当前位置:文档之家› 人教版高数必修五第2讲:正弦定理和余弦定理的应用(教师版)

人教版高数必修五第2讲:正弦定理和余弦定理的应用(教师版)

人教版高数必修五第2讲:正弦定理和余弦定理的应用(教师版)
人教版高数必修五第2讲:正弦定理和余弦定理的应用(教师版)

正弦定理和余弦定理的应用

__________________________________________________________________________________

__________________________________________________________________________________

教学重点:掌握正弦定理和余弦定理的应用,高度,距离,角度的准确判断

教学难点:构造三角形,利用正、余弦定理进行解相关的边长、角度。

1、与实际应用问题有关的名词、术语

①铅直平面:与水平面垂直的平面

②坡角:坡面与水平面的夹角

③坡比:坡面的垂直高度与水平长度之比

④仰角:在同一铅直平面内,视线在水平线上方时与水平线的夹角

⑤俯角:在同一铅直平面内,视线在水平线下方时与水平线的夹角

⑥视角:从某点看物体的最高点与最低点的两条视线的夹角

⑦方向角:从指定方向线到目标方向线的水平角(指定方向线是指正北或正南方向,方向角小

于90

⑧方位角:从正北方向顺时针转到目标方向线的水平角

2、解三角形应用问题步骤

(1)准确理解题意,分清已知和所求,尤其是要理解应用题中的相关名词和术语;

(2)根据题意画出示意图,并将已知条件在图形中标出,即将实际问题抽象成数学问题;

(3)分析与所研究的问题有关的一个或几个三角形,通过运用正弦定理或余弦定理正确求解;

(4)检验求得的解是否具有实际意义,并对所求的解进行取舍。

类型一:测量距离、高度问题

例1.(2015山东潍坊月考)为了测量某湖泊的两侧,A B 间的距离,给出下列数据,其中不能唯一

确定,A B 两点间的距离的是()

A.角,A B 和边b

B.角,A B 和边a

C.边,a b 和角C

D.边,a b 和角A

解析:根据正弦定理和余弦定理可知,当知道两边和其中一边的对角解三角形时,得出的答案是不唯一的,所以选D

答案:D

练习1. 在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( )

A .4003m

B .4003

3m C .2003m D .200m

解析:如图,设AB 为山高,CD 为塔高,则AB =200,

∠ADM =30°,∠ACB =60°∴BC =200tan60°=2003

3

,AM =DM tan30°=BC tan30°=200

3

. ∴CD =AB -AM =400

3

.

答案:A

练习2:要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40m ,则电视塔的高度为( )

A .102m

B .20m

C .203m

D .40m

解析:设AB =x m ,则BC =x m ,BD =3x m ,在△BCD 中,由余弦定理,得 BD 2=BC 2+CD 2-2BC ·CD cos120°, ∴x 2-20x -800=0,∴x =40(m). 答案:D

例2:一艘船以4 km/h 的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h ,则经过3h ,该船实际航程为________.

解析:如图,水流速和船速的合速度为v ,

在△OAB 中:

OB 2=OA 2+AB 2-2OA ·AB ·cos60°, ∴OB =v =23km/h.

即船的实际速度为23km/h ,则经过3h ,其路程为23×3=6 km. 答案:6 km

练习3:在灯塔上面相距50m 的两点A 、B ,测得海内一出事渔船的俯角分别为45°和60°,试计算该渔船离灯塔的距离________. 解析:由题意,作出图形如图所示,

设出事渔船在C 处,根据在A 处和B 处测得的俯角分别为45°和60°, 可知∠CBD =30°,∠BAC =45°+90°=135°, ∴∠ACB =180°-135°-30°=15°,

又AB =50,在△ABC 中,由正弦定理,得AB sin15°=AC sin30°,

∴AC =AB ×sin30°

sin15°=50×

126-2

4=25(6+2)(m).

∴出事渔船离灯塔的距离CD =

22

AC =25(6+2)·22

=25(3+1)(m).

练习4:两船同时从A 港出发,甲船以每小时20n mile 的速度向北偏东80°的方向航行,乙船以每小时12n mile 的速度向北偏西40°方向航行,一小时后,两船相距________n mile. 解析:如图,△ABC 中,AB =20,AC =12,

∠CAB =40°+80°=120°,

由余弦定理,得BC 2=202+122-

20×12·cos120°=784,∴BC =

28(n mile). 答案:28

规律总结:求距离、高度时,牢牢抓住各已知边及角,理解名词、术语的应用。 类型二:测量角度问题、三角形综合题 例3:在某测量中,A 在B 的北偏东55°,则B 在A 的( )

A .北偏西35°

B .北偏东55°

C .北偏东35°

D .南偏西55° 解析:根据题意和方向角的概念画出草图,如图所示.

α=55°,则β=α=55°. 所以B 在A 的南偏西55°. 答案:D

练习5:已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40,灯塔

B 在观察站

C 的南偏东60,则灯塔A 在灯塔B 的()

A.北偏东40

B.北偏西10

C.南偏东10

D.南偏西

10 答案:B

练习6:某观察站C 与两灯塔,A B 的距离分别为300米和500米,测得灯塔A 在观察站C 北偏东

30 处,灯塔B 在观察站C 南偏东30处,则两灯塔,A B 间距离为()

A.400米

B.500米

C.800米

D.700米 答案:D

例4:在ABC ?中,三个内角,,A B C 的对边分别为,,a b c 若ABC ?的面积为S ,且

()

2

22S a b c =+-,则tan C = ()

A.

34 B.43 C.43- D.3

4

- 解析: 由()2

2222

222222

2,221

2sin 22

sin 2S a b c S a b ab c ab C a b ab c ab C ab a b c =+-=++-∴?

=++-∴-=+-

即222sin 2a b c C ab +--= 又222cos 2a b c C ab

+-=,所以1

sin 22cos ,1cos sin 2C C C C -=+=

又2

2cos 12cos ,sin 2sin cos ,2cos sin cos 222222

4tan 2,tan 23C C C C C C C C C C +==∴=∴==-

答案:C

练习7:在ABC ?中,三个内角,,A B C 的对边分别为,,a b c 若ABC ?的面积为S ,且

()2

22S a b c =+-,则tan

2

C

= () A.2 B.3 C.-2 D.-3 答案:A

练习8:在ABC ?中,三个内角,,A B C 的对边分别为,,a b c 若ABC ?的面积为S ,且

()2

22S a b c =+-,则2

tan 2

C

= () A.3 B.4 C.5 D.6 答案:B

1. 在某测量中,A 在B 的北偏东45°,则B 在A 的( ) A .北偏西35° B .北偏东55° C .北偏东35° D .南偏西45°

答案:D

2. 在某测量中,A 在B 的南偏西45°,则B 在A 的( ) A .北偏西35° B .北偏东45° C .北偏东35° D .南偏西45° 答案:B

3.在100m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( )

A.

2003

m B. 2003m

m D.400m 答案:A

4. 要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A

的仰角是30°,并测得水平面上的∠BCD =120°,CD =60m ,则电视塔的高度为( )

A .102m

B .20m

C .203m

D .60m 答案:D

5. 如果在测量中,某渠道斜坡的坡度为3

4

,设α为坡角,那么2cos α等于( )

A .

35 B .45 C .1625- D .1625

答案:D

6. 已知两座灯塔A 和B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东30°,灯塔B 在观察站C 的南偏东70°,则灯塔A 在灯塔B 的( ) A .北偏东20° B .北偏西20° C .南偏东20° D .南偏西20°

答案:B

_________________________________________________________________________________ _________________________________________________________________________________

基础巩固

1. 某人向正东走x Km ,向右转150,然后朝旋转后的方向走3km 后,他离最开始的出发点的距离

,那么x 的值为__________

答案:2. 两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )

A .a km

B .3a km

C .2a km

D .2a km

答案:B

3. 有一长为10 m 的斜坡,它的倾斜角是75°,在不改变坡高和坡顶的前提下,通过加长坡面的方法将它的倾斜角改为30°,则坡底要延伸( )

A .5 m

B .10 m

C .10 2 m

D .103m 答案:C

4. 江岸边有一炮台高30m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )

A .103m

B .1003m

C .203m

D .30m

答案:D

5. 如图所示,设A 、B 两点在河的两岸,一测量者在A 所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为( ) A .502m B .503m C .252m D .252

2

m 答案:A

6.一船以24 km/h 的速度向正北方向航行,在点A 处望见灯塔S 在船的北偏东30°方向上,15 min 后到点B 处望见灯塔在船的北偏东65°方向上,则船在点B 时与灯塔S 的距离是______ km.(精确到0.1 km) 答案:5.2

7. 如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20n mile ,随后货轮按北偏西30°的方向航行30min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )

A .20(2+6)n mile/h

B .20(6-2)n mile/h

C .20(6+3)n mile/h

D .20(6-3)n mile/h 答案:B

能力提升

8. 某海岛周围38n mile 有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30n mile

后测得此岛在东北方向,若不改变航向,则此船________触礁的危险(填“有”或“无”). 答案:如图所示,由题意在△ABC 中,AB =30,

∠BAC =30°,

∠ABC =135°,∴∠ACB =15°,

由正弦定理,得BC =AB sin ∠BAC sin ∠ACB =30sin30°sin15°=15

6-2

4

=15(6+2). 在Rt △BDC 中,CD =

2

2

BC =15(3+1)>38. ∴此船无触礁的危险.

9.

甲船在A 处发现乙船在北偏东60°的B 处,乙船正以a n mile/h 的速度向北行驶.已知甲船的速

度是3a n mile/h ,问甲船应沿着________方向前进,才能最快与乙船相遇? 答案:如图,设经过t h 两船在C 点相遇,

则在△ABC 中,

BC =at ,AC =3at ,B =180°-60°=120°,

BC sin ∠CAB =AC

sin B

得sin ∠CAB =BC sin B AC =at ·sin120°3at =1

2.

∵0°<∠CAB <90°, ∴∠CAB =30°,

∴∠DAC =60°-30°=30°.

即甲船应沿北偏东30°的方向前进,才能最快与乙船相遇.

10. 在某海滨城市附近海面有一台风.据监测,当前台风中心位于城市O (如图所示)的东偏南θ(cos θ=

2

10

)方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大.问几小时后该城市开始受到台风的侵袭? 答案:如图所示,设在时刻t (h)台风中心为Q ,此时台风侵袭的圆形区域半径为(10t +60)km.若在时刻t 城市O 受到台风的侵袭,则OQ ≤10t +60.

由余弦定理,得

OQ 2=PQ 2+PO 2-2·PQ ·PO ·cos ∠OPQ , 由于PO =300,PQ =20t ,

∴cos ∠OPQ =cos(θ-45°)=cos θcos45°+sin θsin45° =

210×2

2

+1-

2102×22=4

5

, 故OQ 2=(20t )2+3002-2×20t ×300×4

5

=202t 2-9600t +3002,

因此202t 2-9600t +3002≤(10t +60)2, 即t 2-36t +288≤0,解得12≤t ≤24. 答:12h 后该城市开始受到台风的侵袭.

11. 在地面上某处,测得塔顶的仰角为θ,由此处向塔走30m ,测得塔顶的仰角为2θ,再向塔走103m ,测得塔顶的仰角为4θ,试求角θ的度数.

答案:

解法一:∵∠P AB =θ,∠PBC =2θ, ∴∠BP A =θ,∴BP =AB =30. 又∵∠PBC =2θ,∠PCD =4θ, ∴∠BPC =2θ,∴CP =BC =10 3.

在△BPC 中,根据正弦定理,得PC sin2θ=PB

sin (π-4θ),

即103sin2θ=30sin4θ , ∴2sin2θcos2θsin2θ=30103 .

由于sin2θ≠0,∴cos2θ=

3

2

. ∵0°<2θ<90°,∴2θ=30°,∴θ=15°. 解法二:在△BPC 中,根据余弦定理,得 PC 2=PB 2+BC 2-2PB ·BC ·cos2θ, 把PC =BC =103,PB =30代入上式得, 300=302+(103)2-2×30×103cos2θ, 化简得:cos2θ=

3

2

. ∵0°<2θ<90°,∴2θ=30°,∴θ=15°.

解法三:如下图,过顶点C 作CE ⊥PB ,交PB 于E ,

∵△BPC 为等腰三角形, ∴PE =BE =15. 在Rt △BEC 中,cos2θ=

BE BC =15103=3

2

. ∵0°<2θ<90°,∴2θ=30°,∴θ=15°.

12. 碧波万顷的大海上,“蓝天号”渔轮在A 处进行海上作业,“白云号”货轮在“蓝天号”正南方向距“蓝天号”20n mile 的B 处.现在“白云号”以每小时10n mile 的速度向正北方向行驶,而“蓝天号”同时以每小时8n mile 的速度由A 处向南偏西60°方向行驶,经过多少小时后,“蓝天号”和“白云号”两船相距最近.

答案:如右图,设经过t h ,“蓝天号”渔轮行驶到C 处,“白云号”货轮行驶到D 处,

此时“蓝天号”和“白云号”两船的距离为CD .则根据题意,知在△ACD 中, AC =8t ,AD =20-10t ,∠CAD =60°.由余弦定理,得 CD 2=AC 2+AD 2-2×AC ×AD cos60°

=(8t )2+(20-10t )2-2×8t ×(20-10t )×cos60° =244t 2-560t +400=244(t -

7061)2+400-244×(70

61

)2, ∴当t =70

61时,CD 2取得最小值,即“蓝天号”和“白云号”两船相距最近.

答:经过70

61

h 后,“蓝天号”和“白云号”两船相距最近.

13. 如图所示,表示海中一小岛周围3.8 n mile 内有暗礁,一船从A 由西向东航行望见此岛在北75°东.船行8 n mile 后,望见这岛在北60°东,如果该船不改变航向继续前进,有没有触礁的危险.

答案:在△ABC 中,AC =8,∠ACB =90°+60°=150°,∠CAB =90°-75°=15°,∴∠ABC =15°.

∴△ABC 为等腰三角形,BC =AC =8,在△BCD 中,∠BCD =30°,BC =8,∴BD =BC ·sin30°=4>3.8.故该船没有触礁危险.

课程顾问签字: 教学主管签字:

余弦定理知识点+经典题(有答案)

余弦定理 余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- 2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边: 余弦定理 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( )A .6 B .2 6 C .3 6 D .4 6 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B = 3ac , 则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 5.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4

7.在△ABC中,b=3,c=3,B=30°,则a为( ) A. 3 B.2 3 C.3或2 3 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________. 11.在△ABC中,a=32,cos C=1 3 ,S△ABC=43,则b=________. 12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________. 13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c2 4 ,则角C=________. 14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.

1.2.2正弦、余弦定理应用

1.2.2解斜三角形 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题, 要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用二:测量高度 例1 如图,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点。设计一种测量建筑物高度AB 的方法 分析:由于建筑物的底部B 是不可到达的,所以不能直接测量建筑物的高。由解直角三角形的知识,只要能测出一点C 到建筑物的顶部A 的距离CA ,并测出由点C 观察A 的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA 的长。 解:选择一条水平基线HG , 使H 、G 、B 三点在同一条直线上,由在H, G 两点用测角仪器测得A 的仰角分别为α,β,CD=a. 测角仪器的高为h, 那么,在△ACD 中,根据正弦定理可得: sin sin() a AC βαβ= - sin asin sin = sin(-) AB AE h AC h h ααβαβ=+=++ 例2 如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=54°40′, 在塔底C 处测得A 处的俯角β=50°1′ 。已知铁塔BC 部分的高为27.3m, 求出山高CD (精确到1m ) 分析:根据已知条件,应该设法计算出AB 或AC 的长 解:在△ABC 中, ∠BCA=90°+ β , ∠ABC=90°-α, , ∠BAC= α -β, ∠BAD=α. 根据正弦定理得: E D G H C A B A α β

正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得 BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶 A 的仰角为θ,求塔高A B . 分析:本题是一个高度测量问题,在?BCD 中,先求 出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出 塔高AB. 解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得 sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠= tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高. 二、在测量不可到达的两点间距离中的应用 例2某工程队在修筑公路时,遇到一个小山 包,需要打一条隧道,设山两侧隧道口分别为A 、B , 为了测得隧道的长度,在小山的一侧选取相距3km 的C 、D 两点高,测得∠ACB=750, ∠BCD=450 , ∠ADC=300,∠ADC=450(A 、B 、C 、D ) ,试求隧道的长度. 分析:根据题意作出平面示意图,在四边形 ABCD 中,需要由已知条件求出AB 的长,由图可知,在?ACD 和?BCD 中,利用正弦定理可求得AC 与BC ,然后再在?ABC 中,由余弦定理求出AB. 解析:在?ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3. 在?BCD 中,∠CBD==600 由正弦定理可得,BC=003sin 75sin 60=26)2 +

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

正弦定理、余弦定理经典练习题

学科数学版本人教版大开本、3+x 期数2339 年级高一编稿老师梁文莉审稿教师 【同步教育信息】 一. 本周教学内容: §5.9正弦定理、余弦定理 目标:使学生理解正弦定理、余弦定理的证明和推导过程,初步运用它们解斜三角形。并会利用计算器解决解斜三角形的计算问题。培养学生观察、分析、归纳等思维能力、运算能力、逻辑推理能力,渗透数形结合思想、分类思想、化归思想,以及从特殊到一般、类比等方法,进一步提高学生分析问题和解决问题的能力。 二. 重点、难点: 重点: 正弦定理、余弦定理的推导及运用。 难点: (1)正弦定理、余弦定理的推导过程; (2)应用正弦定理、余弦定理解斜三角形。 [学法指导] 学习本节知识时可采用向量法、等积法(面积相等)等不同方法来推导正弦定理,以加深对定理的理解和记忆,由于已知两边及其中一边的对角,不能唯一确定三角形,此时三角形可能出现两解、一解、无解三种情况,因此解此类三角形时,要注意讨论。 深刻领会向量的三角形法则及平面向量的数量积是用向量法推导余弦定理的关键。注意余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量。当有一个角为90°时,即为勾股定理。因此,勾股定理可看作是余弦定理的特例。 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。一般地,利用公式a=2RsinA,b=2RsinB,c=2RsinC(R 为ΔABC外接圆半径),可将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A+B+C=π。 可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题。在三角形中,有一个角的余弦值为负值,该三角形为钝角三角形;有一个角的余弦值为零,便是直角三角形;三个角的余弦值都为正值,便是锐角三角形。 【例题分析】

正弦定理和余弦定理的应用

第二节应用举例 题型一 测量距离问题 A 、 B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点 C ,测出 AC 的距离是55m, 51=∠BAC , 75=∠ACB .求A 、B 两点间的距离(精 确到1.0m ). 分析 所求的边AB 的对角是已知的,又已知三角形的一边AC ,根 据三角形内角和定理可计算出AC 的对角,根据正弦定理,可以计算出边AB . 解答 根据正弦定理,得 ABC AC ACB AB ∠= ∠sin sin ABC ACB ABC ACB AC AB ∠∠= ∠∠=sin sin 55sin sin 76554 sin 75sin 55)7551180sin(75sin 55?≈=--= (m) 点拨 本题是测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决。 本题型的解题关键在于明确:(1)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决。(2)测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化 A B C

为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题。 衍生1★★ 如图所示,客轮以速度v 2由A 至B 再到C 匀速航行,货轮从AC 的中点D 出发,以速度V 沿直线匀速航行,将货物送达客轮,已知BC AB ⊥,且50=-BC AB 海里。若两船同时启航出发,则两船相遇之处距C 点 海里。(结果精确到小数点后1位) 解析 AB DB 2< ∴两船相遇点在BC 上,可设为E ,设x CE =,则 V BE AB DE 22+= 故 V x x 45cos 2252)225(22??-+V x 2)50(50-+= 得 3 5000 2= x ,∴8.40≈x 答案 8.40 点拨 本题考查了测量距离问题。 衍生2★★★如图所示,B A ,两点都在河的对岸(不可到达),设计一种测量B A , 两点间距离的方法。 分析 可以先计算出河的这一岸的一点C 到对岸两点的距离, 再测 A B C D α β A γ δ

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时

需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△AB C的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a-4,a ,a +4,则(a+4)2=(a -4)2+a2-2a (a-4) co s 120°,解得a =10,故S =12×10×6×s in 120°=15错误!. 答案 15错误! 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C间的距离是________海里. 解析 由正弦定理,知 B Csi n 60° =错误!.解得BC =5错误!(海里). 答案 5错误! 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68si n 120°si n 45° =34\r(6)(海里),船的航行速度为错误!=错误!(海里/时). 答案 错误! 4.在△ABC 中,若2错误!abs in C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a2+b 2+c 2,a 2+b2-c 2=2ab cos C 相加,得a 2+b 2=2ab sin 错误!.又a2+b 2≥2ab ,所以 sin 错误!≥1,从而s in 错误!=1,且a =b,C =错误!时等号成立,所以△ABC 是等边三角形. 答案 等边三角形 5.(2010·江苏卷)在锐角△A BC中,角A,B ,C 的对边分别为a ,b ,c.

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

余弦定理教学设计经典

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股02220定理的知识,即当∠C=90时,有c=a+b。作为一般的情况,当∠C≠90时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

浅谈正弦、余弦定理在中考中的应用.doc

浅谈正弦、余弦定理在中考中的 应用 (1)余弦定理:c2=a2+b2-2ab*cosC 文字表述:三角形任何一边的平方等于其他两边平方的和减去这两边 与它们夹角的余弦的积的两倍。 (2)正弦定理:a/sinA=b/sinB=c/sinC=2r(r 为Z\ABC 外接圆的 半径) 文字表述:在一个三角形中,各边和它所对角的正弦的比值相等。 F面我们来证明: 证明:(1)作BC上的高AD=h,设CD二x,则BD=a-x 贝ij b2=h2+x2=c2- (a~x) 2+x2=c2-a2+2ax-x2+ x2 又x二b*cosC 所以c2=a2+b2-2ab*cosC (2)因为sinB=h/c, sinC=h/b 所以h二b*sinC二c*sinB 所以b/sinB=c/sinC 同理可得:a/si nA二b/s i nB二c/sinC 下面我们来看如何运用正弦、余弦定理解题: 例1: 25-右「/XABC 中,AC-BC. ZACB^90: , D、E 是用线AB 上两点.ZDCE^45c (1)当CE丄AB时,点D与点A晅合?能然DE‘=AD ‘十BE’(不必证明) (2)如图,当点D不与点A直合时,求证:DE2=AD-4-BE2 (3 )当点D衽BA的延L3上时.(2 )中的结论是否成立?训山图形.说明理由? (2)证明:令ZACD二Zl, ZBCE=Z2,则Z1 + Z2=ZACB~ZDCE=45° 因为AD/sinZl=CD/sinZA, BE/sinZ2=CE/sinZB, sinZA= sinZB= sin45° C 所以AD2+ BE2 = (CD:f:sinZl/sinZA) 2+ (CE* sinZ2/sinZB) 2 =(CD2* sin2Z 1+ CE2* sin2Z2)/ sin245°又 CD/sin(45°+Z2)= CE/sin(45°+ Z1 )=DE/sin45°所以AD2+ BE2={[ DE* sin(45°+ Z2) *sinZl/sin450]2 + A [DE* sin(45°+Zl) *sinZ2 /sin450]2}/ sin245°因为sin(45°+Z2) *sinZl = sin(45°+Z2) *sin (Z45°-Z2) =cos2Z2/2, sin(45°+Zl) *sinZ2= sin(45°+Zl) *sin (Z45°-Z1) =cos2Zl/2, 2 (Z1+Z2) =90° 所以AD2+ BE2 =DE2 cos22Z2+ DE2COS22Z1= DE2(cos22Z2+sin22Z2)= DE2 即DE2=

(完整版)立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

正弦、余弦定理应用

1.2.3正弦、余弦定理应用 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用三:测量角度 例1 如图 一艘海轮从A 出发,沿北偏东75°的方向航行67.5 n mile 后到达海岛C. 如果下次航行直接从A 出发到达C, 此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01 n mile ) 0000 ABC ABC=1807532137∠-+=解:在中, 220 AC AB BC 2AB BC cos 67.554267.554cos137 =113.15 ABC +-??∠+-???22根据余弦定理可知: =BC sin AC CAB ABC =∠∠根据正弦定理可知:sin 0 sin 54sin137sin 0.3255113.15 BC ABC CAB AC ∠∠==≈ 00019 7556CAB CAB ∠=-∠= 答:此船应该沿北偏东56°的方向航行,需要航行113.15 n mile. 应用四:有关三角形计算 知识1:在△ABC 中,边BC,CA,AB 上的高分别记为h a , h b ,h c ,那么容易证明: h a =bsinC=csinB h b =csinA=asinC h c =bsinC=csinB 32C B 0

正弦定理经典练习题

《正弦定理、余弦定理、解斜三角形》 一、复习要求 : 1. 掌握正弦、余弦定理,能运用知识解斜三角形。 2. 用正弦、余弦定理判断三角形的形状。 二、知识点回顾 (1) 正弦定理:,22sin sin sin ? ====S abc R C c B b A a (2R 为三角形外接圆直径), (?S 为三角形面积),其他形式: a :b :c = sinA :sinB :sinC a=2RsinA, b=2RsinB , c=2RsinC (2) 余弦定理:a 2=b 2+c 2-2bccosA,(可按a,b,c,a 轮换得另二式) 余弦定理变式:bc a c b A 2cos 2 22-+= , (轮换得另二式) 余弦定理向量式:如图 a=b+ c , c= a – b c 2=|c|2=|a-b |2=(a-b)2=a 2+b 2 - 2﹒a ﹒b =a 2+b 2 - 2abcosC (其中|a|=a,|b|=b,|c|=c) 三、典型例题分析: 例1:在三角形ABC 中,若C=3B ,求b c 的范围 分析:角边比转化,可用正弦定理 解:1cos 4cos 22cos sin ) 2sin(sin 3sin sin sin 2-=+=+===B B B B B B B B B C b c A+B+C=1800 ,C=3B , ∴4B<1800,00<B<450, 1cos 22 <C ,且b 2+c 2 =a 2+bc, 求A ,B ,C 。 解:21 22cosA 2 22==-+=bc bc bc a c b , ∴ A=600 又 4sinBsinC=1 ∴4sinBsin(1200-B)=11 sin 22sin 31)sin 21 cos 23 (sin 42=+?=+?B B B B B B con B 22sin 3=? ∴33 2t a n =B ∴2B=300 或2100 B>C , ∴2B=2100 即 B=1050 ∴A=600 B=1050 C=150 练习2:在?ABC 中,2B=A+C 且tanAtanC=2+3 求(1)A 、B 、C 的大小 (2) 若AB 边上的高CD=43,求三边a 、b 、c 例3:如图,已知P为?ABC 内一点,且满足∠PAB =∠PBC= ∠PCA=θ 求证cot θ=cotA+cotB+cotC C A B a c b θ A B C P θ θ

相关主题
文本预览
相关文档 最新文档