当前位置:文档之家› 雷达系统 信号处理

雷达系统 信号处理

(整理)雷达原理实验指导书实验1-2

精品文档 雷达原理实验指导书 哈尔滨工程大学信息与通信工程学院 2013年3月

精品文档 目录 雷达原理实验课的任务和要求 (1) 雷达原理实验报告格式 (2) 实验一雷达信号波形分析实验 (3) 雷达信号波形分析实验报告 (5) 实验二. 数字式目标距离测量实验 (6) 数字式目标距离测量实验报告 (8)

雷达原理实验课的任务和要求 雷达原理实验课的任务是:使学生掌握雷达的基本工作原理和雷达测距、测角、测速的基本方法和过程;掌握雷达信号处理的基本要求,为了达到上述目的,要求学生做到: 1.做好实验前准备工作 预习是为做好实验奠定必要的基础,在实验前学生一定要认真阅读有关实验教材,明确实验目的、任务、有关原理、操作步骤及注意事项,做到心中有数。 2.严谨求实 实验时要求按照操作步骤进行,认真进行设计和分析,善于思考,学会运用所学理论知识解释实验结果,研究实验中出现的问题。 3.遵从实验教师的指导 要严格按照实验要求进行实验,如出现意外,要及时向老师汇报,以免发生意外事故。 4.注意安全 学生实验过程中,要熟悉实验室环境、严格遵守实验室安全守则。 5.仪器的使用 使用仪器前要事先检查仪器是否完好,使用时要严格按照操作步骤进行,如发现仪器有故障,应立即停止使用,报告老师及时处理,不得私自进行修理。 6.实验报告 实验报告包括下列内容:实验名称、实验日期、实验目的、简要原理、主要实验步骤的简要描述、实验数据、计算和分析结果,问题和讨论等。

雷达原理实验报告格式 一、封皮的填写: (1)实验课程名称:雷达原理 (2)实验名称:按顺序填写 (3)年月日: 二、纸张要求:统一采用A4大小纸张,左侧装订,装订顺序与实验顺序一致。 三、书写要求: (1)报告除实验图像必须打印外,其余可手写。 (2)实验结果图位于实验结果与分析部分,图像打印于纸张上部,下部空白处写实验分析。 (3)报告中图要有图序及名称,表要有表序及名称,每个实验的图序和表序单独标号(例如图1.1脉冲信号仿真波形;表1-1 几种信号的。。。)。 不合格者扣除相应分数。 (4)每个实验均需另起一页书写。 四、关于雷同报告:报告上交后,如有雷同,则课程考核以不及格处理。(每个实验均已列 出参数可选范围,不能出现两人所有参数相同情况)

模拟数字信号处理的相关性

模拟数字信号处理的相关性 Paul Hasler 和David V.Anderson 佐治亚州电子与计算机工程技术研究院, 亚特兰大市, GA30332 phasler@https://www.doczj.com/doc/7910932865.html,, dva@https://www.doczj.com/doc/7910932865.html, 摘要 我们介绍了模拟数字信号处理的相关性的定义和实时信号处理函数的含义.我们也讨论了模拟计算和数字计算电路中操作运算的平衡行问题,并且展示了模拟数字信号相关性处理系统的构架.该系统在模拟VLSI电路处理中的新特性使用采用可编程单元方法改进模拟信号处理系统成可能。 1.模拟数字信号处理相关性的定义 在最近和将来DSP的应用中, VLSI模拟电路的新特性得到了使用[1,2,3,4,5,6,7]。并且,模拟电路系统具有可编程性,可配置和良好的适应性,同时集成度可以和数学存储单元相比(例如,能将超过10万的加法器集成到单一芯片上)[8,9,10,11,5].通常,单一芯片不会同时具有模拟和可编程特性,模拟电路主要用在前置放大器中,而可编程器件专门用于数字处理域中。因此,我们必须清楚是否要具有数学和模拟信号处理两中特性,或者针对特殊用途选择专门的解决方案。本论文所关注的就是确定问题所在。本文章描述了一种创建模拟数字信号处理系统相关性方案。与简单将各部分拼接起来相对,该系统更能发挥各部分的优势。 本论文中我们定义了模拟数字信号相关性处理的概念(CADSP),并且在实时系统中使用了可编程模拟信号处理和数字信号处理相融合的方法。在现在技术中无论是模拟信号处理还是数字信号处理均不会单独使用,因为现实世界中信号均为模拟量然而大多数的控制器都是数字量。最终问题就是如何区分模拟和数字的界限,如图1所示,使用互动有益方法时,利用模拟/数字计算来形成系统的总体框架。对于计算时模拟量和数字量如何区别,CADSP能灵活地设定。在数学运算和电路计算方面,CADSP是复合信号研究的超集。在模拟系统中增加函数功能性后,我们能改进数字系统的性能,因此这样的整个产品正在研发中。 图1 模拟/数字信号相关性处理的结构图。我们认为从现实传感器中获得信号的模型是模拟的,它需要由计算机处理。相反的数字信号经过执行机构作用于现实。一种方法是将A/D传感器放置在尽量接近被监测信号的位置,将计算机的残差直接输出。另一种交互的方式是通过模拟信号处理,获得简单A/D转换器,减小数字计算机的计算误差的步骤来完成。可以将上述模拟计算和A/D转换器组合起来组成复杂的A/D转换器,与引入信号的字面地图相比它能提供更多的信息(如傅立叶系数,音位等)。模数界限的确定特殊应用的需要。 对模数界限划分的讨论将会占用数篇论文。该方法的应用领域包括语音处理,多维信号处理,雷达波计算,会话处理和图像处理和识别。下面的部分进行结论分析,过程分析并讨论能源消耗的含义,生产量和工程设计时间。第二部分讨论当前技术环境和模数信号处理可行性融合方式的改进。第三部分对模拟信号处理能力进行了总结。第四部分对已给定系统的解决方案进行了比较和讨论。在这一部分,将对相关的论文进行致谢。

水声通信技术研究进展及应用

水声通信技术研究进展及应用 摘要:水声通信是当前唯一可在水下进行远程信息传输的通信形式,由于其在民用和军事上都有重大意义,水声通信的研究一直是国内外研究的热点。文章介绍了水声 通信的历史,分析了水声通信发展的关键技术,讨论了水声信道的特点、系统组 成和国内外的发展现状。最后对未来的水声通信技术作了预测。 关键词:水声通信,通信信道,声纳,正交频分复用,声纳信号处理 1 引言 当今世界已进入了飞速发展的信息时代,通信是这一进程中发展最为迅速、进歩最快的行业。陆地和空中通信领域包括的两个最积极、最活跃和发展最快的分支--Internet网和移动通信网日臻完善,而海中通信的发展刚刚崭露头角。有缆方式的信息传输由于目标活动范围受限制、通信缆道的安装和维护费用高昂以及对其他海洋活动(如正常航运)可能存在影响等缺点,极大地限制了它在海洋环境中的应用。另外由于在浑浊、含盐的海水中,光波、电磁波的传播衰减都非常大,即使是衰减最小的蓝绿光的衰减也达到了40dB/km,因而它们在海水中的传播距离十分有限,远不能满足人类海洋活动的需要。在非常低的频率(200Hz以下),声波在海洋中却能传播几百公里,即使20 Hz的声波在水中的衰减也只有2—3dB/km,因此水下通信一般都使用声波来进行通信。而在这个频率范围内,声波在水中(包括海水)的衰减与频率的平方成正比,声波的这个特性导致了水下声信道是带宽受限的。采用声波作为信息传送的载体是目前海中实现中、远距离无线通信的唯一手段。 海洋水下信道是一个极其复杂的时间-空间-频率变化、强多径干扰、有限频带和高噪声的信道,这是至今还存在的难度最大的无线通信信道。研究水声通信必须综合物理海洋学、声学、电子技术和信号处理等多种学科和技术的知识,现在水声通信的研究已经成为各国科学和工程技术人员研究的热点之一。另外,海洋声学技术尤其是水声通信技术是国际发达国家对我国实行封锁的领域,因此研制具有自主知识产权的水声通信技术意义深远。 2 水声通信的历史 水声通信的历史可以追溯到1914年,在这一年水声电报系统研制成功可以看作是水下无线通信的雏形。世界上第一个具有实际意义的水声通信系统是美国海军水声实验室于1945年研制的水下电话,该系统使用单边带调制技术,载波频率8。33kHz,主要用干潜艇之间

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

DSP在雷达·水声·声呐信号处理方面的应用大综述

华北电力大学 文献综述 | | 题目DSP水声·声呐·雷达方面的应用 课程名称 DSP系统设计 | | 专业班级:电子1102 学生姓名:管俊豪 学号:201003020203 成绩: 指导教师:尚秋峰日期: 2014.07.3

DSP在水声和声呐及雷达信号处理系统中的应用 一、基本概念:DSP简介——数字信号处理器(DSP)是一种具有特殊结构的微处理器,特别适合于数字信号处理运算。它是当今发展最为迅速和前景最为可观的技术之一。自从20世纪80年代第一片DSP芯片诞生至今。其性能得到了极大的提高。应用领域取得了不断的拓展。日前它己经成为通信、计算机、网络、工业控制以及家用电器等电产品不可或缺的基础器件, 尤其在通信领域,数字信号处理器以其实时快速地实现各种数字信号处理算法的优点从而得到了广泛的应用。随着超大规模集成电路技术(VLSI)的高速发展。DSP的性价比也在不断提高。 二、学科发展状况 数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理技术已经在通信、实时信号处理、安全保密、图像处理等领域得到了极为广泛的应用。 三、该领域所应用DSP芯片 TMS320VC5416、TMS320DM642、TMS320C5402型号的DSP处理器,采用流水线结构,集成度高、扩展性好、处理功能强、功耗低具有强大的运算能力、高度的并行性和广 泛的应用性,特别适合数字信号处理,完全可以对数据进行实时处理,且其功耗低、 价格适中。综合看来TMS320C5000,TMS3320C6000系列在此应用范围内应用较广。 四、典型应用方案 1、DSP在雷达信号处理中的应用 FFT是雷达信号处理的重要工具。DSP内部的硬件乘法器、地址产生器(反转寻址)和多处理内核,保证DSP在相同条件下,完成FFT算法的速度比通用微处理器要快2到3个数量级。因此,在雷达信号处理器中,大量采用DSP完成FFT/IFFT,以实现信号的时-频域转换、回波频谱分析、频域数字脉冲压缩等。

一种雷达信号处理模块的设计和实现

一种雷达信号处理模块的设计和实现 一种雷达信号处理模块的设计和实现 现代雷达特别是机载雷达数字信号处理机的特点是输入数据多,工作模式复杂,信息处理量大。因此,在一个实时信号处理系统中,雷达信号处理系统要同时进行高速数据分配、处理和大量的数据交换.而传统的雷达信号处理系统的设计思想是基于任务,设计者针对应用背景确定算法流程,确定相应的系统结构,再将结构划分为模块进行电路设计。这种方法存在一定的局限性。 首先,硬件平台的确定会使算法的升级受到制约,由此带来运算量加大、数据存储量增加甚至控制流程变化等问题。此外,雷达信号处理系统的任务往往不是单一的,目前很多原来由模拟电路完成的功能转由数字器件来处理。系统在不同工作阶段的处理任务不同,需要兼顾多种功能。这些问题都对通用性提出了进一步要求[2].随着大规模集成电路技术、高速串行处理及各种先进算法的飞速发展,利用高速DSP和FPGA相结合的系统结构是解决上述问题的有效途径。 1雷达信号处理机方案设计 1.1雷达信号处理的目的 现代机载雷达信号处理的任务繁重,主要功能是在空空方式下将AD 数据录取后进行数字脉压处理、数据格式转换和重排、加权降低频谱副瓣电平,然后进行匹配滤波或相参积累(FFT或DFT)、根据重复频率的方式进行一维或二维CFAR处理、跟踪时测角等运算后提取出点迹目标送给

数据处理机。空地方式下还要进行地图(如RBM和SAR)等相关图像成像处理,最后坐标转换成显示数据送给显控处理机。 上述任务需要基于百万门级可编程逻辑器件FPGA与高性能DSP芯片作为信号处理模块,以充分满足系统的实时性要求,同时为了缩短机载雷达系统的研制周期和减少开发经费,设计的基本指导思想是通用化的信号处理模块,可以根据不同要求,通过软件自由修改参数,方便用户使用。 1.2系统模块化设计方案 的功能模块,除了信号处理所必需的脉冲压缩模块、为MTD模块作准备的数据重排模块、FIR滤波器组模块、求模模块、恒虚警处理模块和显示数据存储模块外,还包括雷达同步信号和内部处理同步产生模块、自检数据产生模块以及不同测试点测试数据采样存储模块。这些模块更加丰富了系统的功能,使得雷达系统的研制者能够更方便地测试和观察信号处理各功能模块的工作情况。 主要功能模块的具体功能描述如下: (1)正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务,中频接收机输出的信号先通过A/D转换器进行采样,然后进行正交解调,以获得中频信号的基带信号(也称为中频信号的复包络)的I、Q两路正交信号,采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内。 (2)脉冲压缩模块是在发射峰值功率受限的情况下,使用匹配滤波器将接收到的宽脉冲信号变成窄脉冲且保持能量不变,以获得更高的距离

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

PLC对模拟量信号的处理过程及方法

PLC对模拟量信号的处理过程及方法模拟量信号是自动化过程控制系统中最基本的过程信号(压力、温度、流量等)输入形式。系统中的过程信号通过变送器,将这些检测信号转换为统一的电压、电流信号,并将这些信号实时的传送至控制器(PLC)。 PLC通过计算转换,将这些模拟量信号转换为内部的数值信号。从而实现系统的监控及控制。从现场的物理信号到PLC内部处理的数值信号,有以下几个步骤:

从以上PLC模拟量的信号输入流程可以看到,在自动化过程控制系统中,模拟量信号的输入是非常复杂的。但是,在现目前的工业现场,对模拟量信号的处理已基本都采用电流信号方式进行传输,

相比于电压信号方式,电流信号抗干扰能力更强,传输距离更远,信号稳定。 这里就PLC对模拟量信号的转换过程进行一个简单的分解介绍。 PLC对模拟量信号的转换 西门子S7-200SMART PLC模拟量模块对模拟量信号的转换范围 台达DVP系列模拟量模块对模拟量信号的转换范围从以上 可以看到: 1、模拟量信号接入PLC后,PLC将模拟量信号转换为了整型数据,不是浮点数(如西门子-27,648 到 27,648); 2、不同品牌的PLC对模拟量转换范围是有差异的(如西门子-27,648 到 27,648;台达-32,384 到 32,384); 3、PLC同一个模块对不同类型的模拟量信号的转换范围是一致的

(如西门子对±10 V、±5 V、±2.5 V 或 0 到 20mA的模拟量信号的转换范围均为-27,648 到 27,648); 故从以上几点我们可以知道,接入PLC的模拟量信号还需要进行再转换处理,才可以得到与实际物理量相匹配的数据;在进行数据转换处理的时候,还应该与使用的PLC模块的处理数据范围相对应。PLC数据转换处理过程 1、模拟量信号与PLC转换数据之间的转换 从以上内容知道,从PLC直接读取到的模拟量信号为整型数据,整型数据无法直观的反馈出实际的物理量大小,故为了能够直观的反馈出现场的过程信号情况,还应该将这些整型数据转换为反馈直观真实的浮点数信号。这里以台达PLC模拟量输入模块的数据处理过程为例说明。

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩)快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT(时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT乘上参考信号FFT的共轭再逆FFT; Sc=ifft(fft(Sb).*conj(fft(S))); Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j* pi*f0*tau);%回波信号 x 107

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) x 10 -5 x 10 -5 x 10 7 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on -400 -350-300-250-200-150-100-500

二、去斜处理(宽带的匹配滤波) 去斜处理“有源相关”,通常用来处理极大带宽的LFM波形(如果直接采样的话因为频带很宽所以在高频的时候需要的采样率就很大,采样点数就很多,所以要经过去斜处理) Stretch方法是针对线性调频信号而提出的,其方法是将输入信号与参考信号(经适当延迟的本振信号,延迟量通常由窄带信号测距结果估计出)混频,则每一个散射点就对应一个混频后的单频分量,对混频输出的信号进行DFT处理,即可获得目标的距离像,对参考信号的要求是应具有与输入信号相同的调频斜率。 去斜处理流程: 输入信号输出信号 参考信号 混频过程为回波信号在时域与参考信号的共轭相乘 混频后得到一个瞬时频率和目标距离成正比的单频信号,对其进行频谱分析即可得到目标的距离像; 去斜处理一般情况下可降低信号带宽; %%%%%%%%%%%%%%%%%%%%%%%% 去斜处理仿真程序 %%%%%%%%%%%%%%%%%%%%%%%%% clc;clear all;close all; B=10e6;%带宽10MHz tp=10e-6;%脉宽10us k=B/tp;%LFM系数 fs=50e6; R0=3e3;R1=2000;R2=3500;R=5000; c=3e8; f0=60e6; N=round(2*R/c*fs); fft_N=2^nextpow2(N); t=linspace(0,2*R/c,N);

信号处理模拟仿真课程设计

《信号处理模拟仿真》 课程设计 题目:信号处理模拟仿真课程设计 班级:电子信息科学与技术132 学生姓名:庞建奇 学号: 720130026 2016年 6 月 1 日

目录 目录 1 课程设计目的 (3) 2 课程设计要求 (3) 3 课程设计内容 (3) 3.1 MATLAB软件的基础应用 (3) 3.1.2 MATLAB描述常用信号 (5) 3.2 信号处理分析 (8) 3.2.1 信号抽样与调制解调 (8) 3.2.2 信号卷积的MATLAB实现 (12) 3.2.3 用MATLAB测量信号频谱 (15) 3.2.4 基于MALAB的DFT变换 (17) 4 实训心得 (19)

1 课程设计目的 《信号处理模拟仿真》课程实习是对电子信息科学与技术专业的一次实训,其目的在于实现在可视化的交互式实验环境中,以计算机为辅助教学手段,以科技应用软件MATLAB为实验平台,辅助学生完成信号处理中的数值分析,可视化建模及仿真调试,将学生从繁杂的手工运算中解脱出来,把更多的时间和经历放到信号处理的分析方法和理解中来。当前,科学技术的发展趋势高度综合又高度分化,这要求高等院校培养的学生既要具有扎实的专业基础,还要通过工程技术实践,不断提高实验研究能力和分析计算能力,总结归纳能力和解决各种实际问题的能力。因此,做好本课程的实验是学好本课程的重要教学辅助环节。 2 课程设计要求 课程设计的过程是综合运用所学知识的过程。课程设计主要任务是围绕数字信号的频谱分析、特征提取和数字滤波器的设计来安排的。根据设计题目的具体要求,运用MATLAB语言完成题目所规定的任务及功能。设计任务包括:查阅专业资料、工具书或参考文献,了解设计课题的原理及算法、编写程序并在计算机上调试,最后写出完整、规范的课程设计报告书。 实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。 3 课程设计内容 3.1 MATLAB软件的基础应用 3.1.1.1 实验名称 MATLAB 程序入门和基础应用 3.1.1.2 实验目的 1.学习Matlab软件的基本使用方法; 2.了解Matlab的数值计算,符号运算,可视化功能; 3.Matlab程序设计入门

水声信号处理领域若干专题研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

水声信号处理领域若干专题研究进展 作者:李启虎, LI Qihu 作者单位:中国科学院声学研究所 刊名: 应用声学 英文刊名:APPLIED ACOUSTICS 年,卷(期):2001,20(1) 被引用次数:26次 引证文献(26条) 1.王成.王英民.陶林伟.甘甜等效试验法在双基地声纳试验中的应用[期刊论文]-压电与声光 2010(3) 2.王永衡基于无线电的声纳浮标阵式水声定位系统研究[期刊论文]-中国科技博览 2010(34) 3.郭良涛.黄建国.韩晶.阎振华基于DSP的小型数字语音通信平台设计[期刊论文]-计算机测量与控制 2009(6) 4.綦辉.蔡云祥.宋裕农基于UUV支持的水下协同作战研究[期刊论文]-火力与指挥控制 2009(3) 5.孙凤宇浅海水声语音通信软件无线电系统设计研究[期刊论文]-中国科技信息 2008(18) 6.何成兵.黄建国.张涛.阎振华单载波频域均衡高速水声通信仿真研究[期刊论文]-系统仿真学报 2007(23) 7.郑翠娥.孙大军.张殿伦.李想超短基线定位系统安装误差校准技术研究[期刊论文]-计算机工程与应用 2007(8) 8.周浩.蒋兴舟.袁志勇基于波束域MUSIC方法的高分辨方位估计[期刊论文]-海军工程大学学报 2007(2) 9.刘林泉.梁国龙.吴波.周志强.李宏伟一种低能耗的水声通信编码方案的研究[期刊论文]-声学技术 2007(1) 10.陈家财超声水处理功率放大技术研究[学位论文]硕士 2007 11.李姗.江南.黄建国基于随机水面阵列构形的水下GPS定位算法[期刊论文]-仪器仪表学报 2006(z3) 12.韦周芳.黄建国基于MFSK的多载波水声通信系统及实验研究[期刊论文]-无线通信技术 2006(2) 13.SUN Guiqing.LI Qihu.ZHANG Bin Acoustic vector sensor signal processing[期刊论文]-声学学报(英文版) 2006(1) 14.杨娟基于干涉谱分析的单水听器被动定位技术研究[学位论文]硕士 2006 15.徐复被动声纳仿真信号源研究与实现[学位论文]硕士 2006 16.罗丹噪声目标广义互相关被动测距研究[学位论文]硕士 2006 17.陈勇水声远程通信的联合频率相位调制技术研究[学位论文]硕士 2006 18.尹力.仲顺安.陈越洋.党华水声通信系统中信号同步的一种实现方法[期刊论文]-信号处理 2005(z1) 19.马雯.黄建国.张群飞用MFSK调制实现水声远程信息传输[期刊论文]-电讯技术 2004(5) 20.李洪升基于计算智能的声呐盲波束形成算法研究[学位论文]博士 2004 21.梁迅光纤水听器数据的网络传输及集群处理[学位论文]硕士 2004 22.赵羽矢量阵阵处理研究[学位论文]博士 2004 23.宋新见数字式噪声目标被动测距声纳研究[学位论文]博士 2004 24.马雯.黄建国基于时延编码的远程水声通信技术研究[期刊论文]-计算机工程与应用 2002(9) 25.潘仲明.杨俊.王跃科超声波扩频测距及其信道自适应均衡技术[期刊论文]-国防科技大学学报 2002(6) 26.马雯.黄建国.张群飞用时延编码实现远程水声通信[期刊论文]-电讯技术 2002(4) 本文链接:https://www.doczj.com/doc/7910932865.html,/Periodical_yysx200101001.aspx

雷达信号处理基本流程

基本雷达信号处理流程 一、脉冲压缩 窄带(或某些中等带宽)的匹配滤波: 相关处理,用FFT 数字化执行,即快速卷积处理,可以在基带实现(脉冲压缩) 快速卷积,频域的匹配滤波 脉宽越小,带宽越宽,距离分辨率越高 ; 脉宽越大,带宽越窄,雷达能量越小,探测距离越近; D=BT (时宽带宽积); 脉压流程: 频域:回波谱和参考函数共轭相乘 时域:相关 即输入信号的FFT 乘上参考信号FFT 的共轭再逆FFT ; Sc=ifft(fft(Sb).*conj(fft(S))); FFT 输入信号 共轭相乘逆FFT 参考信号的FFT 匹配滤波器 输出 Task1 f0=10e9;%载频tp=10e-6;%脉冲宽度B=10e6;%信号带宽fs=100e6;%采样率 R0=3000;%目标初始距离N=4096;c=3e8;tau=2*R0/c;beita=B/tp;t=(0:N-1)/fs; Sb=rectpuls(t-tp/2-tau,tp).*exp(j*pi*beita*(t-tp/2-tau).^2).*exp(-2j*pi*f0*tau);%回波信号 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 1000 2000 3000 4000 5000 6000 7000 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910 x 10 7 20 40 60 80 100 120

S=rectpuls(t-tp/2,tp).*exp(i*pi*beita*(t-tp/2).^2);%发射信号(参考信号) 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 0.5 1 1.5 2 2.5 3 3.5 4 4.5x 10 -5 -1-0.8-0.6-0.4-0.200.20.40.60.81 012345678910x 10 7 20 40 60 80 100 120 So=ifft(fft(Sb).*conj(fft(S)));%脉压 figure(7); plot(t*c/2,db(abs(So)/max(So)))%归一化dB grid on 01000200030004000500060007000 -400 -350-300-250-200-150-100-500

西门子模拟量信号处理

siemens PLC 模拟量 有的仪表能直接输出标准的4~20mA信号,能直接输入PLC,PLC一般都有能接收4~20mA信号的AI模块;有的仪表必须在回路中提供电源才能输出4~20mA信号,因此要将这些信号输入PLC,就得考虑PLC的AI模块是否具有配送电功能。若模块不具备配电功能就得另外加配电器。 西门子PLC有AI模块具有向仪表(譬如变送器)配电功能,因此楼主协议中用户提到的“有源”信号即是提醒你根据不同的输入信号,考虑选用相应的AI模块。 PLC的模拟量是否有源无源,应该从一定的角度去看。如果是输出信号,应为无源的。如果讲模拟量输入信号,这个不由PLC决定。 ================================================================= 有源信号应该是现场过来的4-20mA直接接到你的模拟量端子上不用另外供24V 电,无源应该是现场过来的4-20mA信号得把你的24V电串到回路里。建议你在模拟量信号前加安全栅,这样即可以满足防爆现场,又可以在不确定有源、无源时在现场改线,只需把接线方式改变一下,省时省力 ===================================================================== = 仪表分二线制和四线制,四线制仪表单独两线供电,220VAC或24VDC等,另两线输出4~20ma。两线制仪表必须有外部电源串进回路,现在的AI模块都有是否向外配电的功能,也就是两线制仪表要接向外配电的AI回路 ===================================================================== == siemens模拟量输入模块可以同时提供2线制和4线制的模拟量信号输入,2线制输入所需电源由模块自身提供,4线制输入所需电源由外部电源提供,这两种模式的选择需要对模拟量输入模块的通道进行设置,包括模块上用于输入模式设置的插接卡以及在硬件配置时对相应通道的组态。 ==================================================================== 模拟量输入分两线制和四限制,两线制是指外部设备不提供电源,靠模板供给,所以千万不能短路,四线制是指外部设备提供电源。两线制和四线制的模板接线方式是不一样的,参考说明,PT100,`也是专门的接线方式,并且模板组态时必须选择PT100才行。QQ:715273343。 ===================================================================== ===

空间滤波器水声信号预处理方法研究

空间滤波器水声信号预处理方法研究 王少娟,张智敏,姚金杰,王黎明 (中北大学信息探测与处理技术研究所, 山西太原030051)摘要:浅水水声信道受多径传播、时变和空变等特性的影响,由水听器直接观测到的信号大多是信噪比低、 多种信号叠加而成的复杂信号,难以准确提取特征信息及信源分离。针对以上问题,提出基于空间滤波器的多源复杂水声信号的预处理方法。该方法通过Hilbert 变换将直接观测信号构造成解析信号来抑制虚像,使用波束形成算法来实现对方向角的选择,在指定方位角下得到期望信号。仿真及试验结果表明:信噪比为0dB 时,通过空间滤波器对多源复杂水声信号进行预处理,可以有效地抑制噪声,并有效区分处于同一时间段、同一频段的多个源信号,经处理后的信号与源信号的相似度可达0.9853,对实际信号处理也可达到较好的效果,解决时频域很难处理的问题,进而为后续的研究工作提高精度。 关键词:浅水水声信道;空间滤波;波束形成;Hilbert 变换;信源分离文献标志码:A 文章编号:1674-5124(2017)01-0116-06 Study on preprocessing method of underwater acoustic signal based on spatial filter WANG Shaojuan ,ZHANG Zhimin ,YAO Jinjie ,WANG Liming (Institute of Signal Capturing &Processing Technology ,North University of China ,Taiyuan 030051,China ) Abstract:Due to characteristics including multipath propagation ,time-varying and space-varying features of shallow water underwater acoustic channel ,signals directly detected by hydrophone are mostly complex signals superposed by various signals with low signal to noise ratio.Thus ,the feature information and accurate source separation cannot be obtained.To solve these problems ,a preprocessing method of multi-source complex underwater acoustic signal based on spatial filter is put forward.The method constructs the signals observed directly into analytic signals through Hilbert transforming to suppress the virtual image and uses beamforming algorithm to select the direction angle and obtain desired signals under the specified azimuth angle.Simulation and test results show that in a simulation test ,if the multi-source complex underwater acoustic signals are processed based on spatial filter when the signal -to -noise ratio is 0dB ,the noises can be effectively suppressed and several source signals at a same time period and same frequency band can be effectively distinguished.After the processing ,the similarity between the processed signal and source signal can reach 0.9853.It can also reach good effects in actual signal processing ,solve the problems hardly to be solved in time -frequency domain and ensure high precision in follow-up research. Keywords:shallow water underwater acoustic channel ;spatial filter ;beamforming ;Hilbert transform ;source signal separation 收稿日期:2016-03-16;收到修改稿日期:2016-05-10 基金项目:国家自然科学基金(61471325);高等学校博士学科点专项科研基金(博导类)(20121420110006)作者简介:王少娟(1992-),女,山西长治市人,硕士研究生,专业方向为智能信息处理、水声信号处理。 中国测试 CHINA MEASUREMENT &TEST Vol.43No.1January ,2017 第43卷第1期2017年1月doi : 10.11857/j.issn.1674-5124.2017.01.024

雷达信号处理的MATLAB仿真

11目录 1. 设计的基本骤 (1) 1.1 雷达信号的产生 (1) 1.2 噪声和杂波的产生 (1) 2. 信号处理系统的仿真 (1) 2.1 正交解调模块 (2) 2.2 脉冲压缩模块 ............................................... 2.3 回波积累模块 ............................................... 2.4 恒虚警处理(CFAR)模块 (4) 结论 (11)

1 设计的基本骤 雷达是通过发射电磁信号,再从接收信号中检测目标回波来探测目标的。再接收信号中,不但有目标回波,也会有噪声(天地噪声,接收机噪声);地面、海面和气象环境(如云雨)等散射产生的杂波信号;以及各种干扰信号(如工业干扰,广播电磁干扰和人为干扰)等。所以,雷达探测目标是在十分复杂的信号背景下进行的,雷达需要通过信号处理来检测目标,并提取目标的各种信息,如距离、角度、运动速度、目标形状和性质等。 图3-6 设计原理图 2 信号处理系统的仿真 雷达信号处理的目的是消除不需要的信号(如杂波)及干扰,提取或加强由目标所产生的回波信号。雷达信号处理的功能有很多,不同的雷达采用的功能也有所不同,本文是对某脉冲压缩雷达的信号处理部分进行仿真。一个典型的脉冲压缩雷达的信号处理部分主要由A/D 采样、正交解调、脉冲压缩、视频积累、恒虚警处理等功能组成。因此,脉冲压缩雷达信号处理的仿真模型.

2.1 正交解调模块 雷达中频信号在进行脉冲压缩之前,需要先转换成零中频的I 、Q 两路正交信号。中频信号可表示为: 0()()cos(2())IF f t A t f t t π?=+ (3.2) 式(3.2)中, f 0 为载波频率。 令: 00()()cos 2()sin 2IF f t I t f t Q t f t ππ=- (3.3) 则 00()()cos 2()sin 2IF f t I t f t Q t f t ππ=- (3.4) 在仿真中,所有信号都是用离散时间序列表示的,设采样周期为T ,则中频信号为 f IF (rT ) ,同样,复本振信号采样后的信号为 f local =exp(?j ω 0rT ) (3.5) 则数字化后的中频信号和复本振信号相乘解调后,通过低通滤波器后得到的基带信号f BB (r ) 为: 11 000{()cos()}(){()sin()}()N N BB IF IF n n f f r n r n T h n j f r n r n T h n ωω--==-----∑∑ (3.6) 式(3.6)中, h (n ) 是积累长度为N 的低通滤波器的脉冲响应。 根据实际的应用,仅仅采用以奈奎斯特采样率进行采样的话,得不到较好混频信号和滤波结果,采样频率f s 一般需要中心频率的4 倍以上才能获得较好的信号的实部和虚部。当采样频率为f s = 4 f 0时,ω0 T = π/2,则基带信号可以简化为 110(){()cos()}(){()sin()}()22N N BB IF IF n n f r f r n r n h n j f r n r n h n ππ --==-----∑∑ (3.7) 使用Matlab 仿真正交解调的步骤: (1) 产生理想线性调频信号y 。 (2) 产生I 、Q 两路本振信号。设f 0为本振信号的中心频率,f s 为采样频率,n 为线性 调频信号时间序列的长度,则I 路本振信号为cos(n2πf 0/f s ),同样,Q 路本振信 号sin(n2πf 0/f s )。当f s = 4 f 0 时,I 、Q 两路本信号分别为cos(πn/2)和sin( n π /2)。 (3) 线性调频信号y 和复本振信号相乘,得到I 、Q 两路信号。

相关主题
文本预览
相关文档 最新文档