当前位置:文档之家› TS201在声纳信号处理系统中的应用

TS201在声纳信号处理系统中的应用

TS201在声纳信号处理系统中的应用
TS201在声纳信号处理系统中的应用

基金项目:水声信道匹配基础研究 60532040

第一作者:刘钢 (1975-), 男,北京市人, 高级工程师,研究方向:阵列信号处理,嵌入式系统设计。 其它:李启虎 (1939-), 男, 研究员,博士生导师。

1 TigerSHARC201在声纳信号处理系统中的应用

刘 钢 李启虎

(中国科学院声学研究所 北京 100080)

摘要:本文介绍了ADI 公司最新数字信号处理器TS201的主要特点和基于TS201的VMEBus 通用数字信号处理板的设计。文中较详细地分析了声纳信号处理系统的算法特点,系统的运算量和数据传输率的要求。然后给出了基于Quad-TS201 VMEBus 通用数字信号处理板的具体声纳系统设计方案。该方案充分利用TS201强大的运算能力及高速数据吞吐量,以实现声纳的时空处理任务。该系统已研制成功,并在实际海上试验中得到应用。

关键词:声纳,信号处理,TigerSHARC201, VMEBus

The Application of TigerSHARC 201 in the SONAR Signal

Processing System

Gang Liu Qihu Li

(Institute of Acoustics Chinese Academy 100080)

Abstract :This paper presents the main features of TigerSHARC201, which is the latest embedded processor from ADI, and the design scheme of Quad-TS201 VMEBus DSP board. It then describes in detail the SONAR algorithm, computation burden and data transfer need. Finally, a concrete system scheme is presented, which fully employs the processing speed and data transferring speed of TS201. The scheme has been made into reality, and the DSP system worked properly in the experiment on the sea.

Keywords: SONAR ,signal processing,TigerSHARC201,VMEBus

1概述

DSP(Digital Signal Processor)芯片以其独特的总线结构和强大的信号处理能力广泛用于通信、雷达、声纳、图像处理及医用电子学等领域。随着人们对实时信号处理要求的不断增加,尤其是在雷达、声纳等领域中,单片DSP 已经不能适应超大运算量的要求。这些信号处理系统的数据吞吐量大,计算复杂度高,因此必须采用计算能力强、精度高、具备高速数据交换能力的大规模并行处理系统。

ADI 公司的TigerSHARC201(以下简称TS201)是一款高性能的数字信号处理器,是继SHARC DSP 的新一代产品。与SHARC DSP 相比,TigerSHARC 在计算速度、内部存储器容量、体系结构以及外部通讯资源方面都做了巨大改进,更加适用各种不同的并行多处理器系统,完成各种实时数字信号处理。本文将主要描述TigerSHARC201在声纳信号处理系统中的应用。 2 TS201 芯片和Quad-TS201 VMEBus 通用信号处理板的介绍 TS201是一款静态超标量数字信号处理器[1][2]。其基本特性包括:600MHz 主频下每秒可进行48亿次40bit 定点乘累加操作(MACs ),或者每秒可进行12亿次80bit 浮点乘累加操作。在25mm 25mm 的封装内通过eDRAM 技术提供了4/12/24Mbit 的弹性内部存储器密度。

TS201的I/O端口包括LinkPort和ClusterBus。LinkPort是ADI公司的专利技术,可以组成静态互联网络,提供处理器间点对点的双向数据传输,而ClusterBus可以提供多处理器共享总线的无缝互连。TS201的LinkPort提供4位全双向I/O能力,且能够以双倍速率锁存数据,当内核时钟为500MHz时,即单方向速率可高达500MB/s,每个LinkPort双向数据传输率最高可达到1GB/s。

Quad-TS201 VMEBus数字信号处理板是采用标准VME总线设计的通用数字信号处理板。该板集成了四片TigerSHARC201,板内采用松耦和系统结构,每片TS201 独享32MB SDRAM和512KB FLASH。板内四片TS201通过全双工LINK PORT口(链路口)两两相连,此外全双工LINK PORT还可以提供强大的板间数据交换功能。多块Quad-TS201 VMEBus 板通过LINK PORT静态互联专利技术(MESH SP)组成大规模并行信号处理平台,可以适用于声纳、雷达、软件无线电等应用。该板的体系结构如图1所示。

图1 QUAD-TS201 VME总线数字信号处理板结构

因为TS201处理器间可以利用LinkPort互连进行高速点到点的通信,所以当一块信号处理板无法完成大规模计算时,多块信号处理板间可以通过LinkPort组成二维网格结构完成并行计算,如图2所示。

图2 板内LinkPort拓扑图(左)和板间二维网格拓扑图(右)

3声纳系统常用算法分析

水声信号处理的主要任务就是当存在干扰背景的情况下,对水下声场时空抽样,进行空

间和时间变换,以提高检测所需信号的能力。图3为被动声纳的信号处理任务框图[3]。

图3被动声纳信号处理系统框图

下面以主被动声纳信号处理常用算法为例,说明水声信号处理技术的算法结构特点。设输入序列为(){}n x ,输出序列为(){}n y ,那么FIR 的输入和输出的关系如下。

()()()∑-=-=1

0N k k n x k h n y (1)

()n h 是滤波器系数。

波束形成是声纳信号处理的主要组成部分。它可以被看成是一种空间滤波器,使得基阵只在某一方向具有较高的灵敏度,而抑制来自别的方向的噪声和干扰。波束形成的实现有很多种方法。按照它们的加权函数是否时变,分为自适应波束形成和常规波束形成。下面仅就“延时-求和-平方”的常规波束形成(CBF ),进行介绍。假定一个基阵由N 个阵元构成,入射信号为平面波,同时假定信号与噪声、噪声与噪声间相互统计独立。以平面上的某一点为参考点,设到达第i 个基元的信号为()[]0θτi s i kT x +,这里为s T 采样周期。这里0θ为信号入射角。如果信号入射方向改变为θ,我们仍以()0θτi 作延时,那么第i 路信号经延时后变

成()()[]0θτθτi i s i kT x -+,系统的输出可以表示为:

()()()[]∑=-+=N i i i s i

s kT x kT y 10,θτθτθ (2)

在舰艇噪声功率谱的低频范围内存在着线状谱。通过检测这些线状谱可以增强检测目标的能力。自适应线谱增强的工作原理是利用线谱信号相关函数的周期性和宽带噪声相关函数衰减很快的差异来增强信号,减少干扰的。采用横向滤波器结构和LMS 算法的自适应线谱增强的主要计算公式如下:

()()∑-=-?-=10LA j i ij i j n x w

n y (3)

()()()()()[]n y n x j n x n w n w i i i i ij ij --?-+-=μ1 (4)

式中,ij w 是横向滤波器权系数;LA 是横向滤波器阶数;?是信号延迟长度。i μ是自适应

步长。

后置积累处理方法是检波和积分,检波可以是平方检波或绝对值检波,积分可以使用线性积分或指数积分。这里介绍绝对值检波和指数型积分。

绝对值检波:()()∑==1

111

m n n x m n y (5)

指数型积分: ()()()121121

-??? ??-+=n z m n y m n z (6) 关于主动声纳,其回波检测常规方法主要有相干脉冲压缩(匹配滤波)和非相干窄带脉冲能量积累,这两种方法分别对应着回波特性的两种极端假定[4]。其他处理方法有变换域(如Gabor 域,小波域)检波方法等,但是这些方法在实际应用中并不稳健,也不能取得优于常规方法的检测性能。因此主动声纳信号当前仍然主要采用线性调频和单频脉冲形式,接收仍然采用匹配滤波或窄带能量积累方法。下面将只对匹配滤波的频域实现进行分析。设发射信号为()t s ,形式为线性调频信号(LFM ),频率从1f 变到2f ,带宽为B ,脉宽为T ,即:

()?????

???? ??-+=212222exp t T f f t f j t s π []T t ,0∈; (7) 设接收机波束形成后的输出信号为()t x ,则匹配滤波器输出为:

()()()?

-=*

T

d t s x t y 0τττ (8) (8)的离散表达式为

()()()∑

-=*--=1

0N i i N s i n x n y (9) 其中s T T

N =。上式就是时域匹配滤波的实现方法,但是考虑到快速运算的需要,可以通过

频域的计算,然后经过反傅立叶变换得到时域输出。运算的方框图如图4所示。需要注意的是FFT 实现的是循环卷积,而在时域中实现的是真正的卷积,所以FFT 和IFFT 的计算点数为2N 点,但是每次输出只取IFFT 的N 点作为输出,每次更新N 点。

图 4 匹配滤波频域实现方框图

4声纳信号处理系统运算量和数据传输率的初步估计

假定一组主被动声纳参数如下:均匀线列阵,阵元数E N =128;A/D 采样频率为s f =20K ;FIR 滤波器节数L =128;波束数为M =256;波束形成采用快入慢出技术,降采样后的输出速率为sd f =10K ;横向滤波器阶数LA =32;积累系数m1=1024;积分系数为m2=32,计算以32位浮点数进行;LFM 脉冲宽度为102.4ms ,采样点数为2048=N ;

● 运算量估计

FIR 乘加次数估计:MFLOPS f L N s E 68.32720000128128=??=?? 波束形成乘加次数估计:()MFLOPS f M N s E 68.327100002561282=??=??

线谱增强乘加次数估计:MFLOPS f LA M sd 84.163100003222562=???=??? 绝对值检波乘加次数估计:MFLOPS m f m M sd 56.21000025611=?=??

? ???? 指数积分乘加次数估计:KFLOPS m f M sd 5102410000225612=??? ????=???

???? 回波检测:

()N f N N f M N N f M N N sd

sd

sd ??+???+????? ???2422log 2222≈82MFLOPS

● 数据传输率分析:

A/D 输出数据率为:S MB f N DTR s E /1042000012840≈??=??=

(此处不考虑A/D 的精度问题,运算输入使用的是32位字长的浮点数。)

FIR 输出数据率为:S MB f N DTR s E /1042000012841≈??=??=

波束形成输出数据率为:S MB f M DTR sd /1041000025642≈??=??=

线谱增强输出数据率为:S MB f M DTR sd /1041000025643≈??=??= 后置积累输出数据率为:S KB m f M DTR sd /104102410000256414≈???? ???=???

? ???= 匹配滤波输出的数据率为:S KB N f M DTR sd

/54204810000

25645≈??=??=

5 声纳信号处理系统的实现

在实际声纳信号处理机设计时,不能完全采用上一节所估计的运算量。因为这种估计没有包括数据的复制、搬移、传输、以及所用编程语言的编译系统效率等问题,所以在信号处理机设计时,必须对运算估计量乘以一个系数,系数一般应为2~3。按照上述算法的要求,运算量要求约为2 GFLOPS ~3 G FLOPS ,数据传输率最大值为10MB/S 。根据Quad-TS201 VMEBus 通用信号处理板的性能,它对声纳系统的这两个指标的实现是能够胜任的。

如果采用Quad-TS201 VMEBus 通用信号处理板完成图3及图4所示的声纳功能,系统设计框图可如图5所示。数字信号处理的任务可以集中在这个处理板上完成。任务分工可以如

图6所示,TS201-C负责完成多通道FIR滤波和波束形成;TS201-B负责完成线谱增强和后置积累;TS201-A负责完成VME总线通讯;TS201-D负责脉冲信号生成及回波检测功能。系统的数据流和控制流由板内各TS201间的LinkPort完成。

图5 基于TS201的声纳信号处理机体系结构框图

图6 基于Quad-TS201 VMEBus板的声纳信号处理系统框图

6 结论

本文介绍了ADI公司的TS201芯片以及基于TS201的VMEBus通用信号处理板的结构,并介绍了我们对多片TS201在声纳实时数字信号处理系统中的应用,该系统充分利用TS201强大的运算能力及高速数据吞吐量,以实现被动声纳的时空处理任务。文中分析了系统的运算量、数据传输率以及完成算法所需的芯片数,具有工程指导意义。该系统已经研制成功,并应用于水声匹配基础研究项目的海上实验中,取得了良好的效果。

参考文献

[1]ADI公司. ADSP-TS201 TigerSHARC? Processor Hardware Reference Manual. Revision1.1 2004

[2]ADI公司. ADSP-TS201 TigerSHARC? Processor Programming Reference Manual. Revision 1.1 2005

[3]李启虎. 数字式声纳设计原理. 合肥:安徽教育出版社, 2003

[4]朱埜. 主动声纳检测信息原理. 北京:海洋出版社,1990

信息技术及其影响教案

1.2 信息技术及其影响 一、教材分析 本节涉及到信息技术的应用、发展及其影响,是整册书的导言或概括性内容,是对义务教育阶段相关内容的延续和加深。 通过对本节内容的学习,学生可以了解信息技术的基本概念,感受由于信息技术的发展应用从而引发在自己身边的变化或影响,同时通过寻本溯源了解信息技术的过去、现在与未来,激发对信息社会生活的关注与向往。 二、学情分析 本课的教学对象是高中一年的学生,他们对知识的获取已经开始由感性认识提升到理性认识,但分析问题缺乏深度,容易受到网络的诱惑而去做与课堂无关的事。因此,课堂设计要能够吸引学生的注意力,为学生营造愉快的学习环境,进而培养学生的自主学习、团队合作学习精神。 三、教学目标 1、知识与技能: a.列举信息技术的应用实例; b.初步了解信息技术的发展历程和趋势 2、过程与方法: a.初步掌握根据任务的要求,确定信息的来源的方法,尝试通过书籍、报刊、广播电视和因特网等各种途径搜集资料; b.调查、研究信息技术的历史和发展趋势。 c.掌握辩证的思维方法,分析信息技术对社会的影响。 3、情感态度与价值观: 结合案例分析,探讨信息技术对社会发展,科技进步和个人学习生活等方面的影响,激发学生对信息技术的学习兴趣,培养合作解决问题的能力。 合理使用信息技术,使学生养成良好的上网习惯和意识。 四、教学重点和难点 1、教学重点: a.掌握什么是信息技术; b.信息技术的发展历程。 2、教学难点: a.信息技术概念的理解; b.信息技术、计算机技术、网络技术、通信技术的区别与联系; c.信息技术发展历程的划分。 五、教学方法 体验法、讲授法、讨论法、示例法 六、教学环境 硬件:局域网机房,教师机一台,学生机81台,投影仪

2008年声纳技术考试试题B及答案_声纳技术

第2页 共 2页 (a ) (b )

第3页 共4页 第4页 共 4页 2008年声纳技术考试试题B (答案) 一、填空(60分) 1、低频、大功率、大尺寸基阵、信号处理技术 (4分) 2、主动式声纳、被动式声纳 (2分) 3、 ()2SL TL TS NL DI DT -+--=,()SL TL NL DI DT ---= (2分) 4、声源级、接收机的检测阈、工作频率、脉冲宽度、信号形式、接收机动态范围、基阵大小、 基阵灵敏度等(任意3个) (3分) 5、物理盲区、几何盲区、尾部盲区、脉冲宽度盲区和混响盲区等(任意4个)。 (4分) 6、时间函数、频谱函数、模糊函数 (3分) 7、0T T (), t [- ,]22 f t f kt =+∈ (1分) 8、多卜勒频移、正、负 (3分) 9、高于 (1分) 10、工作频率、信号时间宽度、信号的带宽 (3分) 11、2 0T T exp[(2)] , t [-,]22A j f t kt ππ+∈、0T T (), t [-,]22 f t f kt =+∈ (2分) 12、0T T exp[2] , t [-,]22A j f t π∈、0T T (), t [-,]22 f t f =∈ (2分) 13、声系统方向性主瓣的宽度、指示器的类型、声系统转动装置的精度,以及声呐操作员的 生理声学特性(任意4个)。 (4分) 14、最大值测向、相位法测向、振幅差值测向、正交相关测向(任意3个)。 (3分) 15、指向性。 (1分) 16、方向性、最窄的主瓣、最低的旁瓣、主旁瓣高度比 (4分) 17、指定主旁瓣比下的等旁瓣级 (1分) 18、12d λ≤或2 d λ≤ (1分) 19、()()()sin 21sin 2N R N ?βθ?β??- ???= ??- ? ?? (1分) 20、4、5 (2分) 21、t R c = 2 (1分) 22、测时误差、声速误差 (2分) 23、 1 2 c τ,其中τ为脉宽 (1分) 24、线性调频测距、三角波调频测距、阶跃调频测距、双曲线调频测距(任意3个)(3分) 25、多普勒测速、相关测速 (2分) 26、 02cos x v f c α (1分) 27、波形发生器(信号源)、多波束形成器、功率放大器、换能器、接收机,收发转换开关 (任意3个) (3分) 二、证明题(10分) 答:根据定义 ()()()-j2,e t s t s t dt ξχτξτ∞ *π-∞ = +? ()()()-j2111,e t s t s t dt ξχτξτ∞ *π-∞ = +? 又因为 ()()s t s t kt 12 =e j π 所以 ()()()()2 2 -j 21,e j k t j kt t s t e s t e dt πτπξχτξτ∞ * +π -∞??= +???? ? (2分) ()()() 2 2 -j2e j k t j kt t s t s t e e dt πτπξτ∞ -+*π-∞=+? ()()222j kt j k j t s t s t e dt πτπτπξτ∞ * ----∞=+? (2分) ()()()2 2j k t j k s t s t e dt e πτξπττ∞ -+*--∞=+?? (2分) ()()()2 2j k t j k s t s t e dt e πτξπττ∞ -+* --∞=+?? (2分) ()()()()2,j k t s t s t e dt k πτξτχττξ∞ -+*-∞ = +=+? (2分) 三、计算题(15分) 答:可以看作是三级复合阵, 第一级:1 1 ,为2元阵 (2分) 因此第一级的归一化指向性为()()()() () () 1sin /2sin cos /2sin /22sin /2N R N ??θ???= ==(2分) 第二级:1 1 ,为2元阵 (2分) 因此第二级的归一化指向性为()()()() () ()2sin /2sin cos /2sin /22sin /2N R N ??θ???===(2 分)

信息技术及其应用

第二节信息技术及其应用 教学标题:信息技术及其应用 教学目标: 1、了解信息技术及其发展历程与发展趋势 2、探索信息技术的应用及其对社会、对生活等方面的影响 3、培养健康使用信息技术的习惯 情感态度与价值观: 结合案例分析,探讨信息技术对社会发展、科技进步和个人学习生活等方面的影响,激发自己对信息技术的学习兴趣,培养合作解决问题的能力。 教学方法:结合视频节目,通过问题研讨,了解信息技术的应用、历史和发展趋势,能分析和理解信息技术的基本内涵。 教学重点: 1、掌握什么是信息技术 2、信息技术的应用及其对社会、对生活等方面的影响 教学难点: 1、信息技术概念的理解 2、正确分析信息技术的积极、消极两方面影响 教学思路: 本节课内容比较多,比较杂,要在一节课时间让学生面面俱到的全部掌握很难做到,因此要做到详略得当、重点突出是本节课最需要注意和最难解决的问题。 根据教材这个特点和学生特点,因此在课程安排上:首先复习上节课的内容,再由IT单词含义引入新课,教师讲解信息技术的概念;对于计算机技术、通信技术、微电子技术、传感技术这四种技术则给有兴趣有能力的学生课后自学,有效节省时间;信息技术的五个发展阶段作为记忆方面的知识,让学生了解记下就达到了目的,但信息技术的发展应该让学生大胆设想,勇敢回答;对于比较重要的信息技术的应用与影响,则通过学生回答、辩论赛等多种活动加深学生的理解和记忆;在此基础上提出健康使用信息技术的要求,提升学生的信息素养;最后采用知识点评价和自我评价,检验学习效果。

教学课时:1 学时 教学过程: 一、课前复习 (1)通过抢答的方式概括信息具有的基本特征:传递性 | 共享性 | 依附性和可处理性 | 价值相对性 | 时效性 | 真伪性 | 其他特性 (2)练习讲评 请几个同学举例,人们是如何利用信息为生活、生产服务的? 二、信息技术及其发展 1、阅读课本实例,结合课前预习,讨论文中的内容,填写表格,关注信息技术发展对生活的影响。 (1)IT的英文全称是什么?是什么意思?什么是信息技术? (2)信息技术主要包括哪四方面技术?(计算机技术、通信技术、微电子技术、传感技术) 2、小组讨论 (1)阅读课本材料,经小组讨论,填写下表 信息技术的发展历程 发展阶段 产生了哪些信息技术 主要特点 1 2

第1章 数字信号处理和DSP系统

第1章数字信号处理和DSP 系统 数字信号处理器诞生之时,没有人预料到它竟能给世界带 对实时数字信号技术的发展进行了介绍,分析不同实现方内容提要 来巨大的变化。其应用的广度还是深度方面,都在以前所 未有的速度向前发展。 本章要点: 1. 法的优缺点;2. 针对可编程数字信号处理器应用领域、内部结构等特点进行了介绍;3. 以德州仪器公司的第三代产品DSP 产品为例,介绍了包括C24x 和C28系列,C62x 和C64x 系列,C67x 和C33系列,低功耗16位定点数字信号处理器C54x 和C55x 系列的功能、封装、外设资源等特性。4.介绍选择DSP 芯片所要考虑的运算速度、算法格式和数据 宽度、存储器类型功耗、以及开发工具等因素。最后给出 了开发DSP 应用系统的设计流程。

第1章数字信号处理和DSP系统 知识要点 实时数字信号处理技术的发展数字信号处理器的特点 德州仪器公司的DSP产品 DSP芯片的选择 DSP应用系统设计流程

第1章数字信号处理和DSP系统 1.1 实时数字信号处理技术的发展1.2 数字信号处理器的特点 1.3 德州仪器公司的DSP产品 1.4 DSP芯片的选择 1.5 DSP应用系统设计流程

1.1 实时数字信号处理技术的发展 20世纪60年代以来,随着信息技术的不断进步,数字信号处理技术应运而生并得到迅速发展。80年代以前,由于方法的限制,数字信号处理技术处于理论研究阶段,还得不到广泛的应用。在此阶段,人们利用通用计算机进行数字滤波、频谱分析等算法的研究,以及数字信号处理系统的模拟和仿真。而将数字信号处理技术推向高峰的则是实时数字信号处理技术的高速发展。 实时数字信号处理对数字信号处理系统的处理能力提出了严格的要求,所有运算、处理都必须小于系统可接受的最大时延。

FPGA在高速数字信号处理中的使用

由于成本、系统功耗和面市时间等原因,许多通讯、视频和图像系统已无法简单地用现有DSP处理器来实现,现场可编程门阵列(FPGA)尤其适合于乘法和累加(MAC)等重复性的DSP任务。本文从FPGA与专用DSP器件的运算速度和器件资源的比较入手,介绍FPGA 在复数乘法、数字滤波器设计和FFT等数字信号处理中应用的优越性,值得(中国)从事信号处理的工程师关注。 Chris Dick Xilinx公司 由于在性能、成本、灵活性和功耗等方面的优势,基于FPGA的信号处理器已广泛应用于各种信号处理领域。近50%的FPGA产品已进入各种通信和网络设备中,例如无线基站、交换机、路由器和调制解调器等。FPGA提供了极强的灵活性,可让设计者开发出满足多种标准的产品。例如,万能移动电话能够自动识别GSM、CDMA、TDMA或AMPS等不同的信号标准,并可自动重配置以适应所识别的协议。FPGA所固有的灵活性和性能也可让设计者紧跟新标准的变化,并能提供可行的方法来满足不断变化的标准要求。 复数乘法 复数运算可用于多种数字信号处理系统。例如,在通讯系统中复数乘积项常用来将信道转化为基带。在线缆调制解调器和一些无线系统中,接收器采用一种时域自适应量化器来解决信号间由于通讯信道不够理想而引入的干扰问题。量化器采用一种复数运算单元对复数进行处理。用来说明数字信号处理器优越性能的指标之一就是其处理复数运算的能力,尤其是复数乘法。 一个类似DSP-24(工作频率为100MHz)的器件在100ns内可产生24×24位复数乘积(2个操作数的实部和虚部均为24位精度)。复数乘积的一种计算方法需要4次实数乘法、1次加法和1次减法。一个满精度的24×24实数管线乘法器需占用348个逻辑片。将4个实数乘法器产生的结果组合起来所需的2个48位加法/减法器各需要24个逻辑片(logic slice)。这些器件将工作在超过100MHz的时钟频率。复数乘法器采用一条完全并行的数据通道,由4×348+2×24=1440个逻辑片构成,这相当于Virtex XCV1000 FPGA所提供逻辑资源的12%。计算一个复数乘积所需的时间为10ns,比DSP结构的基准测试快一个数量级。为了获得更高的性能,几个完全并行的复数乘法器可在单个芯片上实现。采用5个复数乘法器,假设时钟频率为100MHz,则计算平均速率为每2ns一个复数乘积。这一设计将占用一个XCV1000器件约59%的资源。 这里应该强调的一个问题是I/O,有这样一条高速数据通道固然不错,但为了充分利用它,所有的乘法器都须始终保持100%的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数。 除了具有可实现算法功能的高可配置逻辑结构外,FPGA还提供了巨大的I/O带宽,包括片上和片外数据传输带宽,以及算术单元和存储器等片上部件之间的数据传输带宽。例如,XCV1000具有512个用户I/O引脚。这些I/O引脚本身是可配置的,并可支持多种信号标准。实现复数乘法器的另一种方法是构造一个单元,该单元采用单设定或并行的24x24实数乘法器。这种情况下,每一个复数乘法需要4个时钟标识,但是FPGA的逻辑资源占用率却降到了最低。同样,采用100MHz系统时钟,每隔40ns可获得一个新的满精度复数乘积,这仍是DSP结构基准测试数据的2.5倍。这一设定方法需要大约450个逻辑片,占一个XCV1000器件所有资源的3.7%(或XCV300的15%)。 构造一条能够精确匹配所需算法和性能要求的数据通道的能力是FPGA技术独特的特性之一。而且请注意,由于FPGA采用SRAM配置存储器,只需简单下载一个新的配置位流,同样的FPGA硬件就可适用于多种应用。FPGA就像是具有极短周转时间的微型硅片加工厂。

声纳工作原理的简易说明

声纳工作原理的简易说明 声纳工作原理的简易说明 加拿大海军的M2S2声纳系统 声纳是一种非常重要的海军装备,随着潜艇等水下武器的使用而受到各国极大的重视。这里,我们不去讨论某个具体的装备,也不涉及太多的数学概念,而是从简单的物理原理入手,对声纳这个水中顺风耳做个简略的介绍。 ▲自然界中的雷达和声纳 目前的声纳主要分为两类,主动声纳和被动声纳。主动声纳工作时类似雷达,更确切地说像蝙蝠,发出声波后,接受反射回来的声信号。既然原理类似,问题来了,为何不把雷达直接搬到水下呢?很简单,雷达依赖的电磁波在水下衰减严重,根本不足以用于远距离的探测。而声波是由物体振动产生,在水中的传播距离非常远,水中一声巨大的爆炸,上千公里远的地方也能听到。 如此得天独厚的优势,声波自然而然成为首选的媒介。既然声响在水里可以传播很远,那么放置一个听音器静静地听着别人吼叫也能起到收集信息的作用,那么被动声纳就应用而生。我们可以打个比方,某人冲着远处连绵不绝的大山高喊“我!爱!军!武!”,一段时间后

会有缥缈的回声传回来,“我~爱~军~武~”。这样,嗓子和耳朵就组成了主动声纳,如果知道声音的传播速度,手头恰好有个秒表,简单的计算就能得到此人和大山之间的距离。恭喜,这就是主动声纳技能。如果此时在大山的另一边,有人恰好只是听到了这句喊,好吧,他只是用了被动声纳的技能。 了解了大概的工作原理后,我们的问题就具体起来,如何产生声波?如何接收声波?我们不可能在水下还是用嗓子喊耳朵听,所以特殊的部件被开发出来用于这个目的,那就是水声换能器。 这种部件的主要有两种类型,用磁场或是用电场都可以让物体变形,这里我们集中介绍用电场控制物体变形和振动的原理,即逆压电效应和压电效应。 在二战后期之前的声纳系统一直不太给力,原因之一就是有正逆压电效应的材料不靠谱,而纳粹潜艇威胁巨大,迫使盟军投入大量精力去开发新材料。直到有一天,具有钙钛矿结构的钛酸钡(BaTiO3)被发现,使得声纳中的关键原件有了突破。之后参杂有铅的铅锆钛(PZT)陶瓷被发明,其性能非常优异,经过改进后的材料至今仍然被某些声纳使用。 ▲用于产生超声波的的压电 陶瓷阵列(PI公司,德国) 所谓的正逆压电效应就是力和电的相互转换。当有外力F作用在压电体表面时,无论是拉伸还是压缩变形,都会在施加力的两个表面产生电荷。利用这个原理,就可以制成传感器。声波传播当中遇到这个传感器会引起传感器微小的振动,这种细微的变形会产生电荷信号。结合其他电路和计算机,就可以制成听声器。

信息技术及其应用和发展

复习:完成下列填空题:(提问、回答) 一、关于多媒体的数字化: 1、录制一段时长1分钟、双声道、16位量化位数、44.1kHz采样频率的不压缩的音频数据是: A、10.1MB B、80.8MB C、17.2KB D、344.5KB 2、根据下图所示,有一个声音文件“第4讲附件录音.wav ”,每秒(ps)播放176kb(这里的k 仍旧表示千的意思,kb=1000b),那么播放23.40秒,需要多少存储空间(KB)? 176kb*23.40; 3、一幅1024×768像素的黑白(位图)图象理论上需多少存储空间? A、1.5MB B、120KB C、96KB D、1.2MB (1) 4、一幅1024×768像素、256色的(位图)图象理论上需多少存储空间? (提示:28=256,) 二、分析下面的数制题: 1、十六进制数4FH转换成二进制数是 (A)(1001111)2 (B)(1011011)2 (C)(1010111)2 (D)(1011110)2 2、、若要分别表示一年的月份,用二进制数来表示则最少需要 【A】 1位【B】 2位【C】 3位【D】 4位 3、十进制数121转换成二进制数是______。 A、1111001 B、111001 C、1001111 D、100111 基本方法1:121反复除2求余数; 方法2:倒过来,把4个二进制数转换成十进制数,看哪一个是121? 方法3:倒过来,把4个二进制数转换成十六进制数为: 79H 39H 4FH 27H 十六进制数的幂展开计算结果就是十进制数:79H=7*161+9*160=121 方法4:7个1=(1111111)2=127,111=110 =6,127-6=121 三、其它概念: 1、计算机存储容量单位 存储容量最小单位是“位”(b it),存一个:0或1 存储容量基本单位是字节B:1B=8b it ( B:Byte, 字节;存放一个字符,如:数字、字母、符号。) (2个字节存放一个汉字)

基于TMS320C6455的高速数字信号处理系统设计

基于TMS320C6455的高速数字信号处理系统设计 摘要:针对高速实时数字信号处理系统设计要求,本文提出并设计了基于dsp+fpga结构的高速数字信号处理系统,采用ti公司目前单片处理能力最强的定点dsp芯片tms320c6455为系统主处理器,fpga作为协处理器。详细论述了dsp外围接口电路的应用和设计,系统设计电路简洁、实现方便,可靠性强。 关键词:tms320c6455 fpga 数字信号处理系统设计 design of high-speed digital signal processing system based on tms320c6455 cao jingzhi,he fei,li qiang,ren hui,qin wei (department of tool development,china petroleum logging co.,ltd shaan xi xi’an 710077) abstract:according to the design needs of high-speed real-time digital signal processing system.the paper puts forward a design of high-speed digital signal processing system based on dsp+fpga structure,adopting ti company fixed-point dsp chip tms320c6455,the currently strongest capacity monolithic processor,for system main processor,and fpga as coprocessor.this paper describs the application and design of dsp periphery circuit interface in detail.the system design has simple circuit and realize convenient, reliability.

声纳识别系统性能提升途径

电子技术 ? Electronic Technology 94 ?电子技术与软件工程 Electronic Technology & Software Engineering 【关键词】声纳原理 发展趋势 识别系统 水声学是一门声学分支学科,主要研究的是水下声波的产生、辐射、传播、接收和量度,掌握水声学就可以解决与水下目标探测及信息传输有关的各种问题。由于海洋水环境的独特性质光波以及无线电波的传播在其中的衰减都极其严重,无法在海水中进行远距离有效的传播,更无法满足对水下环境及目标的检测、水下通讯等方面的应用。在已发现的传输介质中,唯一一种能够在海水中作远距离传输的能量形式就是声波。 声纳是通过声波信号来对水下目标进行探测、定位的常见设备,其原理是模仿视力极 声纳识别系统性能提升途径 文/孙鹏程 低的蝙蝠通过声波实现视觉功能的特性。在水 下资源勘查,水下通信、海洋军事领域中起着决定性作用。声纳的军事战略地位已被拥有海洋资源的各海洋国家广泛重视。 1 声纳技术的分类及现状 声纳从工作原理来分可分为主动声纳和 被动声纳两类。 主动声纳又称回声声纳,原理框图如图1 所示。 主动声纳的工作方式为发射机发射出特定频率的声波信号,触及到目标物后接收反射波中的信息来测算出目标的各项参数,包括方位、距离、速度等。具体来讲,距离可以通过折返的声波信号与发射出的声波信号之间的时间差计算出来,目标的方位可以通过测算回声弧形波线,再制出其法向量方向就是目标的方向,而目标的径向速度可根据多普勒效应测算回波信号与发射信号之间的频率之差得知。 同理,目标的其他性质可通过比对回波信号与发射信号的变化规律来推测。主动声纳 主要用于水下勘测,例如暗礁、冰山、沉船等静止且无声的目标,其优势也在于此,能够较精确的测量方位以及距离等参数,缺点是主动声纳工作时需发射声波信号采集回声,更易被地方侦查,且探测距离有限。 被动声纳的工作原理(如图2)是通过接受目标自身发出的声波信号来探测目标,因此也被称为噪声声纳,这一功能是通过接收换能器基阵来实现的。 被动声纳主要用来搜索、检测来自目标的声信号和噪音优点是拥有良好的隐蔽性,更远的侦察距离以及更强的识别能力。缺点是由于其需要目标物自身产生“噪声”,所以对静止无声的目标无法探测,仅仅可以发现目标但无法测出目标距离。其次,被动声纳只接收目标自身产生的信号,声纳本身并不发射信号,因而没有其他反射噪声造成的干扰。 实际应用中多数声纳都采用主动被动两种方式结合使用,充分发挥出两种声纳的优点扬长避短。在一般勘察使用时,为了在探测的同时不使自身信息被敌方率先侦查到,工作在 房内火灾隐患。最终实现对机房环境、机房安全、机房配套设备和重要供电回路的各种监视功能。3.2 安防系统 根据安全管理需要,设置视频监控系统。本次系统前端采用数字摄像机,存储采用数字硬盘录像机。室外设两台快球摄像机,监控整个台站的外环境及围界情况,室内设一台半球型摄像机,该摄像机的主要作用就是进行安全防范监控。并且安防系统还能够对摄像机图像进行实时监视以及对图像的数字化存储功能,具备网络远程多路实时监视的功能。还能够对录像资料进行远程网络的查询和回放,对于录像资料还提供了远程下载、备份的服务,满足了用户对监控图像的随时调取需要。数字摄像机采用720P 像素,硬盘录像机对所有本地视频进行7×24小时的存储,存储天数为90天。3.3 消防报警系统 场监机房内设置火灾报警系统,通过使用智能型总线制火灾自动报警系统对常场监机房全面保护。感烟探测器和感温探测器的设置,能够对温度和烟雾信息进行准确的监控;此外, 还需要设置紧急启停按钮、放气指示灯、声光报警器。系统对各种火灾报警信号能够及时的进行接收,然后发出报警信号,信号发送至环境监控采集设备,最后上传至上级监控中心。气体灭火控制盘分为手动和自动两种,当控制盘处于手动状态,只发出报警信号,不输出动作信号,但是一旦值班人员对确认火警的发生后,对应急启动按钮进行控制,就可以使系统喷放气体灭火剂启动。 4 系统供电及接地 1号场监雷达站由2#消防站引双路低压电源,互投后供工艺使用。2号场监雷达站由3#消防站引双路低压电源,互投后供工艺使用。3号场监雷达站由1#消防站引双路低压电源,互投后供工艺使用。1号、2号、3号场监雷达站均与甚高频遥控台合建,台站内为场监和甚高频设备配备UPS 设备,均冗余配置,后备时间按半小时考虑。在机房配电箱内安装防浪涌保护器。雷达塔平台上架设4根玻璃钢避雷针。方舱内设备通过16mm2专用接地铜线与50mm 2接地母线相连。接地电阻要求不大于4欧姆。建筑接地网及避雷设计由电气专业考虑。 5 通信 通信采用光缆传输,光纤从机房预埋至手孔井,沿通信管道敷设至合建的甚高频机房传输设备,最终传输到东塔附属业务楼。传输设备由通信工程设计。 参考文献 [1]卿烈华.场面监视雷达系统在民 用机场的应用[J].数字技术与应用,2018,36(05):100+102. [2]徐艳.场面监视雷达系统的设计与 优化分析[J].信息与电脑(理论版),2017(14):169-171. [3]周雷.场监雷达天线座关键技术研究[J]. 电子机械工程,2017,33(5):17-21. 作者简介 孙璐(1988-),女,河南省信阳市人。硕士研究生,中级工程师,通信导航专业。 作者单位 中国民航机场建设集团公司规划设计总院 北京市 100101 <<上接93页

信息技术及其应用教案

第二周 第二节信息技术及其应用: 教学内容:信息技术及其应用: 教学目的: 1、了解信息技术的基本涵义及其在生产生活中的广泛应用。 2、体会信息技术在学习、生活中的作用 3、认识提高信息素养的重要性 4、了解计算机病毒的特征以及计算机病毒的防治。 5、引导学生遵守网络上的道德规范以及了解学习信息技术的意义与方法。 6、教育学生养成计算机使用的良好习惯。 教学重点: 1.计算机病毒的几个特征。 2.计算机病毒的防治。 教学难点:计算机使用的良好习惯 教学过程: 一、学生看书: 1、通信技术的应用 2、微电子技术及其应用 3、电子计算机及其应用 科学处理 数据处理 实时控制 计算机辅助设计和辅助教学 办公自动化 人工智能

多媒体应用 网络应用 二、精讲: 一.导入: 同学们一定都生过病,人为什么么会生病,很多情况下是因为感染了病毒。不但人体会感染病毒,电脑也会感染病毒。计算机病毒已经被越来越多的人所知晓,各类媒体对计算机病毒的报道越来越多。同学们一定听说过计算机病毒,计算机病毒会给计算机带来很多危害,下面我们请同学来交流一下你们听说过的病毒以及病毒会给计算机带来一些什么危害。 (请同学交流) 二.新授: (一)信息安全 1、计算机病毒的特征 其实啊,电脑病毒也是一种程序,就像“写字板”“画图”一样,不过“写字板”“画图”可以帮助我们做事情,而电脑病毒只会给我们的电脑搞破坏。 刚刚同学们讲了很多病毒以及它们的危害,下面我们一起来总结一下电脑病毒的特征: (1) 隐蔽性 计算机病毒一般依附在别的程序上,这样就不易被察觉和发现.当病毒事先设定的条件得到满足时,计算机病毒便发作,对计算机系统发起攻击。 (2)传染性 计算机病毒都有很强的自我复制能力,这也是其最本质的特征。它可以随着带有病毒的软盘、光盘、电子邮件等,通过交替使用和网络,迅速传染到别的计算机系统。 (3)破坏性 刚才也有同学讲了很多计算机病毒带来的危害。计算机病毒的破坏方式也是多种多样的。它可能删除数据、修改文件、抢占存储空间。计算机病毒甚至可以使一个大型计算机中心的正常工作中断,或使一个计算机网络处于瘫痪状态,从而造成灾难性的后果,甚至危害到国家经济和安全。

heu声纳技术期末考试复习总结

1.水下目标探测是指利用自身发出的声波和目标的回波确定目标的存在; 水下定位则是利用自身发出的声波和目标回波来确定目标的位置,包括目标的距离、方位、及深度。 2.(二战后)声呐技术发展的主要特点是采用低频、大功率、大尺寸基阵,并广泛采用信号处理技术。 3.若按位置体系分类:声呐可分为舰用声呐、潜艇用声呐、岸用声呐、航空吊放声呐和声呐浮标、海底声呐;按工作原理分类:主动声呐、被动声呐。 4.除噪声外,主动声呐特有的一种干扰形式是混响(海面混响、海底混响、体积混响)。5.被动声呐的隐蔽性和作用距离一般由于主动声呐,但主动声呐可以探测静止不发声目标,而被动声呐则不能。 6.战术指标是反映和表征战术性能的那些参数,例如①作用距离②方位角测量范围及精度③定位精度④分辨率⑤搜索速度⑥跟踪距离⑦环境条件及盲区等。 7.科学地评价声呐作用距离一般包括以下三个主要因素:信噪比,虚警概率,探测概率。8.主动声呐信号常从三个方面来描述:时间函数,频谱函数,模糊函数。 9.信号为a(+)exp[jφ(+)]的瞬间频率表示式是f(t)=1/2π·dφ(t)/dt 10.当目标与声呐发射机/接收机有相对运动时,会使接收的脉冲信号波形发生改变,表现 相对运动时,多谱勒频移为正,向背运动时则为负。 12.信号的时间分辨力取决与信号的带宽,频率分辨力取决于脉宽(时宽)。 13.LFW脉冲信号的时间波形表达式Aexp[j(2πf o t+πkt2)] t∈[-T/2,T/2] 瞬时频率表达式f(t)= f o+kt t∈[-T/2,T/2] 14.最大值测向方法的测向精度主要取决于①声系统方向性主瓣的宽度②指示器的类型③声系统转动装置的精度④声呐操作员的生理声学特征 15.相位法测向是一种直接测量法,它测定两等效阵元之间的相位差,从而达到测量目标方位的目的。一般来说,它比最大值测向的精度高,但当两基元间距增大时,可能存在相位多值性,从而导致测向模糊的问题。 16.声呐波束形成的目的:是使多阵元构成的基阵经适当处理得到在预定方向的指向性。17.接收系统具有指向性,则可抑制噪声,多目标分辨和准确测向。 18.将基阵各基元输出直接相加之后获得的指向性称之为基阵的自然指向性。 19.在等间隔线阵的情况下,一种最常用的幅度加权法是道夫·契比雪夫加权,它可实现在指定主旁瓣比下获得等旁瓣级效果。 20.设有一个束宽为Θ的单波束声呐,依靠通过旋转基阵搜索一个扇面θs为观察扇面内直到距离R的所有目标,要求最短时间为T min=2R/c·θs/Θ 21.一个N元等间距线阵的归一化自然指向性函数在±90°范围内非正前方信号之外的某些角度上出现最大值,这些方向称之为基阵的栅瓣,它满足sinθ=kλ/d,k≠0 22.利用波束形成使主波束在空间一个扇面内转动时,这一扇面的宽度实际上不是任意的,存在一个极限值,当扇面超过这个极限时,将会出现方向模糊,这个扇面称之为中心非模糊扇面,若要求这个扇面为-90°≤sinθs≤90°,则要求d/λ≤1/2。DFT波束形成器可以完成这个扇面内N个相互独立波束形成的任务。 23.若N个阵元组成的等间距线阵,间距为2d,则其中心非模糊扇面的全开角2θs=2sin-1(λ/4d) 24.脉冲测距是利用接收回波与发射脉冲信号间的时间差来测距的方法。若有一目标与换能器的距离为R,则换能器发射声脉冲经目标反射后往返传播时间为t=2R/c

基于DSP的数字音频系统

基于DSP的数字音频系统 *** ********,** 摘要:随着数字化的发展,信号的处理更加追求用数字化的方式,数字信号相对于模拟信号有更多的优势,解决了模拟处理方法所不能解决的问题,本文综述DSP技术在数字音频领域的应用。简单介绍音频系统的组成,介绍FIR数字滤波器的设计方法. 关键词:dsp,FIR,MATLAB 1、模拟信号与数字信号 近几年,数字化几乎涉及到人类的方方面面——数字化信息系统、数字化交通系统、数字化图书馆、数字化家电等,数字化带来的优质服务为人们的生活带来极大地便利。 过去,人们通过模拟的方式来处理信号,但这种方法有很多缺陷:设计好后改动困难,缺少灵活性;由于用硬件的方式实现,精确地受仪器的限制;易受环境的影响,如湿度、天气等,往往在不同的环境下表现出不同的性能;不便于大规模集成。 为克服这些,出现了数字信号处理(DSP)的方法。数字信号处理系统有很多优点:精度高、灵活性高、可靠性强、便于大规模集成、时分复用、可获得高性能指标、可二维或多维处理等。这些突出特点,使得它在通信、语音、雷达、地震测报、声呐、遥感、生物医学、电视、仪器中得到越来越多的应用。 2、音频信号的数字化 2.1概述 传统的模拟录音技术是把各种声音、音乐转换成模拟电压信号,通过录音机等设备录音,把模拟电压信号转换为磁信号记录在磁性媒介上。重放时,可以通过放音设备等设备把磁信号重新变为模拟电压信号,通过功率放大器推动扬声器来重现声音。但模拟磁性录音性能受电磁性的影响较大,模拟电压信号在放大和传输过程中会受到各种噪声和干扰的影响等等,这些都会影响音质。 数字音频技术是指把模拟声音信号通过采样、量化和编码过程转换成数字信号,然后再进行记录、传输以及其他加工处理;在重放时再将这些记录的数字音频信号还原为模拟信号,获得连续的声音。模拟信号在时间和幅度上都是连续的,幅度的微小变化都会引起声音质量的变化。而数字音频技术是通过把模拟信号进行时间上的离散化和幅度上的量化处理以后,变为一连串数字信号加以存储或传输。理论上除了把模拟信号转变为数字信号的数字化过程和把数字信号重新还原为模拟信号的过程会引入一些误差以外,在对数字信号的存储和传输过程中不会引起音质的变化,这是越来越多采用数字音频技术的主要原因之一。计算机的飞速发展也促进了数字音频技术的广泛应用。 2.2 音频信号数字化的方法及原理 信号的数字化就是将连续变化的模拟信号转换成离散的数字信号,一般需要采样、量化

3[1].2《遥感技术及其应用》-教案1(湘教版必修3)

3.2遥感技术及其应用教学设计 一、课标要求:结合实例,了解遥感(RS)在资源普查、环境和灾害监测中的应用。 二、三维目标 (一)知识与技能 1、能够用自己的语言表述遥感的概念 2、能简要说明遥感技术的发展过程。 3、能说出遥感的几种常见分类。 4、能举例说明遥感在资源普查、环境灾害监测中的作用。 (二)方法与过程 1、通过阅读教材中提供的资料并上网搜索遥感信息,归纳遥感的几个发展阶段。 2、通过读图或上网搜索相关资料比较航天遥感、航空遥感、近地遥感使用飞运载工具、主要优缺点及适用范围等方面的差异。 3、通过上网搜索有关遥感技术应用的信息,归纳遥感技术的主要途径。 (三)情感态度与价值观 1、通过遥感技术的迅猛发展的介绍,使学生感悟新兴地理信息技术的生命力,从而初步养成热爱科学、努力学习新兴科学的好习惯。 2、通过迅速发展的中国遥感技术的学习,增强学生的民族自信心和爱国情感。 3、通过遥感技术在农业、军事、环境监测、资源调查等方面的重要作用的学习,产生对遥感技术的好奇感,从而激发学生的探究和创新动力。 三、重点:根据运载工具不同的遥感分类种类。 四、学习方法: 1、多媒体课件演示。 2、读图分析讨论。 3、教师点拨、启发、引导。 4、理论联系实际。 五、课时:1课时

导入:南极考查必须穿越西风带区,这是多年来南极考察的难题。在我国开展的第14次南极考察中,1997年12月10日“雪龙号”科学考察船进入强风带时,与外界中断了联系,“船载气象卫星接收系统”接收到了一张非常清晰的卫星云图,图像上清晰的显示了三个气旋的位置及运动方向。这就是本节我们学习的遥感技术及其应用。 基础层次问题 1、什么是遥感技术? 2、遥感技术经历了怎样的发展过程? 3、遥感技术有哪些特点? 4、遥感技术系统由那些组成? 5、遥感从不同的角度可以分为不同的类型,如何分? 6、航天遥感、航空遥感、近地遥感对比优缺点。 7、遥感在资源普查中的应用有哪些? 8、遥感在环境灾害监测中如何应用? 9、遥感卫星的科学实验功能有哪些? 知识反馈 1、下列遥感类型中,探测范围由大到小依次是 A.近地遥感、航空遥感、航天遥感 B.航天遥感、航空遥感、近地遥感 C.航空遥感、近地遥感、航天遥感 D.航空遥感、航天遥感、近地遥感 2、下列遥感类型中.按照应用领域或专题进行分类的是 A.航天遥感、航空遥感、近地遥感 B.主动式遥感、被动式遥感 C.紫外遥感、可见光遥感、红外遥感、微波遥感、多谱段遥感

计算机信息技术发展方向及其应用

计算机信息技术发展方向及其应用 摘要计算机信息技术是当今世界最为重要的一项技术,其在人们的生产、生活过程中都发挥着重要的作用,而且,随着科学技术的不断发展,这项技术仍将会有更多的创新和发展,其未来的发展情况非常值得期待。为此,本文主要论述计算机信息技术的应用以及其发展的方向,希望能够为该技术的发展带来一些有益的参考。 【关键词】计算机信息技术发展方向应用 目前阶段,人们对于计算机信息技术的依赖程度已经非常高,小到普通百姓日常的网络应用,达到国家层面的信息统计和分析,都与计算机信息技术存在着密切的联系,计算机信息技术的出现为人们的生活提供了更多的便利,也给世界发展提供了充足的动力。为了让这项技术能够更好的发展和应用,笔者以自身高中生的视角,阐述计算机信息技术未来的发展方向和应用情况,希望可以为计算机信息技术的发展带来一些帮助。 1 计算机信息技术发展方向 随着社会发展速度的不断加快,计算机信息技术在社会发展过程中的作用也逐渐强大,其在生产和生活中都发挥了重要的作用,在未来仍将具有广阔的发展前景。与此同时,

计算机技术和信息技术仍在不断的发展,新的技术不断出现,计算机信息技术要想得到较好的发展,需要提升自身的各项性能,例如提升自身的安全性能、数据传输性能等,保障用户的信息不被泄露,提高计算机信息技术的安全性和稳定性。同时,计算机信息技术还需要提升自身的安全操作水平,避免病毒入侵,要通过防火墙和系统建设提升病毒防御能力,还要降低计算机信息技术操作的难度,要使得其运行的效率进一步提高。 此外,计算机信息技术还需要提升网络结构设计能力,要提升网络结构的科学性和合理性,做到合理划分,相关设计人员需要让计算机信息技术形成不同的结构层次,要形成相应的规范,提高计算机信息技术的性能,笔者通过学习得知,我国目前在这一方面还存在较大的不足,与发达国家之间的差距较为明显,因此使得计算机信息技术的应用效果降低。同时,在优化处理器系统环节,也需要投入更多的精力,要提升系统的运行能力,提高其运行的效率。 2 计算机信息技术的具体应用 计算机信息技术在许多环节中都有应用,其为各个环节都带来了一定的帮助作用,笔者认为,计算机信息技术较为明显的应用主要表现在以下几个方面: 2.1 计算机信息技术在企业中应用 计算机信息技术为社会企业的发展带来了非常多的帮

信息技术在生活工作中的运用

信息技术对我们生活工作的影响 随着时代的发展与进步,很多新兴技术不断的产生。比如数字化,信息化,智能化等等。其中我们生活工作中运用最为广泛的就是信息化技术。那么什么是信息技术呢。信息技术的简称就是IT它是由它的英文(Information Technology)缩写而成,信息技术并不是单一的某一项技术它是主要用于管理和处理信息所采用的各种技术的总称。它主要是应用计算机科学和通信技术来设计、开发、安装和实施信息系统及应用软件。它也常被称为信息和通信技术(Information and Communications Technology,ICT)。主要包括传感技术、计算机技术和通信技术。 伴随着信息技术的不断发展,信息技术已经切切实实影响到人们日常生活的方方面面,信息技术超越了前所未有的时空距离,数字化、网络化、智能化生存业已成为人们不可或缺的生活模式和生存方式,许多城市居民几乎可以说无法想象如果没有信息通信技术的生活会 是什么样子。你比如说人们在城镇里乘坐的公交车所用的公交卡,家里面看的数字电视,电话手机等一系列通讯工具,网络,媒体,办公,超市,图书管理等等都需要用到信息技术。如今,通信工具已真正成为百姓日常生活不可或缺的主体。 信息技术在我们的生活中有如此多的应用同样的在我们工作中 在各个企业中也是运用广泛,我们对于电子商务这个词汇应该不陌生。现在基本上各行各业都在发展电子商务。那么开展电子商务肯定会离不开电脑,网络等一系列的信息技术。我们都知道,企业间的沟

通其实和我们人类是一样的,各类单位也离不开沟通。在政府机构、企事业单位云集的城市当中,信息沟通的变迁也让人惊叹。网上办公、网上交易、网上查询等一系列的互联网应用,使电话、宽带成为企业不可缺少的电子商务活动手段。还有更高级一点的,我们经常在电视里面看到的一种会议模式那就是视频会议,视频会议系统的开通,为政府机关和大型企业节约了不菲的差旅费,而且提升了工作效率。特别是在重大事件发生时,各级政府能通过这一手段迅速作出反应、部署。 可以看到信息技术真的是影响到我们的方方面面,我们生活中离不开,企业中离不开,政府中也离不开。或许我们以前没有在意,其实信息技术的运用就在我们身边的方方面面。就以我们手中的手机作为一个例子,随着科技的进步,信息技术的运用,我们的手机已经从早期的语音专家延伸到短信、彩铃、音乐下载、手机报、搜索引擎、游戏、手机定位、手机支付等多元化应用,从耳、嘴和眼等人类器官功能的单一发挥,演变为多器官多功能发挥的同时进行。短信、飞信聊天、炒股、买彩票……新技术为移动办公和休闲娱乐提供了不少便利。 总之,我们的生活工作方方面面离不开信息技术,随着时代的发展,信息技术的普及,我们将会更加离不开信息技术,信息技术同样也会给我们带来更大的便利。 旅管08-1班毕庆龙

声纳技术

声纳技术 1、举例说明声纳能够完成的主要功能(至少4种)。 2、举例说明声纳系统的战术指标(至少3种)。 3、声纳设备按装备对象可分为哪几类(至少3种)。 4、声功率为1W时其声源级为多少? 5、从信号波形上看,CW脉冲信号有什么特点? 6、从信号波形上看,LFM脉冲信号有什么特点? 7、信号的时间分辨力和频率分辨力分别取决于信号的哪些参数。 8、简述最大值测向方法的基本原理。 9、相位法测向时,若信号频率提高,测向的精度如何变化,基元间隔减小,又如何变化。 10、说明发射采用波束形成的意义。 11、基阵的方位分辨力取决于哪些参数。 12、说明基阵幅度加权的目的。 13、主动声纳探测15km目标时的回波时间约为多少? 14、说明接收系统中采用波束形成的意义。 15、回波时间为10秒的主动声纳估计目标的距离大致为多少。 16、连续信号能否进行目标距离的测量?举例说明。 17、写出目标与声纳相对运动速度为v时,频率为f0的发射信号的接收频率为何? 18、说明声纳设备采用收发转换开关的作用。 19、声纳接收机有哪些技术指标(至少3个)。 20、接收信号为10uv到100mv的动态范围用dB 表示为多少? 21、检测概率为95%的漏报概率为多少? 22、当接收机门限提高时,检测概率提高,虚警概率下降的说法是否正确? 23、什么是多普勒不变信号? 24、接收机的工作特性描述了哪几个参数之间的关系? 25、什么是接收机的动态范围压缩? 26、写出N元等间距线阵的第1栅瓣满足的关系式。 27、什么情况下说两个波束是独立的? 28、N元等间距线阵插入相移β时最大值指向的方 向为什么。 29、比较单波束系统与多波束系统的优缺点。 30、什么是基阵的自然指向性? 一、声纳技术答案: 1、答:探测、定位、跟踪、识别、通信、导航、制导、对抗等 2、答;作用距离、分辨率、盲区、搜索扇面、搜索速度、工作环境等 3、答:水面舰、潜艇、岸基、浮标、吊放 4、答:171dB 5、答:时间分辨力和频率分辨力不可兼得。 6、答:时间分辨力和频率分辨力可单独调整。 7、答:带宽和脉宽。 8、答:利用有指向性的换能器最大值的指向作为目标方向的方法。 9、答:提高、降低 10、答:能量更集中,距离更远。 11、答:波长(或频率)与阵长。 12、答:改善方向性,如主瓣宽度及旁瓣级。 13、答:20秒。 14、答:测向、抗噪声、分辨多目标。 15、答:7.5km。 16、答:能,如连续LFM信号等。 17、答:f0+2v/c*f0 18、答:防止烧毁及防止信号阻塞。 19、答:放大倍数、通频带、等效输入噪声、一致性、抗干扰能力、功耗等。 20、答:80dB。 21、答:5%。 22、答:不对。 23、答:对运动目标进行检测时检测性能不下降的信号波形。 24、答:信噪比、门限、检测概率、虚警概率。 25、答:为使大动态范围的水声接收信号适应有限动态范围后级处理设备而采取的技术措施。 26、答:sin d θλ = 27、答:两个波束互不包含各自最大值指向的目标方位信息时。 28、答:1 sin() 2d βλ θ π - = 29、答:单波束,简单,但扫描速度慢,无法分辨多目标;而多波束正相反。 30、答:基阵各基元不经处理直接相加后形成的对不同方位目标的输出即基阵的自然指向性。

相关主题
文本预览
相关文档 最新文档