合均是芯片连接的主要技术手段,因而键合引线已成为电子封装业四大重要结构材料之一。 鉴于键合引线的智能更新作用是将一个封装器件或两个部分焊接好并导电,以及封装设计中键合引线焊接所需间隙主要取决于丝的直径,因此对键合引线的单位体积导电率有很高的要求,同时,所选用之金属必须具有足够的延伸率,必须能够被拉伸到Ф0.016~0.050mm,且为了避免破坏晶片,该金属必须能够在足够低的温度下进行热压焊接和超声波焊接,其化学性能、抗腐蚀性能和冶金特性必须与它所焊接的材料相熔合。基于上述技术特性需求,所以用作键合引线的材料就被局限于Au、Ag、Cu、AI四种金属之中。迄今为止,在微电子键合封装业中,最为广泛应用的键合引线是键合金丝。 随着微电子工业的蓬勃发展,集成电路电子封装业正向体积小、高性能、高密集、多芯片方向快捷推进,从而对键合引线的直径提出了超细(Ф0.018mm)的要求。由于超细

的键合金丝在键合工艺中已不能胜任窄间距、长间距离键合技术指标的要求,同时也因黄金市值一路飙升,导致使用键合金丝的厂家生产成本猛增,制约了整个行业的技术提升及规模发展,因此,键合金丝无论从质量上、数量上和成本上,均一不能满足集成电路电子封装也发展的需要。于是,开发和推广应用新型微电子封装材料势在必行,迫在眉睫。正是在这种背景下,我们决定联合开发单金铜键合引线成套生产技术,以满足不断发展的微电子封装业的需要。 单金铜丝用于键合引线的优势主要表现在以下几个方面:1、单晶粒:单金铜丝只有一个晶粒,内部无晶界。单晶铜杆有致密的定向凝固组织,消除了横向晶界,很少有缩孔、气孔等铸造缺陷,且结晶方向控丝方向相同,能够承受巨大的塑性变形能力。另外,由于没有阻碍位错滑移的晶界,变形、冷作、硬化恢复快,所以是拉制Ф0.016~0.03mm键合引线的理想材料; 2、高纯度:目前,在我国的单晶铜丝原材料可以做到99.999%(5N)或99.9999%(6N)的纯度; 3、机械性能好:与纯度相同的金丝相比,单晶铜丝具有良好的拉伸、剪切强度和延展性,可将其加工至Ф0.016~0.03mm的单晶铜微细丝代替金丝,从而供引线键合间距更小、更稳定,以满足封装新技术工艺需要; 4、导电性、导热性好:单晶铜丝的导电率、导热率比金丝

相关主题
文本预览
相关文档 最新文档