当前位置:文档之家› [精品]几个函数对称性的证明

[精品]几个函数对称性的证明

[精品]几个函数对称性的证明
[精品]几个函数对称性的证明

函数对称性与周期性关系

函数 对称性与周期性关系 【知识梳理】 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。 如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即 点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数)(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

几种特殊性质的函数的周期

几种特殊性质的函数的周期: ①y=f(x)对x ∈R 时,f(x +a)=f(x -a) 或f(x -2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a 的周期函数; ②y=f(x)对x ∈R 时,f(x+a)=-f(x)(或f(x+a)= ) (1x f -,则y=f(x)是周期为2a 的周期函数; ③若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2b a -的周期函数; ④y=f(x)的图象关于直线x=a,x=b(a ≠b)对称,则函数 y=f(x)是周期为2b a -的周期函数;如:正弦函数 sin y x = ⑤若y=f(x)是偶函数,其图像又关于直线x=a 对称,则 f(x)是周期为2︱a ︱的周期函数; ⑦正(余)弦型函数定义域为R ,周期为T ,那么,对于任意R m ∈,区间[)T m m +,内有且只有两个量21,x x ,满足()()21x f x f =。正切型函数则只有一个。 ⑧0)()(=+=a x f x f , 或)0)(() (1)(≠= +x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠, 例1.若函数)(x f 在R 上是奇函数,且在()01, -上是增函数,且)()2(x f x f -=+,则 ①)(x f 关于 对称; ②)(x f 的周期为 ; ③)(x f 在(1,2)是 函数(增、减); ④)时,,(若10∈ x )(x f =x 2,则=)(log 18 21f 。 例2.设)(x f 是定义在),(+∞-∞上,以2为周期的周期函数,且)(x f 为偶函数,在区间 [2,3]上 )(x f =4)3(22+--x ,则时,]2,0[∈x )(x f = 。 4.函数(图象)的对称性 1)证明一个函数图象自身的对称问题及证明两个函数图象的对称关系问题

函数周期性公式大总结

竭诚为您提供优质文档/双击可除函数周期性公式大总结 篇一:函数周期性结论总结 函数周期性结论总结 ①f(x+a)=-f(x)T=2a ②f(x+a)=±1T=2af(x) ③f(x+a)=f(x+b)T=|a-b|证明:令x=x-b得 f(x-b+a)=f(x-b+b)f(x-b+a)=f(x)根据公式 f(x)=f(x+T)=f(x+nT)得T=-b+a即a-b ④f(x)为偶函数,且关于直线x=a对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为偶函数,所以f(-x)=f(x)因为关于x=a对称 所以f(a+x)=f(a-x)(对称性质)设x=x+a所以 f(x+2a)=f(x)所以周期T=2a)⑤f(x)为奇函数,且关于直线x=a对称,T=4a 证明:f(x+2a)=f(-x)=-f(x)根据①可知T=2·2a=4a 证明:由于图像关于直线x=a对称、所以f(a+x)=f(a-x)令x=x+a得:f(x+2a)=f(-x)又f(x)=-f(-x)故f(x)=-f(x+2a)

代换x=x+2a得: f(x+2a)=-f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a)有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a)换元:令x-a=t那么x=a+t f(t+3a)=-f(t)根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x)假设 a>b(当然假设a<b也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 ⑧f(x)的图像关于(a,0)(b,0)对称,T=2a-2b(a> b)f(x+2a-2b)=f[a+(x+a-2b)]关于直线x=a对称 =f[a-(x+a-2b)]关于直线x=b对称=f(2b-x)=f(x) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x)f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)]

函数的对称性与周期性

函数的对称性与周期性 一、相关结论 1.关于x 轴、y 轴、原点、x y =对称 2.周期性(内同) ① 若)()(x f T x f =+(0≠T ),则)(x f 为周期函数,T 为一个周期。 ② 若)()(b x f a x f +=+(b a ≠),则)(x f 为周期函数,||a b -为一个周期。 ③ 若)()(x f a x f -=+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 ④ 若) (1 )(x f a x f =+(0≠a ),则)(x f 为周期函数,a 2为一个周期。 3.自对称性(内反) ①若)()(x b f x a f -=+,则)(x f 的图像关于直线2 b a x += 对称;特别地,若)()(x a f x a f -=+,则)(x f 的图像关于直线a x =对称;0=a 为偶函数。 ②若)()(x b f x a f --=+,则)(x f 的图像关于点)0,2 ( b a +对称;特别地,若)()(x a f x a f --=+,则)(x f 的图像关于点)0,(a 对称;0=a 为奇函数。 ③若c x b f x a f =-++)()(,则)(x f 的图像关于点)2 ,2(c b a +对称。 4.互对称性 ①函数)(x a f y +=与函数)(x b f y -=的图像关于直线2a b x -=对称; ②函数)(x a f y +=与函数)(x b f y --=的图像关于点)0,2 (a b -对称; ③函数)(x a f y +=与函数)(x a f y -=的图像关于直线0=x 对称。 5. 对称性与周期性的关系 ①若)(x f 的图像有两条对称轴a x =和b x =(b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 ②若)(x f 的图像有两个对称中心)0,(a 和)0,(b (b a ≠),则)(x f 为周期函数, ||2a b -为一个周期。 若)(x f 的图像有一条对称轴a x =和一个对称中心)0,(b (b a ≠),则)(x f 为周期函 数,||4a b -为一个周期。

函数的对称性

函数的对称性 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。 一、对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为a b x 2-=。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2π π+=k x 是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,)0,2(ππ+k 是它的对称中心。 (11)正切函数:不是轴对称,但是是中心对称,其中)0,2(π k 是它的对称中心, 容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。 (12)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴。 (13)三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

闭区间上连续函数的有界性定理证明的新方法-模板

闭区间上连续函数的有界性定理证明的新方法 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在20XX年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基

函数周期性结论总结

精品文档 . 函数周期性结论总结 ① f(x+a)=-f(x) T=2a ② f(x+a)=±) (1x f T=2a ③ f(x+a)=f(x+b) T=|a-b| 证明: 令x=x-b 得 f(x-b+a)=f(x-b+b) f(x-b+a)=f(x) 根据公式f(x)=f(x+T)=f(x+nT) 得 T=-b+a 即a-b ④f(x)为偶函数,且关于直线x=a 对称,T=2a 证明:f(x+2a)=f(-x)=f(x) 证明:因为 偶函数,所以 f(-x)=f(x) 因为 关于x=a 对称 所以 f(a+x)=f(a-x) (对称性质)设 x=x+a 所以 f(x+2a)=f(x) 所以 周期T=2a) ⑤f(x)为奇函数,且关于直线x=a 对称,T=4a 证明:f(x+2a)=f(-x)=-f(x) 根据①可知T=2·2a=4a 证明:由于图像关于直线x=a 对称、所以f(a+x)=f(a-x) 令x=x+a 得:f(x+2a)=f(-x) 又f(x)= - f(-x)故f(x)= - f(x+2a) 代换x=x+2a 得: f(x+2a)= - f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a ⑥f(x)=f(x+a)+f(x-a) 有三层函数,用递推的方法来证明。 f(x+a)=f(x+2a)+f(x) f(x+2a)=-f(x-a) 换元:令x-a=t 那么x=a+t f(t+3a)=-f(t) 根据①可知T=6a ⑦f(x)关于直线x=a,直线x=b 对称,T=2|a-b| 证明:f(a+x)=f(a-x) f(b+x)=f(b-x) f(2b-x)=f(x) 假设a >b (当然假设a <b 也可以同理证明出) T=2(a-b) 现在只需证明f(x+2a-2b)=f(x)即可 f(x+2a-2b) =f[a+(x+a-2b)] =f[a-(x+a-2b)] =f(2b-x) =f(x) ⑧f(x)的图像关于(a,0) (b,0)对称,T=2a-2b(a >b) 证明:根据奇函数对称中心可知:f(a+x)=-f(a-x) f(2b-x)=-f(x ) f(x+2a-2b) =f[a+(x+a-2b)] =-f[a-(x+a-2b)] =-f(2b-x) =f(x) 关于直线x=a 对称 关于直线x=b 对称

对抽象函数周期性的认识

对抽象函数周期性的认识 麻城实验高中 阮 晓 锋 对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。可见周期函数是一类特殊的函数,下面就谈谈我对抽象函数周期性的认识。 几种特殊的抽象函数的周期: 设函数()y f x =对定义域内任一实数x 满足: (1)()(x)f x T f ±=(T ≠0),则T 是函数()y f x =的一个周期,且kT (k ?Z)也是其周期 推论:若(+)=(+)f x a f x b ,则T=b-a 是函数()y f x =的一个周期。 (2)()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数; 推论:若函数)(x f y = 定义域为R ,且满足条件)()(b x f x a f --=+,则)(x f y =是 以)(2b a T +=为周期的周期函数。 (3)()() 1f x a f x +=± ,则()x f 是以2T a =为周期的周期函数; (4)()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数; (5)1()()1() f x f x a f x -+= +,则()x f 是以2T a =为周期的周期函数. (6)()+1(+)= ()-1 f x f x a f x ,则()x f 是以2T a =为周期的周期函数. (7)1()()1() f x f x a f x -+=- +,则()x f 是以4T a =为周期的周期函数. (8)1()()1() f x f x a f x ++= -,则()x f 是以4T a =为周期的周期函数. (9)若函数f(x)有一条对称轴x=a 和一个对称点(b,c),那么该函数一定为周期函数,且 其中一个周期为T =4|a -b| 推论:若奇函数()y f x =满足()()f a x f a x +=-(0a >),则其周期为4T a =。 (10)若函数f(x)有两条对称轴x=a 和x=b (a≠b ),那么该函数一定为周期函数,且其中 一个周期为T =2|a -b| 推论:若偶函数()f x 满足)()(x a f x a f -=+,则其周期为2T a =. (11)若函数f(x)有两个对称点(a,c),(b,c),那么该函数一定为周期函数,且其中一个周期 为T =2|a -b| (12)若.2 , )2 ()(,0p T p px f px f p = -=>则 认识:

函数对称性、周期性和奇偶性的规律总结大全 .分解

函数对称性、周期性和奇偶性规律 一、 同一函数的周期性、对称性问题(即函数自身) 1、 周期性:对于函数 )(x f y =,如果存在一个不为零的常数 T ,使得当x 取定义域内的每一个值时,都有 )()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周 期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。 2、 对称性定义(略),请用图形来理解。 3、 对称性: 我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =- 奇函数关于(0,0)对称,奇函数有关系式 0)()(=-+x f x f 上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称?)()(x a f x a f -=+ )()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 简证:设点),(11y x 在 )(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==, 即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。得证。 若写成:)()(x b f x a f -=+,函数)(x f y =关于直线2 2)()(b a x b x a x +=-++= 对称 (2)函数 )(x f y =关于点),(b a 对称?b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+- 简证:设点),(11y x 在 )(x f y =上,即) (11x f y =,通过 b x f x a f 2)()2(=+-可知, b x f x a f 2)()2(11=+-,所以 1 112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。得 证。 若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2 ,2( c b a + 对称 (3)函数 )(x f y =关于点b y =对称:假设函数关于b y =对称,即关于任一个x 值,都有两个 y 值与其对应,显然这不符合函数的定义,故函数自身不可能关于b y =对称。但在曲线c(x,y)=0,则 有可能会出现关于 b y =对称,比如圆04),(22=-+=y x y x c 它会关于y=0对称。 4、 周期性: (1)函数 )(x f y =满足如下关系系,则T x f 2)(的周期为 A 、 )()(x f T x f -=+ B 、) (1 )()(1)(x f T x f x f T x f - =+= +或 C 、 )(1)(1)2(x f x f T x f -+=+或) (1) (1)2(x f x f T x f +-=+(等式右边加负号亦成立)

(整理)函数、极限、连续重要概念公式定理

一、函数、极限、连续重要概念公式定理 (一)数列极限的定义与收敛数列的性质 数列极限的定义:给定数列{}n x ,如果存在常数A ,对任给0ε>,存在正整数N ,使当n N >时,恒有 n x A ε-<,则称A 是数列{}n x 的当n 趋于无穷时的极限,或称数列{}n x 收敛于A ,记为lim n n x A →∞ =.若 {}n x 的极限不存在,则称数列{}n x 发散. 收敛数列的性质: (1)唯一性:若数列{}n x 收敛,即lim n n x A →∞ =,则极限是唯一的. (2)有界性:若lim n n x A →∞ =,则数列{}n x 有界,即存在0M >,使得对n ?均有n x M ≤. (3)局部保号性:设lim n n x A →∞ =,且()00A A ><或,则存在正整数N ,当n N >时,有()00n n x x ><或. (4)若数列收敛于A ,则它的任何子列也收敛于极限A . (二)函数极限的定义 (三)函数极限存在判别法 (了解记忆) 1.海涅定理:()0 lim x x f x A →=?对任意一串0n x x →()0,1,2, n x x n ≠=,都有 ()l i m n n f x A →∞ = . 2.充要条件:(1)()()0 lim ()lim lim x x x x x x f x A f x f x A +- →→→=?==; (2)lim ()lim ()lim ()x x x f x A f x f x A →∞ →+∞ →-∞ =?==.

3.柯西准则:()0 lim x x f x A →=?对任意给定的0ε>,存在0δ>,当 100x x δ<-<,200x x δ<-<时,有()()12f x f x ε-<. 4.夹逼准则:若存在0δ>,当00x x δ<-<时,有)()()x f x x ?φ≤≤(,且0 lim ()lim (),x x x x x x A ?φ→→==则 lim ()x x f x A →=. 5.单调有界准则:若对于任意两个充分大的1212,,x x x x <,有()()12f x f x <(或()()12f x f x >),且存在 常数M ,使()f x M <(或()f x M >),则()lim x f x →+∞ 存在. (四)无穷小量的比较 (重点记忆) 1.无穷小量阶的定义,设lim ()0,lim ()0x x αβ==. (1)若() lim 0() x x αβ=,则称()x α是比)x β(高阶的无穷小量. (2)() lim ,())() x x x x ααββ=∞若则是比(低阶的无穷小量. (3)() lim (0),())() x c c x x x ααββ=≠若则称与(是同阶无穷小量. (4)() lim 1,())() x x x x ααββ=若则称与(是等价的无穷小量,记为()()x x αβ~. (5)() lim (0),0,())() k x c c k x x k x ααββ=≠>若则称是(的阶无穷小量 2.常用的等价无穷小量 (命题重点,历年必考) 当0x →时, sin arcsin tan ~,arctan ln(1)e 1x x x x x x x ? ?? ?? ? ? ? +? -?? () 2 11c o s ~2(1)1~x x x x ααα-+- 是实常数 (五)重要定理 (必记内容,理解掌握) 定理1 0 00lim ()()()x x f x A f x f x A -+→=?==. 定理2 0 lim ()()(),lim ()0x x x x f x A f x A a x a x →→=?=+=其中. 定理3 (保号定理):0 lim (),0(0),0x x f x A A A δ→=>设又或则一个,当 000(,),()0(()0)x x x x x f x f x δδ∈-+≠><且时,或. 定理4 单调有界准则:单调增加有上界数列必有极限;单调减少有下界数列必有极限. 定理5 (夹逼定理):设在0x 的领域内,恒有)()()x f x x ?φ≤≤(,且 lim ()lim (),x x x x x x A ?φ→→==则0 lim ()x x f x A →=.

抽象函数的周期性

抽象函数的周期 抽象函数的周期没有具体公式,它需要掌握一定的规律,记住一些抽象函数的格式。本文列出几种常见的抽象函数的周期类型,供大家参考(以下x 取定义域内的任意值且a 、b 、T 为非零常数,a ≠b )。 1. f x f x T ()()=+型:f x ()的周期为T 。 证明:对x 取定义域内的每一个值时,都有f x T f x ()()+=,则f x ()为周期函数,T 叫函数f x ()的周期。 2. f x a f x b ()()+=+型:f x ()的周期为||b a -。 证明:f x a f x b f x f x b a ()()()()+=+?=+-。 3. f x a f x ()()+=-型:f x ()的周期为2a 。 证明:f x a f x a a f x a f x ()[()]()[()]+=++=-+=--2=f x () 例. 设f x ()是R 上的奇函数,f x f x ()()+=-2,当01≤≤x 时,f x x ()=,则 f (.)20055等于( ) A. 0.5 B. -0.5 C. 1.5 D. -1.5 4. f x a f x ()() +=- 1 型:f x ()的周期为2a 。 证明:f x a f x a a f x a f x f x ()[()]() () ()+=++=- +=- - =21 1 1。 5. f x a f x ()() += 1 型:f x ()的周期为2a 。 证明:f x a f x a a f x a f x f x ()[()]() () ()+=++= += =21 1 1。 6. f x a f x f x ()() () += +-11型:f x ()的周期为4a 。

(完整版)常见函数对称性和周期性

(一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

用函数的特征式判断函数的周期性及其周期

由函数特征式判断函数的周期性及周期 李圣平 (宜昌市体育运动学校,湖北宜昌 443000) 摘要探讨利用函数的特征式研判函数的周期性和周期,让学生掌握研究和判断的方法很有必要,在此给出了用函数特征式研究和判断函数周期性及周期的一般方法,研究了几种具体情形供师生参考。 关键词函数;特征式;判断;周期函数;周期 函数的周期性是高中数学的一个重要知识点,用函数的特征式判断函数的周期性和周期具有抽象性,可以考察学生的抽象思维能力和想象能力,此类问题在高考题中多年涉及,学生掌握一些类型的研究方法及其结论十分必要,本文做出了一些相关探讨。 1 函数的周期性与周期 1. 1 周期函数及其周期的几何定义 从图象上看,函数的图象能够划分为无数段向左右两边无限重复延伸的全等图象段,分点若为函数图象上的点,则为相邻图象段的公共点,将每一段图象称为重复段,将任一重复段向左右无限重复延伸就得到整个函数的图象,这样的函数称为周期函数。周期函数的任一重复段夹在某两条直线x=a和x=b之间(a <b﹚,在左或右要么与直线相交,要么可以与直线无限趋近,将这个重复段向左平移b-a个单位或者向右平移b-a个单位得到与其左右紧邻的重复段,将b-a 称为该函数的一个正周期,a-b称为该函数的一个负周期,每一个重复段称为该函数的一个周期内的图象。如果重复段不能再划分为可重复的小重复段,则把周期b-a称为该函数的最小正周期。 1. 2 周期函数及其周期的代数定义 对于函数f(x),如果存在非零常数k,使f(x+k)=f(x)成立,称函数f (x)为周期函数,把k称为该函数的一个周期。如果k为正数,该函数不存在比k小的正周期,则把k称为该函数的最小正周期。把等式f(x+k)=f(x)称为函数f(x)的一个特征式。 2 用函数的特征式判断函数的周期性和周期 定理1 若函数f(x)对其定义域内的任何x的值,都有:f(x+a)=f(x+b)或f(a-x)=f(b-x),其中a、b是常数,且a≠b,则函数f(x)是周期函数,且a-b是f(x)的一个周期。 证明:若f(x+a)=f(x+b),(a≠b),则用此关系有:f(x)=f((x-b)+b)=f((x-b)+a)=f(x+(a-b)),根据周期函数的定义,函数f(x)是周期函数,且a-b是f(x)的一个周期。若f(a-x)=f(b-x),(a≠b),则用此关系有:f(x)=f(b-(b-x))=f(a-(b-x))=f(x+(a-b)),表明函数f(x)是周期函数,且a-b是函数f(x)的一个周期。 定理2 若函数f(x)对其定义域内的任何x的值,满足下列条件之一,则函数f(x)是周期函数,且2(a-b)是函数f(x)的一个周期,这里a≠b。 条件1:f(x+a)= -f(x+b)或 f(a-x)= -f(b-x); 条件2:f(x+a)=1/f(x+b)或f(a-x)=1/f(b-x),(f(x)≠0); 条件3:f(x+a)= -1/f(x+b)或 f(a-x)=- 1/f(b-x),(f(x)≠0)。 这里只对满足条件3的函数f(x)是周期为2(b-a)的周期函数作证明,其余的用类似的方法(变形法)证明。

抽象函数周期性的判断及其简单运用

抽象函数周期性的判断及其简单运用 朱永瑛 江苏省洪泽县教师进修学校(223100) 所谓周期函数就是:对定义域为D 的函数()f x ,对任意x D ∈,存在常数0T >()x T D +∈有()()f x T f x +=,则()f x 为周期函数.对具体的函数其周期性可以借助函数表达式,根据周期函数的定义进行判断.那么,抽象函数的周期性如何判断?又如何运用于解题呢? 1抽象函数周期性的判断 1.1类型一 ()()f x a f x b +=+ 定理一:定义在R 上的函数()f x ,对任意的x R ∈,若有()()f x a f x b +=+(其中,a b 为常数,a b ≠),则函数()y f x =是周期函数,||a b ?是函数的一个周期. 证明:∵()()f x a f x b +=+对任意x D ∈都成立,∴()()f x a a f x a b ?+=?+, 即()()f x f x b a =+?. ∴||b a ?为函数()f x 的一个周期. 1.2 类型二 ()()f x a f x b +=+ 定理二:定义在R 上的函数()f x ,对任意的x R ∈,若有()()f x a f x b +=?+(其中,a b 为常数,a b ≠),则函数()y f x =是周期函数,2||a b ?是函数的一个周期. 证明:∵()()f x a f x b +=?+对任意x D ∈都成立, ∴()()()f x a a f x a b f x b a ?+=??+=?+?, 即()()f x f x b a =?+?. ∴()[2()]f x b a f x b a +?=?+?, ∴(){[2()]}[2()]f x f x b a f x b a =??+?=+?, ∴()f x 是周期函数,2||b a ?为函数的一个周期. 1.3 类型三1()()f x a f x +=,(或者1 ()()f x a f x +=?) 定理三:定义在R 上的函数()f x ,对任意的x R ∈,若有1()()f x a f x +=,(或1 ()() f x a f x +=? ) (其中a 为常数,0a ≠),则函数()y f x =是周期函数,2||a 是函数的一个周期. 证明:∵()1/()f x a f x +=, ∴11 (2)()()1/() f x a f x f x a f x +===+, ∴函数()f x 是周期函数,2||a 是它的一个周期. 同理可证()1/()f x a f x +=?是周期函数,且 2||a 是它的一个周期. 1.4 类型四()()f a x f a x +=?且()()f b x f b x +=? 定理四:定义在R 上的函数()f x ,若对任意的x R ∈,有()()f a x f a x +=?且()()f b x f b x +=?,(其中,a b 是常数,a b ≠)则函数()y f x =是周期函数,2||a b ?是函数的一个周期. 证明:∵()()f a x f a x +=?且()(f b x f b +=? )x 对任意x R ∈都成立, ∴[(2())][(2)]f x x b f a x a b +?=++? [(2)](2)[()]f a x a b f b x f b b x =?+?=?=+? [()]()f b b x f x =??=, ∴[2()]()f x a b f x +?=, ∴()f x 是周期函数,2||a b ?是函数的一个周期. 注:1.上述函数的定义域未必一定是实数集,符合条件的任意数集都可以; 2.定理四中,由()()f a x f a x +=?且()f b x + ()f b x =?可知函数图象关于直线x a =和直线x b =对称,即函数有两条对称轴,故本定理又可通俗地说成:有两条(或两条以上)对称轴的函数为周期函数. 2 利用周期性求值 在解决一些抽象函数的函数值问题时,若能充分利用函数的周期性,问题常会得到巧妙的解决. 例1函数()f x 是定义在R 上的奇函数,对任意的x R ∈,都有(1)(3)f x f x +=+,求(2)(4)(6)f f f ++ (2008)f ++ 的值. 解析:∵(1)(3)f x f x +=+, ∴函数()f x 是周期函数,周期为2, ∴(0)(2)(4)(6)(2008)f f f f f ===== . ∵()f x 是奇函数, ∴(0)0f =,∴(2)(4)(6)(2008)0f f f f ===== , ∴(2)(4)(6)(2008)0f f f f ++++= . 例2函数()f x 对任意的x R ∈,有()(1)f x f x =+ (1)f x +?,且(0)9,(10)30f f ==.求(101)f 的值. 解析:本题看起来不属于所述抽象函数中任意一种类型,但若对()(1)(1)f x f x f x =++?稍作变形,将式中的x 取作1x +,再将两式联立,便可发现其属于类型2. ∵()(1)(1)f x f x f x =++?①,将式中x 取作1 x +34 福建中学数学 2008年第8期

函数的对称性与周期性例题、习题(供参考)

函数的对称性与周期性 【知识梳理】 1. 周期的概念:设函数(),y f x x D =∈,如果存在非零常数T ,使得对任意x D ∈都有 ,则函数()y f x =为周期函数,T 为()y f x =的一个周期; 2. 周期函数的其它形式 ()()f x a f x b +=+? ;()()f x a f x +=-? ;()()1f x a f x +=? ; ()()1f x a f x +=-? ;)(1)(1)(x f x f a x f +-=+? ,)(1)(1)(x f x f a x f -+=+? )()()2(x f a x f a x f -+=+? 1 )(1)(+-=+x f a x f ? , 3. 函数图像的对称性 1).若()()f x f x =-,则()y f x =的图像关于直线 对称; 2).若()()0f x f x +-=,则()y f x =的图像关于点 对称; 3)若()()f a x f a x +=-,则()y f x =的图像关于直线 对称; 4)若()()2f x f a x =-,则()y f x =的图像关于直线 对称; 5)若()()2f a x f a x b ++-=,则()y f x =的图像关于点 对称; 6)若()()22f x f a x b +-=,则()y f x =的图像关于点 对称; 4. 常见函数的对称性 1)函数()()0ax b f x c cx d +=≠+的图像关于点 对称; 2)函数()()0f x ax b a =-≠的图像关于直线 对称; 3)函数()()20f x ax bx c a =++≠的图像关于直线 对称; 【例题选讲】 题型一 根据解析式判断函数图像的对称性 1. 函数()2331 x f x x +=-的图像关于 对称; 2. 函数()f x 的定义域为R ,且()()1f x f x -=,则()f x 的图像关于 对称; 3. 函数()23f x x =-的图像关于 对称; 4. 函数()3sin 23f x x π??=- ?? ?的图像关于直线 对称;关于点 对称; 题型二 平移变换后,函数图像的对称性 1.已知函数()y f x =是偶函数,()2f x -在[]0,2递减,则( ) 2.已知()2y f x =-是偶函数,则()y f x =的图像关于 对称; 3.已知()y f x =是奇函数,则()12y f x =+-的图像关于 对称; 题型三 函数图像的对称性求函数解析式

相关主题
文本预览
相关文档 最新文档