当前位置:文档之家› 连铸板坯缺陷图谱及产生的原因分析

连铸板坯缺陷图谱及产生的原因分析

连铸板坯缺陷图谱及产生的原因分析
连铸板坯缺陷图谱及产生的原因分析

第二篇连铸板坯缺陷(AA)

第二篇连铸板坯缺陷(AA) (1)

2.1 表面纵向裂纹(AA01) (3)

2.2 表面横裂纹(AA02) (4)

2.3 星状裂纹(AA03) (5)

2.4 角部横裂纹(AA04) (6)

2.5 角部纵裂纹(AA05) (7)

2.6 气孔(AA06) (8)

2.7 结疤(AA07) (9)

2.8 表面夹渣(AA08) (10)

2.9 划伤(AA09) (11)

2.10 接痕(AA13) (12)

2.11 鼓肚(AA11) (13)

2.12 脱方(AA10) (14)

2.13 弯曲(AA12) (15)

2.14 凹陷(AA14) (16)

2.15 镰刀弯(AA15) (17)

2.16 锥形(AA16) (18)

2.17 中心线裂纹(AA17) (19)

2.18 中心疏松(AA18) (20)

2.19 三角区裂纹(AA19) (21)

2.20 中心偏析(AA20) (22)

2.21中间裂纹(AA21) (23)

2.1表面纵向裂纹(AA01)

图2-1-1

1、缺陷特征

表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。

2、产生原因及危害

产生原因:

①钢中碳含量处于裂纹敏感区内;

②结晶器钢水液面异常波动。当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;

③结晶器保护渣性能不良。保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;

④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。

危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵

向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。

3、预防及消除方法

①控制好钢中碳含量,使钢中碳含量不在裂纹敏感区;

②减少结晶器钢水液面异常波动,将结晶器钢水液面波动控制在±5mm 以内;

③选择合适的结晶器保护渣;

④保证中间包浸入式水口与结晶器对中,防止钢水出浸入式水口侧孔后出现偏流。

4、检查判断

肉眼检查,必要时用钢卷尺测量裂纹长度及其分布位置;

表面纵向裂纹一般通过火焰清理可以消除,火焰清理不合格的表面纵向裂纹缺陷坯判废。

2.2表面横裂纹(AA02)

图2-2-1

1、缺陷特征

位于连铸板坯表面振痕波谷处的裂纹称为横裂纹。横裂纹一般产生于连铸板坯上表面,裂纹长度一般为20~100mm,裂纹深度为2~4mm。

2、产生原因及危害

产生原因:

①连铸板坯表面振痕过深;

①钢中Al、N 含量增加,促使质点(AlN)在晶界沉淀,诱发横裂纹;

①二次冷却太强,连铸板坯在脆性温度范围内(700~900℃)矫直。

危害:严重的横裂纹导致连铸板坯报废,若进行轧制可能导致热轧板卷发生断带。

3、预防及消除方法

①采用高频率小振幅的振动方式,减小连铸板坯表面振痕深度;

②二冷区采用平稳的弱冷却,使矫直时铸坯表面温度大于900℃;

③采用流动性、铺展性好、粘度较低的结晶器保护渣。

4、检查判断

肉眼检查;

轻微横裂纹火焰清理可以消除,对严重的横裂纹缺陷坯进行切除或判废。

2.3星状裂纹(AA03)

图2-3-1

1、缺陷特征

连铸板坯表面呈细小的龟甲状的裂纹称为星状裂纹,裂纹深度一般为2~4mm。由于铸坯表面通常被氧化铁皮所覆盖,一般情况下很难看到,经酸洗后,这种裂纹十分清楚的暴露在铸坯表面。2、产生原因及危害

产生原因:

①高温坯壳与结晶器铜壁摩擦时,吸收了结晶器的铜,铜变成液体后再沿奥氏体晶界渗透,从而降低了晶界的高温强度而产生星状裂纹;

②钢中Cu 向晶界渗透,引起晶界脆性也会导致星状裂纹产生。

危害:由于星状裂纹一般都很细小,对轧制热轧板质量影响较小。

3、预防及消除方法

①改善结晶器铜板材质,结晶器表面镀Cr或Ni 以增加结晶器硬度;

②适当的控制钢中残余元素,如Cu<0.20%;

③降低钢中S 含量,控制钢中合适的Mn/S;

④合适的二次冷却水量。

4、检查判断

星状裂纹缺陷一般不易发现,连铸板坯经酸洗后可以观察到;

星状裂纹火焰清理后可以消除。

板坯连铸机

连铸机基本操作规程 1、主要工艺参数: 机型:立弯式直弧型连铸机 弯曲半径:R=6.5m~18m 铸机流数:一机一流 浇注断面:150mm×650mm 流间距:1.7m 铸坯定尺:3000----9000mm 拉速范围:0.5----2.5m/min 结晶器型式:板式结晶器,水缝4mm,铜板长900mm 结晶器铜板长度:900mm 结晶器振幅:0---±4mm 振动方式:半板簧正弦振动 振动频率:0~250次/min 引锭杆型式:柔性引锭杆 送引锭杆速度:最大2m/min 中间包容量:7~8t 中间包浇注方式:浸入式水口保护浇注 2、浇注前的准备: 2.1中间包的准备 2.1.1中间包绝热保温材料,需选用涂抹保温材料 2.1.2砌制调整好的中间包必须先采用天然气小火烘烤 3.5小时后在 开浇前采用大火烘烤2小时,确保中间包内温度达1100℃ 2.1.3浇钢前的浸入式水口需要乙炔或丙烷烘烤 2.1.4浇钢前必须检查塞棒调整情况以及水口有无堵塞,有堵塞必须 及时清理 2.2结晶器及引锭设备 2.2.1检查浇钢操作箱(P3)按纽指示针是否正常 2.2.2检查结晶器内腔工作面应无渗水情况,进水总压力应在 0.6---0.8Mpa,并调整好结晶器水流量。 2.2.3检查结晶器振动是否正常 2.2.4检查结晶器保护渣的准备情况,必须使用烘烤干燥后的保护渣 2.2.5送引锭之前必须检查引锭杆是否严重变形,并应将引锭头上的 冷钢,油污清理干净 2.2.6浇钢工应检查足辊段是否有冷钢,足辊是否活动,无间距后, 方可通知送引锭 2.2.7放入结晶器内的引锭用冷料,必须事先烘烤。 2.3主控室操作准备 2.3.1 连铸开浇前30分钟,由主控工通知连铸水处理泵房送净循环 水,并作好记录 2.3.2 操作台电源指示灯亮后,检查主控室操作台的电信号指示情况 2.3.3 联系值班主任与AOD炉前做好浇铸前的准备工作,保证水、气、 电及合格钢水的供应 2.3.4浇钢工必须在送到引锭前严格检查结晶器冷却水情况和二冷段

连铸板坯缺陷特征和缺陷图谱

连铸板坯缺陷特征和 缺陷图谱 首钢京唐板坯质检编制 2010年8月8日

一.连铸坯质量特征综述 1.1连铸坯质量定义和特征 所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。 1.2铸坯的检查和清理的意义 提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。 (1)火焰铸坯清理的注意事项 1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。 2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。这方面也应引起足够重视。 3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。 (2)不良的火焰清理的危害 虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。如果采取了正确的操作,轧制表面通常不会产生与清理操作有关的缺陷。一个确保光滑过渡的良好操作是清理工作宽度要6倍于清理深度,如果没有采用正确的清理操作,那么缺陷会折叠,轧制后看起来像一条连续的划伤。 二连铸板坯内部缺陷 1.1中心疏松和缩孔 【定义与特征】在板坯断面上就可以发现中心附近有许多细小的空隙,中心疏松严重时会形成中心缩孔。 【鉴别与判定】用肉眼观察,铸坯轧制压缩比达3~5mm时,中心疏松可焊合,所以小的中心疏松和缩孔可以放过。但是严重的中心疏松会对产品质量危害甚大,所以必须进行切尺处理。 【图谱】

板坯连铸机粘结漏钢的原因分析及预防 刘雷锋

板坯连铸机粘结漏钢的原因分析及预防刘雷锋 发表时间:2018-01-02T16:54:15.037Z 来源:《基层建设》2017年第28期作者:刘雷锋 [导读] 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。 宁波钢铁有限公司浙江宁波 315807 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。本文对此进行了分析研究。 关键词:坯;连铸;连铸工艺 连铸漏钢是个常见现象。钢水在结晶器内形成坯壳,连铸坯出结晶器后,薄弱的坯壳抵抗不住钢水静压力,出现断裂而漏钢。对于薄板坯连铸来说更易发生漏钢事故。漏钢对连铸生产危害很大。即影响了连铸车间的产量,又影响了连铸坯的质量,更危及操作者的安全。因此,降低薄板坯连铸漏钢率是提高生产效率,提高产量,提高产品质量,降低成本的重要途径。现对某厂自2008~2013年薄板坯漏钢率进行统计。2008年漏钢率达0.56%;2009年漏钢率达0.19%;2010年漏钢率达0.19%;2011年漏钢率达0.19%;2012年漏钢率达0.15%;2013年漏钢率达0.07。 1 工艺流程 某厂第一钢轧厂工艺流程为:鱼雷罐供应铁水/混铁炉供应铁水→铁水预处理→转炉炼钢→氩站→精炼→薄板坯连铸 2 薄板坯漏钢类型 某厂薄板坯连铸漏钢主要有:粘结漏钢、裂纹漏钢、卷渣漏钢、开浇漏钢、鼓肚漏钢五个类型。 3 薄板坯漏钢特征、原因及预防措施 3.1 粘结漏钢 粘结漏钢是指钢水直接与结晶器铜板接触形成粘结点,粘结点处坯壳与结晶器壁之间发生粘结,此处在结晶器振动和拉坯的双重作用下被撕裂,并向下和两侧扩展,形成倒“V”形破裂线,钢水补充后又形成新的粘结点,这一过程反复进行,粘结点随坯壳运动不断下移,此处坯壳较薄,出结晶器后,坯壳不能承受上部钢水的静压力,便会发生漏钢事故。据统计,粘结漏钢发生率最高,高达50%以上。 (1)铸坯粘结漏钢后特征。粘结漏钢后铸坯特征。坯壳呈“V”字型或“倒三角”状,粘结点明显。 (2)粘结漏钢的原因: 1)保护渣性能不好。保护渣在结晶器铜板与凝固坯壳之间起润滑的效果。保护渣的性能好坏直接影响凝固坯壳的质量,保护渣的粘度是一个重要指标,它决定渣膜的薄厚,保护渣粘度高,不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。2)钢水纯净度低。钢水中[O]含量高,使得钢水中A12O3含量升高,进而结晶器保护渣中A12O3含量高,保护渣性能发生变化,渣粘度增大、不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。3)结晶器振动参数不合适。合适的振动形式和振动参数可以降低结晶器铜板与凝固坯壳之间的摩擦力和减小振痕深度,改善铸坯表面的质量。若结晶器振动参数不合适,负滑脱时间过长造成凝固坯壳上的振痕过深,使坯壳容易在应力的作用下断裂产生粘结。4)浸入式水口烘烤不符合标准。如果浸入式水口烘烤温度不够,连铸开浇时水口与结晶器内外弧间的保护渣产生搭桥现象,保护渣不易熔化,进而流入到坯壳和结晶器之间的保护渣减少,渣膜变薄,润滑效果变差,容易粘结漏钢。5)钢水温度过低。钢水温度过低,保护渣粘度大,润滑效果不好,易粘结漏钢。 3.2 卷渣漏钢 定義:由于结晶器液面波动会将渣卷入初生坯壳,这些渣子附着在坯壳表面,由于其导热性差,卷渣处的坯壳较薄,铸坯出结晶器后,渣子在钢水静压力作用下脱落产生漏钢。 在结晶器内的固态或半熔融的夹渣物随着浇注钢流的运动,被推向结晶器壁;或在更换中间包长水口时,中间包内钢液面下降后,中间包内钢渣易随钢流进入结晶器,最后被初生坯壳捕捉; (1)卷渣漏钢后特征。卷渣漏钢主要特征表现为:漏钢部位有“孔洞或结渣”,漏钢部位一般发生在结晶器出口位置。 (2)卷渣漏钢原因: 1)残留在钢中的大型夹杂物较多造成卷渣现象;2)较大的结晶器液面波动造成卷渣现象;3)捞渣不及时或捞不净造成的卷渣现象。 3.3开浇漏钢 开浇漏钢是指铸机开浇或者换中间包时,由于连接不好而造成的漏钢。 (1)开浇漏钢后铸坯特征。开浇漏钢铸坯特征为:漏钢一般发生在开浇起步期间,引锭头刚拉出结晶器就发生漏钢。(2)开浇漏钢原因:引锭头未扎好,包括石棉绳没扎紧;开浇起步过快,凝固时间不够开拉,坯头强度不够,将引锭头处拉裂漏钢。 4 薄板坯漏钢的预防措施 4.1 优化结晶器保护渣性能 通过优化保护渣碱度、熔点、熔速、粘度等指标,有效地减少了粘结、卷渣、裂纹漏钢等生产事故。 4.2 恒温恒拉速浇注 恒温恒拉速浇注是降低薄板坯漏钢率的主要因素。 4.3 优化连铸工艺参数 对不同钢种、不同断面的连铸相关参数(结晶器水流量、结晶器初始锥度、二冷水各段分配比例及比水量、扇形段压下终点位置等)进行优化调整,并固化使用。 4.4 连铸耐材优化与管理 (1)加强水口的烘烤操作。(2)优化中间包结构。中间包控流装置由“单挡渣坝”式改为“一挡墙+两挡坝”组合结构,将钢包下渣完全挡在冲击区内,产生的流场有利于钢液中夹杂物的充分上浮,有利于钢液成分、温度的均匀,提高了钢水质量,降低了漏钢事故。(3)加

板坯连铸机弯曲段的工作原理

板坯连铸机弯曲段的工作原理[工程]收藏转发至天涯微博 悬赏点数10 该提问已被关闭2个回答 匿名提问2009-04-26 11:36:26 板坯连铸机弯曲段的工作原理 最佳答案 297006692009-04-26 12:52:27 近年来,我国钢铁行业发展迅速,我国已成为世界上钢铁消费和钢铁生产大国,2005年我国的粗钢产量~3.4亿吨,连铸比达到95%以上。其中由于连铸具有显著的高生产率、高成材率、高质量和低成本的优点,因此连铸技术对钢铁工业生产流程的变革、产品质量的提高和结构化等方面起了革命性的作用。 钢铁技术的引进为我国钢铁工业的发展做出了巨大的贡献,特别是上世纪90年代以来,连铸技术的引进与推广极大的壮大了我国钢铁工业的实力,同时在连铸技术的消化吸收和创新的方面也取得了长足的进步,极大提高了我国连铸技术的自行设计和制造能力,实现了连铸技术的国产化。中冶京诚(原北京钢铁设计研究总院)在板坯连铸技术的集成创新和自主开发方面始终走在前列,随着国内连铸技术和连铸设备制造能力的发展与进步,为我国板坯连铸机的国产化做出了重要贡献。 板坯连铸国产化实践 板坯连铸机机型经历了由立式-弧形-直弧形的发展历程,特别是从世界上近10多年来新建的高质量板坯连铸机来看,直弧形连铸机已成为发展趋势和方向。直弧形连铸机兼具弧形和立式连铸机的优点,可根据产品方案和生产品种的不同,设计不同的基本弧半径和适宜的结晶器及以下的直线段长度,从而大大提高铸坯的洁净度和内部质量;国内外的生产实践证明,特别是在生产汽车用钢、管线钢等高质量钢方面,直弧形板坯连铸机有不可替代的作用。 中冶京诚是国内最早研究开发并参与引进消化国外先进直弧形板坯连铸工艺及装备技术的单位。多年以来,中冶京诚一直致力于研究开发、重视技术和理念的创新,先后成功地设计或总包建设了一大批技术经济指标达到国际先进水平的板坯连铸工程,拥有着丰富的先进技术资源和设计经验。无论是设计水平、总包能力还是设备集成技术,京诚公司在国内板坯连铸行业均占据着不可动摇的业绩优势和技术领先地位。 在多年的设计和生产实践中,开发出了如多种连铸机机型的辊列设计(连续弯曲连续矫直技术)、结晶器铜板传热计算、矫直反力计算、大包回转台有限元计算、扇形段有限元计算、小辊径密排分节辊、结晶器电动及液压调宽、扇形段远程调辊缝等软件技术,以及结晶器液压振动、动态二冷控制、扇形段轻压下等连铸工艺技术。新技术的不断应用大大提高了

漏钢统计情况

漏钢统计情况 摘要:本文分析了某某钢二炼钢厂板坯连铸机漏钢事故产生产的原因及防止板坯连铸机漏钢的措施。采取 相应控制措施之后,目前某某钢二炼钢厂常规板坯连铸机频繁漏钢的势头得到了明显的控制。 关键词:板坯粘结漏钢保护渣水口浸入深度 The reason and countermeasure of slab caster breakout Yang Xiao qiang ( The second steelmaking plant, JISCO,735100) Abstract: In this presentation, the breakout reason of slab cater of the second steelmaking plant was analyzed, and corresponding precautions were adopted. Since then, the breakout event was under controlled obviously. keywords: slab caster sticking breakout mould powder immerge depth of mould nozzle 1 前言 某某钢第二炼钢厂常规板坯连铸机自2005年4月18日投产以来,铸机漏钢问题始终困绕着二炼钢厂的正常生产,对二炼钢厂的正常生产造成了重大的冲击,连铸机的漏钢问题成为制约二炼钢厂生产的瓶颈环节。频繁的漏钢事故使连铸机设备的劣化趋势明显加剧,铸机检修质量无法保证。为降低连铸机漏钢事故,二炼钢厂成立了攻关组,经过对漏钢事故的原因进行分析,采取了相应的措施,板坯连铸机结晶器漏钢事故得到了明显的控制。 2 某某钢第二炼钢厂常规板坯连铸机参数及漏钢相关情况简介 2.1某某钢第二炼钢厂常规板坯连铸机的主要工艺参数 表1 主要工艺参数 序号项目单位技术指标 铸机产量万吨/年 2 生产钢种四大类二十多个品种 3 连铸坯厚度mm 160,220 4 连铸坯宽度mm 850~1600 5 铸机半径m 9.5 6 连铸机型式立弯式(连续弯曲,连续矫直) 7 连铸机冶金长度m 31.9 8 铸机正常拉速m/min 1.0~1.4 9 结晶器长度mm 950 10 振动方式液压(正弦,非正弦) 11 二冷方式气水冷却(十四个控制回路) 2.2漏钢统计情况 从某某钢二炼钢厂常规板坯连铸机从2004年4月18日正式投产以来,共发生各种漏钢事故17次。其中粘结漏钢14次,占到所有漏钢的82%。其它三次漏钢为卷渣漏钢,裂纹漏钢,尾坯漏钢。板坯连铸机漏钢事故成为制约全厂正常生产的瓶颈环节。 3 某某钢二炼钢厂常规板坯连铸机漏钢原因分析 3.1粘结漏钢 结晶器粘结漏钢形成的过程如图1所示。

连铸机漏钢的原因及防范措施

漏钢 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 漏钢的影响因素影响漏钢发生的因素有: 温度和拉速不一致——钢水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳 /结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。 结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。

方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。 保护渣加入方式不正确——由于现场工人操作习惯,一次性加入过多,且主要集中在内弧,呈斜坡状,会造成液渣不均匀填充,影响结晶器与坯壳间的润滑与均匀传热。在正常浇注情况下,小渣条没必要捞出,且应禁止用捞渣棒试探结晶器内是否形成渣条,会破坏弯月面初始坯壳的均匀形成。 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温)的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。 结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严重妨碍所需厚度的坯壳形成,最终导致漏钢。磨损和变形造成的结晶器锥度损耗会导致角部纵裂显著增加,这是由于角部再加热的结果。就结晶器变形而言,产生原因是结晶器铜板

板坯缺陷原因

板坯缺陷之二—《中厚板质量工程师手稿》—陈定乾 (2011-06-07 19:45:19) 转载 分类:中厚板质量工程师手稿 标签: 杂谈 板坯缺陷 2、板坯裂纹 据现场经验,铸坯表面存在深1㎜、长10㎜的裂纹,会在后面的轧制工序中引起质量问题。YB/T2012-2004《连续铸钢板坯》的表面质量规定为:1、连铸板坯表面不得有目视可见的重接、重叠、翻皮、结疤、夹杂、深度或高度大于3㎜的划痕、压痕、擦伤、气孔、冷溅、皱纹、凸坑、凹坑和深度大于2㎜的裂纹,不得有高度大于5㎜的火焰切割瘤。2、连铸板坯横截面不得有影响使用的缩孔、皮下气泡、裂纹。3、连铸板坯表面如存在上述缺陷,应沿轧制方向清除,清除处应圆滑无棱角。清除宽度不得小于深度的6倍,长度不得小于深度的10倍。表面清除的深度,单面不得大于连铸板坯厚度的10%,两相对面清除深度之和不得大于厚度15%。清除深度自实际尺寸算起。4、如果清除深度大于厚度的4%,而清除处又不在连铸坯宽度方向的中部1/3内时,可在连铸板坯同一面上与长度方向的中心轴线对称位置修磨相应的面积和深度。5、经供需双方协商,连铸板坯表面质量要求可在适当范围内调整。 板坯表面裂纹主要有:表面纵裂或角部纵裂、表面横裂或角部横裂、星裂。资料显示:钢的温度与裂纹有关系,称之为“钢的高温性能”。⑴钢可分为三个延性区:Ⅰ区凝固脆性区(Tm-1350℃),Ⅱ区高温塑性区(1300-1000℃),Ⅲ区低温脆化区(900-700℃),Ⅰ区使铸坯产生内裂纹,Ⅲ区使铸坯产生表面裂纹。⑵外力作用为:结晶器坯壳与铜板摩擦力、钢水静压力产生鼓肚、喷水冷却不均匀产生热应力、铸坯弯曲或矫直力、支承辊不对中产生的机械力、相变应力,当这些力作用在高温铸坯表面或凝固前沿产生的应力或应变量超过钢的σ临或ε临时就产生裂纹,然后在二冷区裂纹进一步扩展。⑶工艺性能为:浇注过热度、杂质元素含量( S 、Mn/S 、P 、Cu 、Sn 、Zn……)、二冷水量和铸坯表面温度分布、坯壳与结晶器铜板良好的润滑性、结晶器液面的稳定性、结晶器内坯壳均匀生长。设备性能:结晶器锥度、结晶器的振动(振动频率f,振幅S,负滑脱时间tN)、气水喷雾冷却、对弧准确,防止坯壳变形(对弧误差[0.5mm])、在线检测支承辊开口度([0.5mm])、支承辊变形、多点矫直或连续矫直、多节辊、压缩浇注等。外力、钢的高温性能、工艺性能和设备性能共同作用下产生缺陷。 ⑴表面纵向裂纹(见图8) 连铸坯表面纵裂纹是指在铸坯长度方向的裂纹。资料表明:纵裂一般发生在铸坯内弧,长度有几十毫米到几百毫米,有的甚至贯穿,裂纹长度不小于100㎜,深有几毫米,一般出现在铸坯宽面中部,经常在Q235B等钢种中出现,裂纹处有初次树枝晶,一般可以通过按标准进行修磨(可参考YB/T2012)给予去除。尺寸较小的裂纹,长度不大于20~30㎜,深度不大于1㎜,随机出现在铸坯宽面中部到1/4宽处,可用手砂轮修磨掉,如果不进行处理,钢板上面会有裂纹,大多数可以轻微修磨消除。

问题连铸坯

连铸坯质量决定着最终产品的质量, 连铸坯表面缺陷是影响连铸机产量和铸坯质量的重要缺陷。据统计,各类缺陷中裂纹占50%。铸坯出现裂纹,重者会导致拉漏或废品,轻者要进行精整。这样既影响铸机生产率,又影响产品质量,因而增加了成本。铸坯内部缺陷影响产品的机械性能、使用性能和使用寿命。如图6-1所示,铸坯缺陷可分为以下3类: 图6-1 连铸坯表面缺陷示意图 1一角部横裂纹;2一角部纵裂纹; 3一表面横裂纹;4一宽面纵裂纹; 5一星状裂纹;6—振动痕迹; 7一气孔;8一大型夹杂物 (1)表面缺陷:包括表面纵裂纹、横裂纹、网状裂纹、皮下夹渣、皮下气孔、表面凹陷等。 (2)内部缺陷:包括中间裂纹、皮下裂纹、压下裂纹、夹杂、中心裂纹和偏析等。 (3)形状缺陷:方坯菱变(脱方)和板坯鼓肚。 连铸坯凝固过程有哪些特点? 与模铸比较,连铸凝固过程的特点是: (1)连铸坯凝固是热量传递过程。钢水浇入结晶器边传热、边凝固、边运行,形成了液相穴相当长的连铸坯(板坯长20多米),为加速凝固,在连铸机内布置了3个冷却区: —一次冷却区:钢水在结晶器内形成足够厚且均匀的坯壳,保证出结晶器不拉漏。 —二次冷却区:喷水冷却以加速内部热量的传递使铸坯完全凝固。 —三次冷却区:使铸坯温度均匀化。 (2)连铸坯凝固是沿液相在凝固温度区间把液体转变为固体的过程。连铸坯可看成是液相很长的钢锭,以一个固定速度在连铸机内沿弧形轨道运动。铸坯在运动中凝固。实质上是沿液相固液界面的潜热释放和传递过程。而在凝固界面的晶体强度非常小(仅1~3N/mm2),由变形到断裂的应变为0.2~0.4%。因此,当铸坯所受的外力(如鼓肚力、矫直力、热应力等)超过上述临界值,就在固液界面产生裂纹,并沿柱状晶扩展,直到凝固壳能抵抗外力为止。这是铸坯产生内裂纹的原因。 (3)连铸坯凝固是分阶段的凝固过程。凝固生长经历了三个阶段: —钢水在结晶器形成初生坯壳。 —带液芯的铸坯在二次冷却区稳定生长。 —临近凝固末期的液相加速生长。 在凝固过程中,结晶器注流在液相引起的流动和混合对铸坯凝固有重要影响。研究指出:液相上部为强制对流区,对流区高度决定于注流方式、浸入式水口类型和铸坯断面。在液相下部液体流动主要是坯壳收缩、晶体下沉所引起的自然对流,或者是由铸坯鼓肚所引起的流动。流动对铸坯结构、夹杂物上浮及溶质元素偏析有重要影响。 (4)已凝固坯壳在连铸机内冷却可看成是经历形变热处理。凝固壳一方面受到力的作用,另一方面受到喷水冷却,随温度的降低发生相变,组织也发生变化,可能发生硫化物、氮化物质点在晶界沉淀,增加高温脆性,是铸坯产生表面裂纹的根源。 因此,应深入认识上述四个方面相互联系和相互制约的规律,才能在设备和工艺上制订正

小方坯连铸机工艺培训课件

方坯连铸工艺培训课件一、方坯连铸工艺流程简图

二、方坯连铸基本参数 铸坯断面:150×150mm 定尺长度:6~12m(实际最短生产过9.25的,拉速2.1m/min)主要生产钢种:碳素结构钢、低合金结构钢。 55Q (轻轨钢)Q195(碳素结构钢,建筑,结构,摩托车架)热轧带肋钢筋HRB335/335E (二级)HRB400/400E (三级)HRB500/500E (四级)Q235 (普碳钢,建筑、化工) 三、主要经济技术指标

连铸机主要设备性能 4.1 钢包汇总台 4.1 钢包回转台 功能支承钢包并将满包从受包位旋转到中间罐上方的浇 铸位。 结构型式直臂式。主要由回转臂、回转支承系统、回转台底 座、基础框架、传动装置及钢包加盖装置等部分组

成。 主要技术参数双臂最大承重 2×125t 回转半径 4.9m 回转速度 0~1.0r/min 回转范围 360度 事故回转180度 4.2 中间罐 功能保证连浇;均匀分配钢流到结晶器;促使夹杂物上 浮。 结构型式中间罐为梯形带盖式, 主要技术参数中间罐最大容量 20t 钢水液面高度工作液面:800mm 溢流液面:900mm 4.3 中间罐车

功能支承中间罐,并运载中间罐在烘烤位和浇铸位之间 移动。 结构型式半悬挂(高低腿)式。主要由车架、走行机构、横 移机构、摆槽、液压升降机构及驱动系统等主要技术参数最大承载重量 60t 走行速度 0~20m/min 横移行程±50mm 升降行程 500mm 4.4 中间罐烘烤(干燥)装置

功能加热(预热)中间罐,降低第一包钢水的温降。 结构型式中间罐烘烤(干燥)装置由支座、风机、电液推杆、 管件、阀门、烧嘴等组成。 主要技术参数烘烤时间 180 min 烘烤温度~1000℃ 4.5 结晶器

连铸方坯疏松缺陷

连铸方坯疏松缺陷 疏松是连铸方坯凝固组织中一种常见的内部缺陷,多发生在连铸坯中心,如果将连铸坯沿中心线剖开,就会发现其中心附近有许多细小的空隙,这些小孔隙即为中心疏松。还有些疏松在连铸坯断面呈现出不规则分布的点,俗称为锈斑。在铸坯轧制压缩比为3~5时,低等级中心疏松可以焊合,对成品性能并无危害。但对于大等级的疏松,会造成轧制过程中对产品产生裂纹或者是轧制断裂,对轧钢工序危害甚大。 一、中心疏松形成过程 除了极少数金属以外,收缩是凝固过程伴随的必然现象。凝固收缩是否会导致疏松的形成与凝固条件有关。凝固收缩若能得到液相的及时补充则可防止疏松的形成,凝固过程中的补缩通道是否畅通是决定疏松形成的关键因素。中心疏松是铸坯两面的柱状晶向中心生长,碰到一起造成“搭桥”,阻止了桥上面的钢水向桥下面钢液凝固收缩的补充,当桥下面钢水全部凝后,就留下了许多小孔隙。 二、影响连铸方坯疏松的因素 1、拉速的影响。 2、钢种对疏松的影响。 3、疏松与温度的关系。 4、二次冷却方式的影响。 三、预防措施

1、对于不同钢种采取不同的拉速限制措施。 2、不同钢种采用不同的配水制度。 3、降低钢水过热度。 4、采用二冷气水雾化冷却。 5、采用电磁搅拌工艺改善铸坯疏松。 四、结论 (1)中心疏松是铸坯两面的柱状晶向中心生长,碰到一起造成“搭桥”形成;凝固理论表明,凝固区间越大,枝晶越发达,被封闭的残余液相就越多,形成的缩孔就越严重。 (2)实践中,减少铸坯疏松的主要措施为:针对不同钢种采取适当的拉速限制措施;优化二冷配水制度;合理控制H08终点氧位;中间包钢水过热度控制在20~30 ℃之间。 (3)二冷采用气水雾化冷却,中心疏松可控制在0 . 5级,而喷水冷却中心 1 . 5级。 (4)对于结晶器电磁搅拌的150 mm小方坯,采用360~400A电流、4HZ频率,中心疏松一般在0 . 5~1 . 0级以下。

连铸机的辊子装配的检测与维修

连铸机的辊子装配的检测与维修 一、连铸机的介绍 1.连铸机的功能 把高温钢水连续不断地浇铸成具有一定断面形状和一定尺寸规格铸坯的生产工艺过程叫做连续铸钢。 完成这一过程所需的设备叫连铸成套设备。浇钢设备、连铸机本体设备、切割区域设备、引锭杆收集及输送设备的机电液一体化构成了连续铸钢核心部位设备,习惯上称为连铸机。 连铸机是一种用模具进行连续浇注钢水的大型生产线。生产出的钢坯经轧制,成为成品销售。提高连铸自动化水平,对保证铸坯质量、提高连铸机的劳动生产率、增加连铸机的金属收得率起着至关重要的作用。 2.连铸机的组成(如图a) (1)钢包回转台:钢包回转台是现代连铸中应用最普遍的运载和承托钢包进行浇注 的设备,通常设置于钢水接收跨与浇注跨柱列之间。所设计的钢包旋转半径,使得浇钢时钢包水口处于中间包上面的规定位置。用钢水接收跨一侧的吊车将钢包放在回转台上,通过回转台回转,使钢包停在中间包上方供给其钢水。浇注完的空包则通过回转台回转,再运回钢水接收跨。钢包回转台是连铸机的关键设备之起着连接上下两道工序的重要作用。 (2)中间包:中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去,并且有着分流作用。对于多流连铸机,由多水口中间包对钢液进行分流。 连浇作用。在多炉连浇时,中间包存储的钢液在换盛钢桶时起到衔接的作用。减压作用。盛钢桶内液面高度有5~6m,冲击力很大,在浇铸过程中变化幅度也很大。中间包液面高度比盛钢桶低,变化幅度也小得多,因此可用来稳定钢液浇铸过程,减小钢流对结晶器凝固坯壳的冲刷。 保护作用。通过中间包液面的覆盖剂,长水口以及其他保护装置,减少中间包中的钢液受外界的污染。 清除杂质作用。中间包作为钢液凝固之前所经过的最后一个耐火材料容器,对钢的质量有着重要的影响,应该尽可能使钢中非金属夹杂物的颗粒在处于液体状态时排除掉。 (3)结晶器:结晶器承接从中间包注入的钢水并使之按规定断面形状凝固成坚固 坯壳的连续铸钢设备。它是连铸机最关键的部件,其结构、材质和性能参数对铸坯质量和铸机生产能力起着决定性作用。开浇时引锭杆头部即是结晶器的活动内底,钢水注入结晶器逐渐冷凝成一定厚度坯壳并被连续拉出,此时,结晶器内壁承受着高温钢水的静压力及与坯壳相对运动的摩擦力等产生的机械应力和热应力的综合作用,其工作条件极为恶劣。 (4)扇形段:通过夹辊和侧导辊对带有液心的坯壳起支撑和导向作用,使其沿着预 定的轨道前进,并限制它发生鼓肚变形;扇形段是连铸过程中主要设备之一,扇形段制造水平的高低,将直接影响到被轧制板坯厚度的均匀性,对其质量起着十分重要的作用。

板坯连铸技术操作规程

板坯连铸技术操作规程 编号:5-JA-LG-011 直弧型板坯连铸主要工艺参数 工厂冶炼条件 冶炼设备:转炉2座(40吨) 平均出钢量度:40吨 冶炼周期:30分钟 产品大纲 浇铸钢种:Q195 Q215 Q235 Q195L 硅钢65锰Q345B等 铸坯断面 主断面:160×(370--500) 铸坯定尺长度:6m 连铸机投产后的主要参数及性能 连铸机主要工艺、性能参数详见下表 一、钢包工技术操作规程 1 钢包回转台 主要技术参数 最大承载能力:150吨(单臂最大承载75吨) 回转半径: 3.5米 回转速度:电动:~1转/分 液动:~0.5转/分 回转传达室动电机:YZP160L-8,交流380V 功率7.5kW,转速750r.p.m 1.1 钢包工生产前检查 1.将回转台转动180?(多次旋转)检查回转台的正常回转和事故回转是否正常。转动是否平稳,极限开关是否正常,回转的锁定装置,锁紧和松开是 否准确自如;回转的制动器动作是否正常。发现问题及时找有关人员处理。 2.检查事故流槽是否完好无损,流槽内无残渣、残钢及其它杂物,更不准有潮湿废物。

1.2 钢包工器具及原材料的准备 1.准备好足够用量的中间包覆盖剂。 2.准备好足够用量氧气管及胶带。 3.准备好测量取样用的测温枪和取样枪,并备有足够的测温探头和取样器及送样工具。 4.准备好中包失控时,堵水口眼用的堵锥。 1.3 钢包工浇钢操作 1.以正确的手势或准确的语言,指挥吊车将重钢水包座到回转台上,座正后指挥天车将大钩摘下,横行打走,并指令钢包转到浇注位置。 2.待中包车在浇注位置对中完了,得到机长的钢包开浇指令后,钢包开浇,开浇要全流。 3.在包开浇后,要观察钢水流出状态,如果钢水喷溅严重,要及时适当控制滑板,使喷溅减少,但滑板不能控制太小,防止断流。 4.钢包不自流时,首先要确认滑板是否在全开状态,确认后进行烧氧引流操作,引流必须两个人,一人放氧气,一人烧氧(氧气管要弯成约90?角,且 有一定长度>800mm)氧气管引燃后,再将氧气管插到大包水口内进行烧氧, 动作要快。连浇时应考虑通知中包工降速,防止连浇失败。 5.钢流引下来后,操作者立即躲到安全位置并对钢流进行控制,使中包钢液面平稳上升。 6.正常浇注钢水中包钢水重量应控制在16T左右,钢包交替时应将钢水升到18T(满包)。 7.钢水包开浇后按规定加入中包覆盖剂,并按规定进行测温、取样,同时注意监控中包液面波动情况。 8.当钢包钢水重量还剩10吨左右时,要注意判断浇注终了。当通过“听渣” 或“看渣”判断钢包下渣时,要迅速关闭钢包滑动水口,减少钢包下渣量。 9.钢包浇注终了关闭滑板后,将空包转到受包位置。 10.每个浇次最后一炉,钢包转到接受位置后,必须用氧气管测量中包内钢液面深度,根据中包内钢液面高度和钢水重量,指挥中包浇钢工进行降速操 作,保证中包剩余钢水量最少。严禁将中包渣子注入结晶器内。 11.浇注结束后,填写好记录,清理作业现场。 1.4 钢包工测温操作 1.钢包测温 (1)钢包吊至测温平台,需要对钢水测温; (2)测温前校兑测温偶头与测温枪连接无误; (3)距钢包壁300mm处,把测温偶头插入钢包钢水内约200~300mm; (4)偶头在钢水内停留3~5秒,听到测温完毕信号时拔出偶头; (5)温度出入较大要多测几枪,确认准确温度; (6)测温失败重复以上操作; 2.中包测温 (1)中包内钢水量约10吨时,进行首次测温。 (2)中包内钢水量约12吨时,进行二次测温。 (3)注入相当于本炉钢量的四分之三时,再次测温。 (4)高、低温钢每包钢水测温次数不少于6次(测温不准时不计在内) 1.5 钢包工取样操作

连铸坯质量缺陷

连铸坯的质量缺陷及控制 摘要 连铸坯质量决定着最终产品的质量。从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。连铸坯质量是从以下几个方面进行评价的: (1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。 (2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。 (3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。 (4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。 下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。 关键词:连铸坯;质量;控制 1 纯净度与质量的关系 纯净度是指钢中非金属夹杂物的数量、形态和分布。夹杂物的存在破坏了钢基体的连续性和致密性。夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。 此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。随着薄板与薄带技术的发展,S/V 可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。所以降低钢中夹杂物就更为重要了。 提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。为此应采取以下措施:

板坯粘结漏钢原因与预防措施

板坯粘结漏钢原因与预防措施 Doi :10.3969/j .issn .l 006-110X .2018.z l .005 板坯粘结漏钢原因与预防措施 孟阳 (天津钢铁集团有限公司炼钢厂,天津300301) [摘要]天津钢铁集团有限公司3号板坯连铸机短时间内多次发生的漏钢事故,作者通过排除法分析出漏钢 事故类型为粘结性漏钢。重点分析了发生粘结漏钢的原因,并对其他类型的漏钢机理进行简要介绍。针对3号板坯连 铸机的工艺操作和设备精度调整等方面制定了详细的改进措施,实施后,天钢3号板坯连铸机发生漏钢的几率大大降 低,降低了其对生产顺行的影响。 [关键词]漏钢;粘结;工艺;改进;板坯;连铸 Causes and Preventive Measures of Steel B1eed-out by Slab Bonding MENG Yang (Steel-making Plant , Tianjin Iron and Steel Group Co ., Ltd . Tianjin 300301, Ch 74$比"8+ In Tianjin Iron and Steel Group Co . Ltd . the bleed-out accident occurred many times in a short period of t ime on the No .3 slab continuous caster , and the author analyzed that the type of bleed-out accident by the method of exclusion was adhesive bleed -out . The cau were analyzed , and the mechanism of other types of bleed-out was brie process operation of No . 3 slab continuous casting machine and the adjustment of equ the detailed improvement measures were made . After the implementation , the probability of steel bleed-out in the No . 3 slab caster was greatly reduced , and the influence on production was reduced .Ke5 bleed -out , bonding , technology , improvement , slab , continuous casting o 引言 随着天钢板坯的连铸技术操作水平逐年提高, 漏钢率已经控制的很低。但是在2015年7月底至8 月初的5天时间内,天钢3#板坯连铸机出现两次漏 钢,经过仔细分析和逐一排除法,分析出这两次漏 钢均属于粘结漏钢。漏钢发生于板坯连铸生产环 节,造成设备损坏、产量降低、生产不稳定等严重后 果。本文分析了漏钢的原因,并提出解决漏钢问题 的方法,以预防漏钢事故的发生。 1连铸机基本情况 1.1 天钢炼钢厂3(板坯连铸机主要技术参数 (1) 机型:一机一流直结晶器弧形板坯连铸机, R =8.4m ; (2) 铸坯断面尺寸:180/200/250mm x 1050" 收稿日期:2018-06-02 作者简介:孟阳(1991一)男,天津人,主要从事板坯连铸工艺技 1600mm ; (3) 铸坯定尺:一切 6~9.9m ,二切 2"3.3m ;(4) 拉速范围:0.4~1.6m/min ;(5) 引锭杆插入方式:下装式;(6) 结晶器铜板长度:900mm ; (7) 振动装置:四偏心高频率小振幅振动系统;(8) 中间包容量:35~38t 。2 漏钢种类及原因 漏钢的种类大致可分为3种,开浇漏钢、尾坯 封顶漏钢和浇铸过程中漏钢。 2.1 开F 漏钢 指开浇过程中,不当的操作致使引锭头刚被拉 出结晶器,随机出现漏钢事故。2.2封顶漏钢 当浇注结束时,对尾坯进行尾坯封顶操作,封 顶前熔化的保护渣未捞干净,如二冷强度过大,出 结晶器的板坯收缩过大,使板坯鼓肚且又受到支撑 术管理工作。 tmmsmmmmm 你〈钢铁冶炼〉你 -15 -

板坯连铸机弯段的工作原理

板坯连铸机弯曲段的工作原理[] 悬赏点数10 该提问已被关闭2个回答 匿名提问2009-04-26 11:36:26 板坯连铸机弯曲段的工作原理 最佳答案 2009-04-26 12:52:27 近年来,我国钢铁行业发展迅速,我国已成为世界上钢铁消费和钢铁生产大国,2005年我国的粗钢产量~亿吨,连铸比达到95%以上。其中由于连铸具有显著的高生产率、高成材率、高质量和低成本的优点,因此连铸技术对钢铁工业生产流程的变革、产品质量的提高和结构化等方面起了革命性的作用。 钢铁技术的引进为我国钢铁工业的发展做出了巨大的贡献,特别是上世纪90年代以来,连铸技术的引进与推广极大的壮大了我国钢铁工业的实力,同时在连铸技术的消化吸收和创新的方面也取得了长足的进步,极大提高了我国连铸技术的自行设计和制造能力,实现了连铸技术的国产化。中冶京诚(原北京钢铁设计研究总院)在板坯连铸技术的集成创新和自主开发方面始终走在前列,随着国内连铸技术和连铸设备制造能力的发展与进步,为我国板坯连铸机的国产化做出了重要贡献。 板坯连铸国产化实践 板坯连铸机机型经历了由立式-弧形-直弧形的发展历程,特别是从世界上近10多年来新建的高质量板坯连铸机来看,直弧形连铸机已成为发展趋势和方向。直弧形连铸机兼具弧形和立式连铸机的优点,可根据产品方案和生产品种的不同,设计不同的基本弧半径和适宜的结晶器及以下的直线段长度,从而大大提高铸坯的洁净度和内部质量;国内外的生产实践证明,特别是在生产汽车用钢、管线钢等高质量钢方面,直弧形板坯连铸机有不可替代的作用。 中冶京诚是国内最早研究开发并参与引进消化国外先进直弧形板坯连铸工艺及装备技术的单位。多年以来,中冶京诚一直致力于研究开发、重视技术和理念的创新,先后成功地设计或总包建设了一大批技术经济指标达到国际先进水平的板坯连铸工程,拥有着丰富的先进技术资源和设计经验。无论是设计水平、总包能力还是设备集成技术,京诚公司在国内板坯连铸行业均占据着不可动摇的业绩优势和技术领先地位。 在多年的设计和生产实践中,开发出了如多种连铸机机型的辊列设计(连续弯曲连续矫直技术)、结晶器铜板传热计算、矫直反力计算、大包回转台有限元计算、扇形段有限元计算、小辊径密排分节辊、结晶器电动及液压调宽、扇形段远程调辊缝等软件技术,以及结晶器液压振动、动态二冷控制、扇形段轻压下等连铸工艺技术。新技术的不断应用大大提高了

连铸方坯的缺陷及其处理

连铸方坯的缺陷及其处理 1 表面缺陷 1.1 气孔和针孔 定义 : 垂直铸坯表面并在铸坯表面肉眼可见的小气孔并可能以针孔的形式深入表面。 原因 : 钢水脱氧不足、凝固时产生一氧化碳; 脱氧后又钢流二次氧化吸收的气体; 结晶器保护渣质量不合要求; 钢包及中间包烘烤不好 改进方法: 钢水完全脱氧; 不浇注过氧化的钢水; 保持浇注温度;(注温不能过高) 使用干燥的钢水罐及中间罐; 保护渣不能受潮,摆放时间不能太久。 1.2 坯头气孔及针孔 定义: 同1.1,但仅出现在每次浇注的第一根钢坯坯头处 原因: 钢液温度太低; 结晶器中钢水氧化; 保护渣受潮或杂质多; 结晶器内壁上有冷凝水; 引锭头潮湿; 填入结晶器中切屑及废钢有锈、有油或潮湿; 中间罐内衬及钢水罐内衬潮湿; 改进方法: 保持浇注温度; 采用适宜的保护渣; 采用干燥和洁净的废钢及切屑; 绝对避免在结晶器内壁及锭头上产生冷凝水; 干燥及烘烤中间罐; 1.3 夹渣 定义: 表面分布不均匀的夹渣,有时针孔和渣聚集,呈疏松态的外观

原因: 由保护渣耐火材料颗粒和钢水氧化产物以及出钢渣等引起,随着钢流带入并被卷至铸坯表面。 改进方法: 用挡渣出钢; 采用适宜的保护渣及耐火材料; 钢水不能过氧化,注温要合适。 1.4 振动波纹及折叠 定义: 在与铸坯轴线垂直方向上,铸坯表面上以均匀间距分布的波纹振痕,在不利的情况下出现折叠。 原因: 浇注速度波动大,使结晶器中钢液面不稳定。 改进方法: 保持均匀的浇注速度,稳定结晶器钢水液面。 调整振动频率使其与拉速相适应。 1.5 结疤与重皮 定义: 铸坯角部和表面上出现的疤痕 原因: 由于结晶器内坯壳破裂、钢水渗入到结晶器和铸坯之间的夹缝,以及保护渣结块造成。 改进方法: 保证结晶器具有准确的锥度,当结晶器使用时间过长而磨损会使坯壳过早脱离结晶器内壁而导致坯壳破裂。 1.6 分层: (双浇) 定义: 铸坯中间出现分界层 原因: 浇注中断又重新开始浇注时,使两次浇注连接出现重接。 改进方法: 浇注过程中不要断流,拉速要相对稳定,不要忽高忽低。 1.7 纵裂 定义: 分布在铸坯角部的纵向裂纹, 角部纵裂常是拉漏的预兆。 原因: 针孔、气泡及夹杂; 结晶器内坯壳不均匀冷却; 由于铜结晶器中和足辊上有沟槽,缺口,渣子等而引起裂纹; 结晶器壁磨损或单面磨损使该处坯壳提前脱离结晶器壁; 浇注速度过高或浇注温度过高,坯壳厚度薄; 足辊对位不准; 二次冷却水不均匀;

相关主题
文本预览
相关文档 最新文档