当前位置:文档之家› 岩石的密度

岩石的密度

岩石的密度
岩石的密度

第五章 岩(矿)石的密度

岩石、矿物的密度,是指单位体积物质的质量,其单位为g/Cm 3或 kg/m 3。地壳内不同地质体之间存在的密度差异,是开展重力勘探工作的地球物理前提条件,也是对重力测量结果进行地形校正和中间层校正不可缺少的参数。而且,密度资料对于重力异常的解释也有着重要的作用。因此,对岩石密度的测定以及对测定结果的分析研究是重力勘探工作的一个重要内容。

§1 决定岩(矿)石密度的主要因素

根据大量测定和长期研究结果认为,决定岩石密度大小的主要因素是: 1.岩石中各种矿物成分及其含量的多少;

2.岩石中的孔隙度大小及孔隙中的充填物多少;

3.岩石所受压力的大小。

下面分别对火成岩,沉积岩和变质岩的密度特点作一介绍。 一、火成岩的密度

火成岩的密度主要由矿物成分及含量多少来决定。从图1.5—1中可以看出,火成岩的矿物成分与其密度有一定关系。从酸性岩向基性岩过渡时,其密度值是随岩石中铁镁暗色矿物的百分含量的逐渐增加而变大。

对于同一种侵人的火成岩体,在岩浆侵人后的冷凝过程中,结晶分异作用使得在岩体边部和顶部与其内部矿物结晶先后的不同,导致形成不同的岩相带。一般而言,在周围偏基性,向中心逐渐发育为偏酸性。图1.5—2为江西蒙山花岗间长岩和九岭花岗岩侵入体的不同岩相带的密度分布曲线。由图所示,边缘相的密度要比过渡相和内相的密度大些。

对于同类侵人岩体,不同时期侵人,其矿物成分虽然相同,但因含量有所变化时,则其密度也会有所不同。对于同源岩浆,尽管其化学成分可能一样,但由于成岩环境不同时,也可能形成不同的矿物和岩石,当然其密度亦不同。由此可知,侵人岩与喷出岩之间密度有较大差异。

二、沉积岩的密度

组成沉积岩的矿物成分对岩石密度的影响虽然没有象对火成岩那样明显,但由于沉积岩具有不同的孔隙度,因而它们的密度往往有较大的变化范围。我们从图1.5—3可以看出这一点。

一般而言,近地表的沉积岩由于受到的压力较小,其孔隙度较大,则密度较小;随着埋深增加上层负荷压力加大时,使其孔隙度相应减小,因而密度就要增大。图1.5一4

表明,沉积岩的密度随孔隙度的减

小而呈线性增大。此外,同一成分的沉积岩,由于成岩时代早晚的不同,经历的地质作用的不同造成岩石的孔隙度也不尽相同,则其密度也会有所差异。总之,时代较老的沉积岩要比时代新的同类岩石的密度要大些。

当然,对于同一时代同类岩性的沉积岩来说,由于所受地质作用条件的不同,在不同部位,其密

度也会有所不同。图1.5一5为鄂尔多斯盆地奥陶系的密度分布情况。它表明在盆地边缘的密度增大,

而向盆地中心密度逐渐减小。

三、变质岩的密度

对变质岩来说,其密度与矿物的成分、含量和孔隙度均有密切关系,这主要由变质的性质和变质的程度大小来决定。一般讲区域变质作用的结果、将使变质岩的密度比原岩的要增大。例如,变质程度较深的片麻岩,麻粒岩等要比变质程度浅的千枚岩,石英片岩等岩石密度大些。

动力变质作用由于使原岩结构遭破坏,矿物被压碎,因而其密度自然要比原岩密度低。但有时动力变质作用若使原岩发生了硅化、碳酸盐化以及重结晶时,则它的密度会比原岩要大些。例如热液变质作用使灰岩(2.50~2.75g/cm3)发生矽卡岩化后,则密度可达2.88g/cm3 ,但橄榄岩(3.15~3.31 g/cm3)发生蛇纹石化后则密度小到2.50~2.70g/cm3

总之,对变质岩密度的研究要具体问题具体分析。从统计的密度资料来看,在不同构造单元中,同一时代的变质岩密度相差不大,但时代越老则密度往往越大。

上面我们简单介绍了有关各类岩石密度的主要特征,这主要是针对各类岩石的成分、含量、孔隙度、成岩条件、成岩环境以及构造条件等诸多因素来进行分析的。

对于各类矿体而言,其密度主要决定于成分和含量。一般讲,金属矿的密度要比非金属矿的密度大。

实际工作中可参考常见岩(矿)石密度表,见表1.5—1。

§2 岩(矿)石标本密度的测定

在实际工作中,通过直接测定岩(矿)石标本的密度大小来确定它们所代表的岩性的密度或确定它们之间的密度差。

一、对岩、矿石标本采集的要求

1.应系统地采集测区内不同构造单元及不同岩性的标本,同时要注意它们的代表性。对于分布范围较广的较厚岩层以及测区内的勘探对象及围岩要适当采集较多的标本;而对于薄层或与勘探目的关系不大的岩石可以少采。在异常区内及岩性变化较大的地段应多采集;对于正常区及岩性变化不大的地段可以少采集;

2.采集标本时,既要采集浅部的,又要尽量采集深部的。因为浅部密度资料可以用于中间层和地形校正时使用;而深部密度资料要用于对重力异常的地质解释;

3.每类标本的数量一般为30~50块,每块标本重量一般在300 g 左右为宜;

4.对所采集的标本应及时登记,编号,并注明地点、名称、地质年代及深度等;

5.有时应考虑其它物性参数测定的要求,如形状、规格和大小,尽量发挥所采集的标本的综合利用价值。

二、标本密度测定方法 (一)天平测定法

若标本质量用m 表示,它的体积为V 时,其密度σ可用下式表示

V

m

=

σ (1.5-1) 标本的体积可根据阿基米德原理来确定。即物体在水中减轻的重量,等于它排开同体积水的重量,于是可以间接求出标本体积V 。

设标本在空气中的重量为P 1,在水中重量为P 2,V 为标本排开水的体积,σ0为水的密度时,得

P 1-P 2=V ?σ0?g

即 g

P P V .021σ-

=

当4℃时,净水的密度σ0=1g/cm 3

,上式便为

g

P P V 21-

= (1.5-2)

把式(1.5-1)代入式(1.5-2),并已知P 1=mg ,可得

3)

-(1.5 .2

11

212

1P P P P P g m g

P P m -=-=-=σ 只要先求出标本P 1,P 2的重量,然后可由式(1.5-3)计算出密度σ0

天平法测定σ的精度取决于P 1、P 2的测定精度。由误差传递理论可知,式(1.5-3)计算σ的最大绝对误差εσ的表达式为

2

21121)

()()(21

1P P P P P P P P -++-=

εεεεσ (1.5-4)

该式中εσ为密度的误差εP1、εP2分别为P 1、P 2的测定误差,对于同一天平称量的结果可以认为ε

P1

=εP2。设εP1=εP2=εP 时,利用式(l.5-3)除以式(1.5-4)可得

2112P P P P

P -+

=εεσεσ (1.5-5) 由于P 1-P 2= P 1/σ,所以式(1.5-5)变为 111)12(2P P P P P P εσσεεσεσ+=+= 即

1

)

12(P P εσσεσ+= (1.5-6)

从式(1.5-6)可见,天平法测定密度的误差εσ不仅决定于标本称重误差εP ,同时还与标本自重P 1

和其实际密度σ大小有关。在各标本的重量相同、称重的精度也相同的情况下,对于密度愈大的标本,则测定的误差愈大。若想减小误差,虽然可选重量较大的标本来测定,但实际工作中称重量大的天平精度又不高。因此,标本重量既不能太小(轻),也不能太大(重),故一般取300 g 左右为宜。对于较高密度的标本可适当大些。

对于多孔的标本,为了防止水分浸入孔隙中而影响测定结果,可涂一层石蜡。这时标本涂蜡后的重量用P 2表示,它浸入水后的重量用P 3表示。则由式(1.5-3),得

7)

-(1.5 )

(1

)(1

1

2

3201

P P P P P K --

-=σσσ 式中σ0为水的密度,σK 为石蜡密度;一般石蜡密度σK =0.99g/cm 3

。 (二)密度仪测定法

天平虽然能测定出标本密度,但操作费时,又不是直接显示密度值,还需要计算,所以效率很低。现在介绍可直接测定密度的一种仪器,称为密度仪。

密度议是在天平原理上发展起来的仪器,它的构造如图1.5-6所示。

仪器主要由一个折式秤臂AOB 构成,AO 和BO 分别为两个长度均为r 的左右臂,其折角为(180°-?)。秤臂中间装有一个指针ρ,秤臂的重心可集中在转轴O 点上,工作时需事先调节装置使它处干随遇平衡状态。密度仪还配有一个度盘,在度盘上标有密度刻度;度盘右边标有固定标志线并用n 表示,它是指标本在空气中平衡时应在的位置。

下面简介密度仪工作原理。测定密度时,先将标本用可以忽略其重量的细线悬挂在秤臂B 端,调节A 端悬挂的砝码的重量,使指针与刻度n 重合,见图 1.5-6(a )。这时 AO 与水平面夹角为α1;A 端法码重量为P 而B 端标本重量用又P 1表示,其平衡关系式为

)cos(

cos 111α?α-?=?r P r P (1.5-8)

当标本浸没在水中时(见图 1.5-6(b )),由于标本受到水的浮力使B 端要升高并达到新的平衡位置。这时AO 与水平面夹角用α2表示,则平衡关系式为

)cos(cos 222α?α-?=?r P r P (1.5-9)

式中P 2为标本在水中的重量。由式(1.5-8)、(1.5-9)可求出P 1、P 2的表达式,并将它们代人式(1.5-3),简化后得密度的表达式为

1

22ααα?σtg tg tg ctg -+=

(1.5-10) 从式(1.5-10)可得出α2与σ的相对应关系式为

1

11

2-+=-σασ?αtg ctg tg (1.5-11)

由式(1.5-11)可见α2与标本重量无关,当?为仪器构造常数,并调节法码重量使指针与固定标志n 重合时,即保持α1为常数,这时密度σ只与α2有单一对应关系了。将这些不同的α2角度在度盘上只标上所对应的密度σ值即可。所以当标本浸在水中,待平衡后,指针所停留的刻度就直接指示出标本的密度了。 密度仪的使用方法简述如下:

①安装仪器,调平后刻度盘应垂直;

②秤臂B 端挂上挂钩,同时调节A 端秤臂上左端配重螺丝,使转动系统处于随遇平衡状态,

③B 端挂上标本,A 端放置法码,调节砝码的重量,使指针指到刻度n

④将标本浸在水中,待平衡稳定后,指针所示的刻度值就是该标本密度σ值。见图1.5-7。

利用密度仪测定的精度可达±0.01~0.02 g/cm 3

,其效率比天平高3~4倍。

三、密度测定结果的整理

由于同类均质岩(矿)石标本密度的测定值通常服从算术正态分布规律。因此对于同一类标本测定结果需进行整理,以得出其平均值和常见值。

(一)当同一类标本数目少于30块时,可按下式计算其密度的算术平均值为

N

N

i i

∑==

1

σ

σ (1.5-12)

式中的σi 为第i 块标本的密度值;N 为块数。

上述密度值的离散程度,可用标准离差D 表示为

∑=--±

=N

i i

N D 1

2)1/()(σσ

(1.5-13)

当同类标本块数过少时,计算标准离差没有意义,这时可用表格列出密度的平均值、最大、最小值亦可。

(二)当同一类标本数目在30块以上时,还可绘制频率分布曲线来统计平均密度值。

首先将密度值按相等间隔Δσ分组,分组数n 与标本总块数的关系在对数坐标中呈线性变化,如表1.5-2所示。

然后统计每一密度间隔中的标本块数N 1,并算出其占总标本数的百分比,此百分比即为该间隔密度出现的频率?1=(N 1-N 2)×100%,以密度值为横坐标,以?1为纵坐标,点出每一组密度值所对应的频率坐标点,将所有的点相连得出频率分布曲线(如图1.5-8所示)。曲线极大值所对应的密度即为常见值,本图中常

见值为2.74 g/cm 3

根据正态分布的特点可知,在频率分布曲线上找出极大值的0.606倍两个点,核两点的横坐标之差的

一半即为密度测定的标准离差D ,在图1.5-8中的D =12

×0.07=0.035 g/cm 3 利用频率分布曲线来统计平均密度值有下列优点。

1.可以鉴定密度测定的质量。如果得出的频率分布曲线上出现两个或两个以上的峰值,则表明标本岩性分类可能有差错或是测定时有错误;

2.可以鉴定同类岩石密度的稳定性。曲线峰值明显,两翼对称,表明该类岩石的密度比较稳定;否则若曲线平缓,变化较为杂乱,则表明该类岩石的密度很不稳定。

§3 地层平均密度的确定

在重力勘探中,除直接用仪器测定岩(矿)石标本密度以用于地质解释外,还可以用试验和计算的办法来确定有关岩层、地层的平均密度,供有关校正及异常解释时使用。 一、用重力试验剖面确定中间层密度 在工区内或其附近,选择一个地形有一定起伏而无局部重力异常的地方,实测一条重力剖面,将重力观测结果进行纬度校正后,用不同的中间层密度进行布格校正。这样可得出一簇不同的布格异常曲线,如图1.5-9所示。从诸条曲线中选出一条与地形起伏相关最小的曲线,该曲线所采用的密度就可以确定为在该区工作时中间层应采用

的平均密度了。在图1.5-9中密度定为2.3 g/cm 3

较为适宜。

二、最小二乘法确定中间层密度

重力剖面法不仅需事先进行纬度校正,同时很难避免局部异常和区域异常的影响。下面介绍用最小二乘法确定中间层密度的方法及例子。

在工区内选择地形有一定起伏的地段,进行剖面测量。点距不应过大,只要满足局部异常和区域异常在相邻

实测剖面上任意点的重力值么?g i 与前后相邻两点重力值人?g i+1,?g i-1的平均值之差用δg i 表示为

i i i i g g g g ?-?+?=

-+2

1

1δ (1.5-14)

分析可知?g i 只与高度和中间层影响有关,由于布格影响表达式为

?g b =(-3.086+0.419σ)?h=b ??h (1.5-15)

故式(1.5-14)可改写成

表1.5-3

i i i i i h b h h h b g δδ?=??

?

???-?+?=-+211 (1.5-16)

式中b 称为布格影响系数。根据最小二乘原理b 应满足

min )(2

1

2

=?-∑-=i

n i i h b g

δδ (1.5-17) 解式(1.5-17)得

212

1

2)

(i

n i i

n i i

h h

g b δδδ∑∑-=-=?=

(1.5-18)

由此得

)086.3(419

.01

+=

b σ (1.5-19) 利用表1.5-3的实际数据代入式(1.5-18)、(0.5-19)得

)/..(050.235

.1533

.314)

(212

1

2

m u g h h g

b i

n i i

n i i

-=-=

?=

∑∑-=-=δδδ

)/(47.2)086.3050.2(419

.01

)086.3(419.013cm g b =+-=+=

σ

三、利用并中重力测量结果计算地层平均密度

如果重力勘探区内有竖井,可以通过井中重力测量研究中间层密度或不同深度岩层的平均密度。

参见图1.5-10。图中A 、B 为井壁,1、2两点为井内上、下两个重力

测点的位置。两点的垂直距离为八h 1,2。设1,2点测得的重力值分别为g 1和g 2,1、2两点之间岩层密度为σ1,2。,则在不考虑地面地形影响时,g 1和g 2有下列关系

212112121212h 2h z g h 2,,,,,=-?-???

? ?????+σπσπG g G g 式中的2πG σ1,2·h 1,2是中间层对1,2点的影响,而???

??g

?z h 1,2是第2点的高度影响值,故得

21212112h 4h z g ,,,=?-???

? ????+σπG g g (1.5-20) 即

()?????

?????

????+-=

2,121212141h z g g g Gh ,,πσ (1.5-21) 式中(g 1-g 2)可用重力仪直接测定,???

??g

?z 为1,2点的重力垂向梯度可用正常垂向梯度3.086g.u./m 表代替,

h l,2可直接量出,故σ1,2可用式(l.5-21)计算出来。

如果矿井比较深,则可以通过重力测井法分段求出不同深度岩层的平均密度,以了解工区内岩石密度随深度变化的情况。

四、不同地展密度的表示

根据测得的不同地层密度值,我们可以绘柱状综合剖面图,如图1.5-11所示。

如果标本取自钻井或不同地质年代的地层中,这时可以将密度测定或计算的结果与地质柱状剖面图综合在一起,从这种图中可以清楚地看出哪几个时代的地层密度分界面对重力勘探有利。

绘制柱状图时,如果同一地质时代的岩层是由若干个不同岩性的薄层所组成,则可用厚度加权的方法

求出地层的平均密度,计算式为

∑∑===

N

i i

N

i i

i h

h

1

1σσ (1.5-22)

式中的σ1,2;和h 1,2;分别表示同一地层中某一薄层的密度和厚度;N 表示薄层数。

常见岩石密度

花岗石:2.63~3.3,正长岩:2.5~3.3,闪长岩:2.5~3.3, 斑岩:2.8,安山岩:2.5~3.3,辉绿岩:2.7、2.9, 流纹岩:2.5~3.3,花岗片麻岩:2.7~2.9,片麻岩:2.5~2.8, 石英岩:2.61、2.8~3.0,大理岩:2.5~3.3,千枚岩(板岩):2.5~3.3,凝灰岩:2.5~3.3,火山角砾岩(火山集块岩):2.5~3.3, 砾岩:2.2~3.3,石英砂岩:2.6~2.71,砂岩:1.2~3.0 岩石密度( t/m 3 ) 辉石 2.7 ~3.7 泥质岩 2.0 ~2.5 橄榄石 2.2 ~3.4 粉砂岩 2.0 ~2.4 花岗岩 2.5 ~2.75 砂岩 2.1 ~2.65 石英岩 2.5 ~3.6 灰岩 2.3 ~2.9 片岩和角闪岩 2.5 ~3.7 岩盐 1.95 ~2.20 石膏 2.3 ~2.5 砂土一般是1.4 g/cm3 粉质砂土及粉质粘土1.4 g/cm3

粘土为1.4 g/cm3 泥炭沼泽土:1.4 g/cm3 路面材料计算基础数据 1.多种材料混合结构,按压实混合料干密度计算。单位:t/m3 路面名称干密度 水泥稳定土基层水泥土1.75 水泥砂2.05 水泥砂砾2.2 水泥碎石2.1 水泥石屑2.08 水泥石渣2.1 水泥碎石土2.15 水泥砂砾土2.2 石灰稳定土基层石灰土1.68 石灰砂砾2.1 石灰碎石2.05 石灰砂砾土2.15 石灰稳定土基层石灰碎石土2.1 石灰土砂砾2.15 石灰土碎石2.1

石灰、粉煤灰稳定土基层石灰粉煤灰1.17 石灰粉煤灰土1.45 石灰粉煤灰砂1.65 石灰粉煤灰砂砾1.95 石灰粉煤灰碎石1.92 石灰粉煤灰矿渣1.65 石灰粉煤灰煤矸石1.7 石灰煤渣稳定土基层石灰煤渣1.28 石灰煤渣土1.48 石灰、煤渣稳定土基层石灰煤渣碎石1.8 石灰煤渣砂砾1.8 石灰煤渣矿渣1.6 石灰煤渣碎石土1.8 水泥石灰稳定砂砾2.1 碎(砾)石2.1 土1.7 土砂1.94 粒料改善砂、粘土1.9 砾石2.1 嵌锁级配型基、面层级配碎石2.2 级配砾石2.2 嵌锁级配型基、面层填隙碎石1.98

岩石的密度

第五章岩(矿)石的密度 岩石、矿物的密度,是指单位体积物质的质量,其单位为g/Cm3或kg/m3。地壳内不同地质体之间存在的密度差异,是开展重力勘探工作的地球物理前提条件,也是对重力测量结果进行地形校正和中间层校正不可缺少的参数。而且,密度资料对于重力异常的解释也有着重要的作用。因此,对岩石密度的测定以及对测定结果的分析研究是重力勘探工作的一个重要内容。 §1 决定岩(矿)石密度的主要因素 根据大量测定和长期研究结果认为,决定岩石密度大小的主要因素是: 1.岩石中各种矿物成分及其含量的多少; 2.岩石中的孔隙度大小及孔隙中的充填物多少; 3.岩石所受压力的大小。 下面分别对火成岩,沉积岩和变质岩的密度特点作一介绍。 一、火成岩的密度 火成岩的密度主要由矿物成分及含量多少来决定。从图1.5—1 中可以看出,火成岩的矿物成分与其密度有一定关系。从酸性岩 向基性岩过渡时,其密度值是随岩石中铁镁暗色矿物的百分含量 的逐渐增加而变大。 对于同一种侵人的火成岩体,在岩浆侵人后的冷凝过程中, 结晶分异作用使得在岩体边部和顶部与其内部矿物结晶先后的不 同,导致形成不同的岩相带。一般而言,在周围偏基性,向中心 逐渐发育为偏酸性。图1.5—2为江西蒙山花岗间长岩和九岭花岗岩 侵入体的不同岩相带的密度分布曲线。由图所示,边缘相的密度 要比过渡相和内相的密度大些。 对于同类侵人岩体,不同时期侵人,其矿物成分虽然相同, 但因含量有所变化时,则其密度也会有所不同。对于同源岩浆, 尽管其化学成分可能一样,但由于成岩环境不同时,也可能形成 不同的矿物和岩石,当然其密度亦不同。由此可知,侵人岩与喷 出岩之间密度有较大差异。 二、沉积岩的密度 组成沉积岩的矿物成分对岩石密度的影响虽然没有象对火成岩那样明显,但由于沉积岩具有不同的孔隙度,因而它们的密度往往有较大的变化范围。我们从图1.5—3可以看出这一点。 一般而言,近地表的沉积岩由于受到的压力较小,其孔隙度较大,则密度较小;随着埋深增加上层负荷压力加大时,使其孔隙度相应减小,因而密度就要增大。图1.5一4表明,沉积岩的密度随孔隙度的减

常见岩石密度

花岗石:~,正长岩:~,闪长岩:~, 斑岩:,安山岩:~,辉绿岩:、, 流纹岩:~,花岗片麻岩:~,片麻岩:~, 石英岩:、~,大理岩:~,千枚岩(板岩):~,凝灰岩:~,火山角砾岩(火山集块岩):~, 砾岩:~,石英砂岩:~,砂岩:~ 岩石密度 ( t/m 3 ) 辉石~ 泥质岩~ 橄榄石~ 粉砂岩~ 花岗岩~ 砂岩~ 石英岩~ 灰岩~ 片岩和角闪岩~ 岩盐~ 石膏~ 砂土一般是 g/cm3 粉质砂土及粉质粘土 g/cm3

粘土为 g/cm3 泥炭沼泽土: g/cm3 路面材料计算基础数据 1.多种材料混合结构,按压实混合料干密度计算。单位:t/m3 路面名称干密度 水泥稳定土基层水泥土 水泥砂 水泥砂砾 水泥碎石 水泥石屑 水泥石渣 水泥碎石土 水泥砂砾土 石灰稳定土基层石灰土 石灰砂砾 石灰碎石 石灰砂砾土 石灰稳定土基层石灰碎石土 石灰土砂砾 石灰土碎石 石灰、粉煤灰稳定土基层石灰粉煤灰

石灰粉煤灰土 石灰粉煤灰砂 石灰粉煤灰砂砾 石灰粉煤灰碎石 石灰粉煤灰矿渣 石灰粉煤灰煤矸石 石灰煤渣稳定土基层石灰煤渣 石灰煤渣土 石灰、煤渣稳定土基层石灰煤渣碎石石灰煤渣砂砾 石灰煤渣矿渣 石灰煤渣碎石土 水泥石灰稳定砂砾 碎(砾)石 土 土砂 粒料改善砂、粘土 砾石 嵌锁级配型基、面层级配碎石 级配砾石 嵌锁级配型基、面层填隙碎石 泥结碎(砾)石

磨耗层砂土 级配砂砾 煤渣 沥青碎石粗粒式 中粒式 细粒式 沥青混凝土粗粒式 中粒式 细粒式 砂粒式 摘自交公路发[1992]65号《公路工程预算定额》附录一。 2.各种路面材料松方干密度如下:单位:t/m3 材料名称干密度 粉煤灰 煤渣 土 矿渣 煤矸石 砂 碎石 石屑 碎石土

岩石及岩体的基本性质[详细]

第一章岩石及岩体的基本性质 第一节概述 岩石是组成地壳的基本物质,它由各种造岩矿物或岩屑在地质作用下按一定规律(通过结晶或借助于胶结物粘结)组合而成. 一、岩石的分类 自然状态下的岩石,按其固体矿物颗粒之间的结合特征,可分为: ①固结性岩石:固结性岩石是指造岩矿物的固体颗粒间成刚性联系,破碎后仍可保持一定形状的岩石. ②粘结性岩石、③散粒状岩石、④流动性岩石等. 在煤矿中遇到的大多是固结性岩石.常见的有砂岩、石灰岩、砂质页岩、泥质页岩、粉砂岩等. 按岩石的力学性质不同,常把矿山岩石分为: ①坚硬岩石②松软岩石两类. 工程中常把饱水状态下单向抗压强度大于10米Pa的岩石叫做坚硬岩石,而把低于该值的岩石称为松软岩石. 松软岩石具有结构疏松、密度小、孔隙率大、强度低、遇水易膨胀等特点. 从矿压控制角度看,这类岩石往往会给采掘工作造成很大困难. 二、岩石的结构和构造 岩石的强度与岩石的结构和构造有关. 1.岩石的结构指决定岩石组织的各种特征的总合.如岩石中矿物颗粒的结晶程度、颗粒大小、颗粒形状、颗粒间的联结特征、孔隙情况,以及胶结物的胶结类型等. 岩石中矿物颗粒大小差别很大,在沉积岩中,有的颗粒小到用肉眼难以分辩(如石灰岩、泥岩、粉砂岩中的细微颗粒),有的颗粒可大至几厘米(如砾岩中的粗大砾石).组成岩石的物质颗粒大小,决定着岩石的非均质性.颗粒愈均匀,岩石的力学性质也愈均匀.一般来说,组成岩石的物质颗粒愈小,则该岩石的强度愈大. 2.岩石的构造是指岩石中矿物颗粒集合体之间,以及与其它组成部分之间的

排列方式和充填方式.主要有以下几种构造: 1.整体构造——岩石的颗粒互相紧密地紧贴在一起,没有固定的排列方向; 2.多孔状构造——岩石颗粒间彼此相连并不严密,颗粒间有许多小空隙; 3.层状构造——岩石颗粒间互相交替,表现出层次叠置现象(层理). 岩石的构造特征对其力学性质有明显影响,如层理的存在常使岩石具有明显的各向异性.在垂直于层理面的方向上,岩石承受拉力的性能很差,沿层理面的抗剪能力很弱.受压时,随加载方向与层理面的交角不同,强度有较大差别. 第二节 岩石的物理性质 一、岩石的相对密度(比重) 岩石的相对密度就是岩石固体部分实体积(不包括空隙)的质量与同体积水质量的比值.其计算公式为: w c d V G γ?=? (1-1) 式中 Δ—岩石的比重; G d —绝对干燥时岩石固体实体积的重量,g; V c —岩石固体部分实体积,厘米3; γw —水的密度,g/厘米3 岩石比重的大小取决于组成岩石的矿物比重,而与岩石的空隙和吸水多少无关.岩石的比重可用于计算岩石空隙度和空隙比.煤矿中常见岩石的比重见表1-1. 二、岩石的质量密度 岩石的密度是指单位体积(包括空隙)岩石的质量. 根据含水状态不同,岩石的密度分为天然密度、干密度、和饱和密度. 天然密度是岩石在天然含水状态下的密度. 干密度是岩石在105~110℃烘箱内烘至恒重时的密度. 饱和密度是岩石在吸水饱和状态下的密度. 干密度、饱和密度和天然密度的表达式如下: V G d d = γ

岩石的密度

第五章 岩(矿)石的密度 岩石、矿物的密度,是指单位体积物质的质量,其单位为g/Cm 3 或 kg/m 3 。地壳内不同地质体之间存在的密度差异,是开展重力勘探工作的地球物理前提条件,也是对重力测量结果进行地形校正和中间层校正不可缺少的参数。而且,密度资料对于重力异常的解释也有着重要的作用。因此,对岩石密度的测定以及对测定结果的分析研究是重力勘探工作的一个重要内容。 §1 决定岩(矿)石密度的主要因素 根据大量测定和长期研究结果认为,决定岩石密度大小的主要因素是: 1.岩石中各种矿物成分及其含量的多少; 2.岩石中的孔隙度大小及孔隙中的充填物多少; 3.岩石所受压力的大小。 下面分别对火成岩,沉积岩和变质岩的密度特点作一介绍。 一、火成岩的密度 火成岩的密度主要由矿物成分及含量多少来决定。从图1.5—1中可以看出,火成岩的矿物成分与其密度有一定关系。从酸性岩向基性岩过渡时,其密度值是随岩石中铁镁暗色矿物的百分含量的逐渐增加而变大。 对于同一种侵人的火成岩体,在岩浆侵人后的冷凝过程中,结晶分异作用使得在岩体边部和顶部与其内部矿物结晶先后的不同,导致形成不同的岩相带。一般而言,在周围偏基性,向中心逐渐发育为偏酸性。图1.5—2为江西蒙山花岗间长岩和九岭花岗岩侵入体的不同岩相带的密度分布曲线。由图所示,边缘相的密度要比过渡相和内相的密度大些。 对于同类侵人岩体,不同时期侵人,其矿物成分虽然相同,但因含量有所变化时,则其密度也会有所不同。对于同源岩浆,尽管其化学成分可能一样,但由于成岩环境不同时,也可能形成不同的矿物和岩石,当然其密度亦不同。由此可知,侵人岩与喷出岩之间密度有较大差异。 二、沉积岩的密度 组成沉积岩的矿物成分对岩石密度的影响虽然没有象对火成岩那样明显,但由于沉积岩具有不同的孔隙度,因而它们的密度往往有较大的变化范围。我们从图1.5—3可以看出这一点。 一般而言,近地表的沉积岩由于受到的压力较小,其孔隙度较大,则密度较小;随着埋深增加上层负荷压力加大时,使其孔隙度相应减小,因而密度就要增大。图1.5一4 表明,沉积岩的密度随孔隙度的

公路工程试验及检测收费标准(20191207083115)

精心整理公路工程试验及检测项目收费标准 序 试验检测项目单位单价(元)备注 号 一、土 颗粒分析(砂筛分法)样30 颗粒分析(粘性土筛分法)样40 颗粒分析(碎石类筛分法)样60 颗粒分析(比重计法)样100 界限含水率项30 最大干密度项50 最佳含水率项30 承载比(CBR)试验(室内)组1200 承载比(CBR)试验(室外)点100 比重样50 天然稠度试验样200 室外回弹模量(承载板法)点2000 粗粒土最大干密度项100 粗粒土击实项1000 素土击实样600 凝聚力项50 内摩擦角项50 自由膨胀率项200 烧失量试验个50 有机质含量个200 含水量(烘干法)项20 密度(灌砂法)点100 密度(核子法)点10 密度(环刀法)点20 密度(蜡封法)样30 相对密度样70 液限(搓条法)样30 塑阴(搓条法)样40 液塑限联合测定样150 压缩试验(常速法)项50 压缩试验(慢速法)项100 缩限试验样200 直接剪切试验(快剪)样50 直接剪切试验(固结慢剪)样80 直接剪切试验(固结快剪)样100 土的毛细水上升高度试验样600 常水头渗透试验样300

固结试验组800 酸碱度试验个120 土无侧限抗压强度组200 土无侧限抗压模量 组300 静三轴剪切试验(不固结不排水)样300 低压≤600kPa,高压按低 压5倍计。 静三轴剪切试验(固结不排水)样350 静三轴剪切试验(固结不排水测孔压)样450 静三轴剪切试验(固结排水) 样 600 二、集料 粗集料筛分试验样100 粗集料针片状试验样100 粗集料压碎值指标试验样200 粗集料磨耗试验样400 粗集料磨光值试验样1200 粗集料表观密度试验样100 粗集料毛体积密度试验样100 粗集料坚固性试验样800 粗集料碱活性试验样1000 粗集料软弱颗粒含量试验样300 粗集料吸水率试验样150 粗集料堆积试验样100 粗集料空隙率试验样150 粗集料泥块含量试验样100 粗集料含水率试验样50 粗集料有机物试验样200 粗集料冲击值试验样200 细集料含泥量试验样100 细集料砂当量试验样300 细集料吸水率试验样150 细集料棱角性试验样100 细集料含水率试验样50 细集料有机质含量试验样200 泥块含量试验样100 3 亚甲蓝值MBV 样800 细集料筛分试验样100 细集料表观密度试验样100 细集料坚固性试验样800 细集料抗渗性能样200 细集料云母含量试验样150 细集料中轻物质含量试验样300 细集料膨胀率试验样100 细集料SO 3试验 样 300

矿物比重

金的常见矿物为,比重15.6~18.3;分(比重5.5~6.5)、(4.9~5.2)、(3.3~4.0)、(3.7~3.9)几种;比重7.4~7.6;比重3.9~4.2;煤矿分(0.5~1.3)、(1.1~1.4)、(1.4~1.7)几种。 以上单位均为吨/立方米,且是为百分之百的时候的比重。当不为百分之百时,则根据矿石的百分含量和杂质的百分含量平均计算出具体的矿石比重(也叫体重)。原生矿石!指的是硫化矿一般是2.7-3.2吨/立。煤矿1.5吨/立 而铜矿石密度可在下表中进行查询,常见的黄铜矿密度范围为:4.1—4.3。除铜 矿石密度外,下表还有其它多种常见矿石的密度范围。 主要岩石和矿石密度表: 名称密度范围名称密度范围 纯橄榄岩 2.5—3.3 锰矿 3.4—6.0 橄榄岩 2.6—3.6 钨酸钙矿 5.9—6.2 玄武岩 2.6—3.3 铬铁矿 3.2—4.4 辉长岩 2.7—3.4 赤铁矿 5.1—5.2 安山岩 2.5—3.8 磁铁矿 4.8—5.2 辉绿岩 2.9—3.3 黄铁矿 4.9—5.2 玢??? 岩 2.6—3.9 黄铜矿 4.1—4.3 花岗岩 2.4—3.1 钛铁矿 4.5—5.0 石英岩 2.6—2.9 磁黄铁矿 4.3—4.8 流纹岩 2.3—2.9 表??? 土 1.1—2.0 片麻岩 2.4—2.9 粘土 1.5—2.2

云母岩 2.5—3.0 铝钒土 2.4—2.5 千枚岩 2.7—2.8 干砂 1.4—1.7 蛇纹岩 2.6—3.2 白垩 1.8—2.6 大理岩 2.6—2.9 硬石膏 2.7—3.0 白云岩 2.4—2.9 石??? 膏 2.2—2.4 页岩 2.1—2.8 煤 1.2—1.7 石灰岩 2.3—3.0 褐煤 1.1—1.3 砂岩 1.8—2.8 钾盐 1.9—2.0 闪长岩 2.7—3.0 岩??? 盐 2.1—2.2 重晶石 4.4—4.7 刚玉 3.9—4.0 氟??? 石 3.1—3.2 厘米.克.秒

岩石物性资料

岩(矿)石物性资料 (2008年12月11日) 一、密度: 表1-1 常见矿物的密度 名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94 硬石膏 2.7-3.0 白云石 2.86-2.93 石膏 2.2-2.4 白云母 2.77-2.88 霞石 2.55-2.65 黑云母 2.7-3.3 绿高岭石 1.72-2.5 角闪石 3.62-3.65 白榴石 2.45-2.5 透闪石 2.99-3.00 硅灰石 2.79-2.91 阳起石 3.1-3.2 蛇纹石 2.5-2.6 星叶石 3.0-3.15 赤铁矿 4.5-5.2 钠闪石 3.3-3.46 磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿 4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4 黄铜矿 4.1-4.3 辉铜矿 5.5-5.8 斑铜矿 4.9-5.2 海绿石 2.2-2.9 石墨 2.09-2.25 多水高岭土 1.9-2.6 蛋白石 1.9-2.5 钾盐 1.99 叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6 金红石 4.18-4.23 锰矿 3.4-6.0 钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5 煤 1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称 密度/g.3cm - 名称 密度/g.3 cm -纯橄榄岩 2.5-3.3 橄榄岩 2.5-3.6 玄武岩 2.6-3.3 辉长岩 2.7-3.4 安山岩 2.5-2.8 辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩 2.4-3.1 石英岩 2.6-2.9 流纹岩 2.3-2.7 片麻岩 2.4-2.9 云母片岩 2.5-3.0 千枚岩 2.7-2.8 蛇纹岩 2.6-3.2

常见宝石密度参考

一.翡翠的密度--3.24-3.34,硬度6.5-7.0方向差异有区别,A货是一般是玻璃光泽,B货为树脂光泽,B货密度要稍低于A 货密度在3.2-3.30但不是绝对的。 二.和田玉(产地新疆)密度2.8-3.10平均值大多在2.95左右,硬度6.0-6.5。玉种有:1.白玉2.青玉3.碧玉4.墨玉5.黄玉6.糖玉包括带糖都可叫7.花玉8.青白玉9.青花。 三.独山玉(产地河南)密度2.73-3.18平均值大多为2.90左右,硬度60-6.5。四.岫玉(产地辽宁)密度.2.44-2.80一般平均值在2.57,硬度2.5.0-5.5。五.绿松石,密度2.40-2. 90平均值2.76,硬度5.5-6.0。如果是注塑或合成的密度在2. 0-2.4.可鉴定真假。 六.青金石,(产地阿富汗,智利.俄罗斯)密度2.7-2.9大多2.75.硬度5.0-6.0。 七.玛瑙密度2.65,硬度6.5-7.0. 八.石英岩玉密度2.66硬度7.0。被称为低档的玉石不同种类有:1.贵翠2.京白玉3.东陵石4.密玉5.马来玉6.台湾翠7.砂金石8.芙蓉石。 九.孔雀石,(产地较多,中国,俄,澳,非,,,,)密度3.95硬度3.5-4.0。 十硅孔雀石密度2.2硬度2-4。 十一.蔷薇辉石密度3.5,硬度5.5-6.5。 十二.乌兰翠密度3.5硬度6-7。

十三.丁香紫玉,密度2.60-2.90硬度3.5-4.0。 十五.方钠石,密度2.25硬度5-6. 十六.萤石。密度3.18硬度5.0-6.0。 十七.赤铁矿,密度5.20硬度505-6.5。 十八.珊瑚,密度2.5-3.0硬度3.5-4.0。 十九.琥珀,密度1.08硬度2-2.5。 二十.煤玉,密度1.32硬度2.5-4。 单独说一下和田玉,俄玉,青海玉,韩玉。和田玉的密度指标在2.95以上是普遍的,区别于其他的是硬度6.0-6.5,当然肉越细密的密度相对就要高2.98左右或更高3.0左右.俄,海,韩密度都在和田玉的指标范围内所以光密度不能作为主要判断依据.就得有硬度跟结构来区别.俄料硬度为 5.2-5.4钢刀硬度为5.5刚好吃刀.海料硬度5.5-6.0,韩料硬度为5.5钢刀是解决不了的就得靠钢锯或紫砂碎片来划硬度。能划伤的基本排除为和田的,不过也有列外,现在好多人玩的沁籽料大多就连刀都吃,谈结构有点复杂,还是谈外观吧,和田玉具备天然的油性有润跟油亮的感观,俄料相对要干所谓的“僵白”海料相对比较透油性略高于俄,雕件透可见结构,包括现在海青外观不好区别于和田但打灯通透绿光很明现.韩料多见于白料白度达不到另外几种的级别,大都有失水干裂的现象,就是说一个完好的韩料雕件放时间长了你会发现料子裂了,外观看灰白或青白蜡光的感觉.再说说现在比较热门的青花由于其外表的特殊性比较好认被药的几率

岩石的密度

岩石的密度: 大多数造岩矿物如长石、石英、辉石等具有离子型或共价型结晶键密度为2.2~3.5克/厘米3(极少数达4.5克/厘米3)。 结晶键为离子-金属型或共价-金属型的矿物,如铬铁矿、黄铁矿、磁铁矿等密度较大,为3.5~7.5克/厘米3。 在金属矿区,岩石中金属矿物的含量增高,岩石的密度就增大。矿区花岗岩的密度有的就高达2.7克/厘米3以上。 矿物的密度是由构成该矿物各元素的原子量和矿物的分子结构决定的。 岩石按其磁性的不同可分为3类: 1、反磁性矿物,如石英、磷灰石、闪锌矿、方铅矿等。磁化率为恒量,负值,且较小。 2、顺磁性矿物大多数纯净矿物都属于此类。磁化率为恒量,正值,也比较小。 3、铁磁性矿物,如磁铁矿等含铁、钴、镍元素的矿物。磁化率不是恒量,为正值,且相当大。也可认为这是顺磁性矿物中的一种特殊类型。 岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强而变质岩次之,沉积岩最弱。 岩石具有的放射性:

天然放射性勘探方法所依据的是岩石和矿石中放射性元素成分和含量的差别。 放射性矿物如铀矿等的放射性元素含量最高,锆石等稀有副矿物和磁铁矿等金属矿物次之,绝大多数造岩矿物的放射性元素含量都比较低。 岩石的放射性元素含量以岩浆岩和变质岩为最高,沉积岩次之。岩浆岩中,按超基性、基性、中性、酸性的顺序,放射性元素含量逐渐增加。 人工放射性勘探方法中最重要的参数是元素的热中子俘获截面。氢、锂等元素的热中子俘获截面较小;镉、钆等元素的热中子俘获截面较大,钍、铀等元素的热中子俘获截面次之。

岩石毛体积密度试验[JTG]

石料毛体积密度试验 一、目的和适用范围 本方法是一个间接反映岩石致密程度、孔隙发育程度的参数,也是评价工程岩体稳定性及确定围岩压力等必需的计算指标。根据岩石含水状态,毛体积密度可分为干密度、饱和密度和天然密度。 岩石毛体积密度试验可分为量积法、水中称量法和蜡封法。 量积法适用于能制备成规则试件的各类岩石;水中称量法适用于除遇水崩解、溶解和干缩湿胀外的其他各类岩石;蜡封法适用于不能用量积法或直接在水中称量进行试验的岩石。 二、仪器设备 切石机、钻石机、磨石机等岩石试件加工设备;天平、烘箱、石蜡、水中称量装置。 三、试验步骤: 水中称量法: 1、将试件放入烘箱,在105℃~110℃下烘至恒量,烘干时间一般为12-24h,取出试件置于干燥器内冷却至室温。称干试件质量。精确至0.01g。量测精确至0.01mm。 2、将干试件进入水中进行饱和,饱和方法可依岩石性质选用煮沸法或真空抽气法。 3、取出浸水试件,用湿纱布擦去试件表面水分,立即称其质量。 4、将试件放在水中称量装置的丝网上,称取试件在水中的质量。在称量过程中,称量装置的液面应始终保持同一高度,并记下水温。 蜡封法: 1、将试件放入烘箱,在105℃±5℃下烘至恒量,烘干时间一般为12-24h,取出试件置于干燥器内冷却至室温。 2、从干燥器内取出试件,放在天平上称量,精确至0.01g。 3、将石蜡加热熔化,至稍高于熔点,用软毛刷在石料试件表面涂上一层厚度不大于1mm的石蜡层,冷却后准确称出涂有石蜡试件的质量。 4、将涂有石蜡的试件系于天平上,称出其在水中的质量。 5、擦干试件表面的水分,在空气中重新称取蜡封试件的质量,检查此时蜡封试件的质量是否大于浸水前的质量m1。如超过0.05g时,说明试件蜡封不好,水己浸入试件,应取试件重新测定。 量积法: 1、试件的直径或边长 2、量测试件高度 3、测定天然密度 4、测定饱和密度 5、测定干密度 四、试验结果处理: 毛体积密度试验结果精确至0.01g/cm3,3个试件平行试验。组织均匀的岩石毛体积密度应为3个试件的结果之平均值;组织不均匀的岩石,毛体积密度应列出每个试件的试验结果。

岩石物性资料

岩(矿)石物性资料 (2008年12月11日) 一、密度: 表1-1 常见矿物的密度 名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94 硬石膏 2.7-3.0 白云石 2.86-2.93 石膏 2.2-2.4 白云母 2.77-2.88 霞石 2.55-2.65 黑云母 2.7-3.3 绿高岭石 1.72-2.5 角闪石 3.62-3.65 白榴石 2.45-2.5 透闪石 2.99-3.00 硅灰石 2.79-2.91 阳起石 3.1-3.2 蛇纹石 2.5-2.6 星叶石 3.0-3.15 赤铁矿 4.5-5.2 钠闪石 3.3-3.46 磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿 4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4 黄铜矿 4.1-4.3 辉铜矿 5.5-5.8 斑铜矿 4.9-5.2 海绿石 2.2-2.9 石墨 2.09-2.25 多水高岭土 1.9- 2.6 蛋白石 1.9-2.5 钾盐 1.99 叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6 金红石 4.18-4.23 锰矿 3.4-6.0 钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5 煤 1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称 密度/g.3cm - 名称 密度/g.3cm -纯橄榄岩 2.5-3.3 橄榄岩 2.5-3.6 玄武岩 2.6-3.3 辉长岩 2.7-3.4 安山岩 2.5-2.8 辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩 2.4-3.1 石英岩 2.6-2.9 流纹岩 2.3-2.7 片麻岩 2.4-2.9 云母片岩 2.5-3.0 千枚岩 2.7-2.8 蛇纹岩 2.6-3.2 大理岩 2.6-2.9 白云岩 2.4-2.9

常见散料堆积密度

常见散料堆积密度 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

固体,颗粒,粉末散装物料堆积密度表1 发布时间:20-37浏览次数:905 散装物料堆积密度(kg/l) A 蚕豆0,75-0,85 活性炭0,21 氧化铝0,80-1,05 碱纤维素0,25 铝渣1,90-2,20 氧化铝0,90 硅酸铝0,78 硫酸铝0,85 氨0,90 茴香0,35-0,40 苹果籽0,60 苹果粉0,50-0,60 杏脯,干0,50-0,60 石棉纤维0,26 灰(渣)0,90 灰分,干燥0,55-0,65 B 面包粉0,55-0,65 砖块,磨碎1,40 香蕉粉0,40-0,50 紫淑,切丝0,30-0,40 棉花片0,42 棉籽粕0,30 棉油渣0,40 膨润土0,72-0,94 混凝土砾石1,72-1,86 酒糟0,25-0,30 浮石砂0,70 苦羽扇豆(种子)0,76-0,83 泡沫玻璃0,20-0,40 散装物料堆积密度(kg/l) 硅胶0,04 明矾1,20 铸造砂1,45 铝片1,30 氢氧化铝0,25 铝粉0,90 铝屑,精细0,11 硝酸铵0,72 苯胺1,89 苹果,干燥,榨取0,24-0,30 苹果果胶0,51 橘皮,干0,24 氧化砷1,60-1,90 石棉粉0,39 灰分,湿0,70-0,90 破碎的沥青0,72-0,95 发酵粉0,70 香蕉片0,25-0,30 玄武岩片1,60 棉绒0,07-0,09 棉籽0,60 棉花片0,20 矾土1,20 混凝土拌合物2,10 啤酒酵母,干燥0,40-0,55 浮石粉0,64 泻盐0,80-1,00 沥青颗粒0,75 云母粉0,06-0,17

试验一石料毛体积密度及孔隙率试验

《道路建筑材料》实验指导书 班级: 教师: 姓名: 学号: 四川交通职业技术学院道桥系 二○○七年一月

实验室管理制度 1、学生必须在规定的时间内进入实验室。按指定小组到位,听教师讲解实验要求和操作注意事项。 2、实验开始前,检查设备仪器是否完好,工具是否齐全,材料器材是否符合要求,若完好无损,请签字认可;若有问题应立即报告实验教师,由实验教师作好登记。 3、实验过程中应严格遵守操作规程。实验时,不做与本实验无关的事。如遇仪器设备发生故障,应及时报告实验教师,不得自行拆卸;若因违规操作造成设备损坏,按设备价格的200%~300%赔偿。 4、实验结束后,必须切断电源、水源,清点仪器和设备,完成实验报告,并由各班劳动委员安排同学打扫卫生,经指导教师检查同意后方可离开。

实验成绩的考核与评定 实验成绩单独计分,与一门课程同样对待。 一、平时考核:45分 1、出勤:5分。迟到、早退或中途擅自离开者,每次扣0.5分;病事假而未申请补作,以旷课论,每学时扣1分。 2、表现:10分。要求预习实验指导书,认真听取老师讲解,遵守实验室规则,认真操作,违者酌情扣分。 3、实验报告:30分。按完整、正确、整洁清晰、按时上交四个方面评分(五分制)。不交报告或缺某次实验而未补作,该次实验报告成绩为0分;迟交扣1分。全期实验报告以各次得分的算术平均值乘以6计算。 以上三项平时考核总分为45分,凡不足27分者,取消期末操作考试资格。 二、期末操作考核:55分。 在全期已作项目中,指定若干项为考核范围,现场抽签后独立操作,教师定点监考。按操作正确熟练、记录计算齐全准确、按时完成等方面评分。 三、学期实验总成绩 以上述两项成绩之和分为优(100~90分)、良(89~76分)、及格(75~65分)、不及格(65分以下)四个等级。

各种石头的密度都不一样的

各种石头的密度都不一样的,部分石头密度如下: 花岗石:2.63~3.3, 正长岩:2.5~3.3, 闪长岩:2.5~3.3, 斑岩:2.8, 安山岩:2.5~3.3, 辉绿岩:2.7、2.9, 流纹岩:2.5~3.3, 花岗片麻岩:2.7~2.9, 片麻岩:2.5~2.8, 石英岩:2.61、2.8~3.0, 大理岩:2.5~3.3, 千枚岩(板岩):2.5~3.3, 凝灰岩:2.5~3.3, 火山角砾岩(火山集块岩):2.5~3.3, 砾岩:2.2~3.3, 石英砂岩:2.6~2.71, 砂岩:1.2~3.0。。。 石子的重量=石子的密度*石子的体积, 1、水泥:体积比与质量比为1:1.3。即1立方水泥等于 1.3吨水泥。 2、砂:体积比与质量比为1:1.4。即1立方砂等于 1.4吨砂。 3、碎石:体积比与质量(1)1吨粗砂等于0.69立方砂子 (2)1吨碎石等于0.59立方碎石

(3)1吨水泥等于0.83立方水泥 查容重表可以换算出来。比为1:1.5。即1立方碎石等于1.5吨碎石。 砌一立方砖需要水泥;186公斤/立方米-198公斤/立方米。 砂;1.53吨/立方米-1.67吨/立方 C35以上的混凝土(含C35)必须使用42.5级以上水泥。都是经验之谈, 前提条件:砂子种类:中砂;石子种类:碎石(20);水泥32.5(A)坍落度35--50mm,施工水平:一般 C25的配合比:水泥:砂;石:水=1:1.40:2.85:0.47(重量比)材料用量(kg/m3):水泥:415kg;砂子:583kg;石子:1184kg;水:195kg C30的配合比:水泥:砂:石:水=1:1.18:2.63:0.41(重量比)材料用量 (kg/m3):水泥:459kg;砂子:542kg;石子:1206kg水:188kg C35的配合比(必须使用42.5级以上水泥):水泥:砂;石:水=1 :1.37:2.78 :0.46重量比)材料用量(kg/m3):水泥:424kg;砂子:581kg;石子:1179kg水:195kg C40的配合比(必须使用42.5级以上水泥):水泥:砂;石:水=1:1.08:2.41:0.40(重量比)材料用量(kg/m3):水泥:488kg;砂子:528kg;石子:1176kg水:195kg 1:每块砖的体积(240*115*53)=0.00146立方米(就是它的实际用量及体积),一砖墙包砂浆实际净用量是1/(0.115+0.01)*(0.053+0.01)*1/0.24=1/0.07875*1/0.24 =126.98*4.16666 =529块红砖. 砂浆的实际用量是1/0.00146=685块-529块=156块*0.00146=0.2278立方米(再加损耗1.01=0.23立方米. 2:你说的1:2水泥砂浆它是指粉墙面的砂浆标号,在砌筑砂浆中没有这样的配比,砌筑砂浆中有很多类别,定额编号按水泥P B32.5和水泥P B42.5分别有6个等 级.M2.5_M5_M7.5_M10_M15_2M20.我假设你是按水泥P B32.5,强度是M10,那么水泥用量是64.35公斤,中砂0.29立方米*1400公斤/m3=406公斤(这是重量配合比)另外还有体积配合比,在这就简略了. 最后就是用p b32.5水泥M10的水泥砂浆,用水泥64.4公斤,中砂406公斤!

毛体积密度试验

T 0204-2005 毛体积密度试验 1 目的和适用范围 岩石的毛体积密度(块体密度)是一个间接反映岩石致密程度、孔隙发育程度的参数,也是评价工程岩体稳定性及确定围岩压力等必需的计算指标。根据岩石含水状态,毛体积密度可分为干密度、饱和密度和天然密度=岩石毛体积密度试验可分为量积法、水中称量法和蜡封法: 量积法适用于能制备成规则试件的各类岩石;水中称量法适用于除遇水崩解、溶解和干缩湿胀外的其它各类岩石;蜡封法适用于不能用量积法或直接在水中称量进行试验的岩石。 2 仪器设备 (1)切石机、钻石机、磨石机等岩石试件加工设备。 (2)天平:感量0.01g,称量大于500g: (3)烘箱:能使温度控制在105℃~110℃。 <4)石蜡及熔蜡设备。 (5)水中称量装置。 (6)游标卡尺。 3 试件制备 3.1 量积法试件制备,试件尺寸应符合本规程T0221中3.1的规定。 3.2 水中称量法试件制备,试件尺寸应符合下列规定:试件可采用规则或不规则形状,试件尺寸应大于组成岩石最大颗粒粒径的10倍,每个试件质量不宜小于150g。 3.3 蜡封法试件制备,试件尺寸应符合下列规定:将岩样制成边长约40mm~60mm的立方体试件,并将尖锐棱角用砂轮打磨光滑;或采用直径为48mm~52mm圆柱体试件。测定天然密度的试件,应在岩样拆封后,在设法保持天然湿度的条件下,迅速制样、称量和密封。 3.4 试件数量,同一含水状态,每组不得少下3个。 4 量积法试验步骤 4.1 量测试件的直径或边长:用游标卡尺量测试件两端和中间三个断面上互相垂直的两个方向的直径或边长,按截面积计算平均值。 4.2 量测试件的高度:用游标卡尺量测试件断面周边对称的四个点(圆柱体试件为互相垂直的直径与圆周交点处;立方体试件为边长的中点)和中心点的五个高度,计算平均值。 4.3 测定天然密度:应在岩样开封后,在保持天然湿度的条件下,立即加工试件和称量。测定后的试件,可作为天然状态的单轴抗压强度试验用的试件。 4.4 测定饱和密度:试件的饱和过程和称量,应符合本规程T 0205相关条款的规定。测定后的试件,可作为饱和状态单轴抗压强度试验用的试件。 4.5 测定干密度:将试件放人烘箱内,控制在105℃~110℃温度下烘12h~24h,取出放入干燥器内冷却至室温,称干试件质量。测定后的试件,可作为干燥状态单轴抗压强度试验用的试件。 4.6 本试验称量精确至0.01g;量测精确至0.01mm。 5 水中称量法试验步骤 5.1 测天然密度时,应取有代表性的岩石制备试件并称量;测干密度时,将试件放入烘箱,在105℃~110℃下烘至恒量,烘干时间一般为12h~24h。,取出试件置于干燥器内冷却至室温后,称干试件质量。

岩石的密度

第五章岩(矿)石的密度 岩石、矿物的密度,就是指单位体积物质的质量,其单位为g/Cm3或kg/m3。地壳内不同地质体之间存在的密度差异,就是开展重力勘探工作的地球物理前提条件,也就是对重力测量结果进行地形校正与中间层校正不可缺少的参数。而且,密度资料对于重力异常的解释也有着重要的作用。因此,对岩石密度的测定以及对测定结果的分析研究就是重力勘探工作的一个重要内容。 §1 决定岩(矿)石密度的主要因素 根据大量测定与长期研究结果认为,决定岩石密度大小的主要因素就是: 1.岩石中各种矿物成分及其含量的多少; 2.岩石中的孔隙度大小及孔隙中的充填物多少; 3.岩石所受压力的大小。 下面分别对火成岩,沉积岩与变质岩的密度特点作一介绍。 一、火成岩的密度 火成岩的密度主要由矿物成分及含量多少来决定。从图1、5 —1中可以瞧出,火成岩的矿物成分与其密度有一定关系。从酸性岩 向基性岩过渡时,其密度值就是随岩石中铁镁暗色矿物的百分含量 的逐渐增加而变大。 对于同一种侵人的火成岩体,在岩浆侵人后的冷凝过程中,结 晶分异作用使得在岩体边部与顶部与其内部矿物结晶先后的不同, 导致形成不同的岩相带。一般而言,在周围偏基性,向中心逐渐发育 为偏酸性。图1、5—2为江西蒙山花岗间长岩与九岭花岗岩侵入体 的不同岩相带的密度分布曲线。由图所示,边缘相的密度要比过渡 相与内相的密度大些。 对于同类侵人岩体,不同时期侵人,其矿物成分虽然相同,但因 含量有所变化时,则其密度也会有所不同。对于同源岩浆,尽管其化 学成分可能一样,但由于成岩环境不同时,也可能形成不同的矿物 与岩石,当然其密度亦不同。由此可知,侵人岩与喷出岩之间密度有 较大差异。 二、沉积岩的密度 组成沉积岩的矿物成分对岩石密度的影响虽然没有象对火成岩那样明显,但由于沉积岩具有不同的孔隙度,因而它们的密度往往有较大的变化范围。我们从图1、5—3可以瞧出这一点。 一般而言,近地表的沉积岩由于受到的压力较小,其孔隙度较大,则密度较小;随着埋深增加上层负荷压力加大时,使其孔隙度相应减小,因而密度就要增大。图1、5一4表明,沉积岩的密度随孔隙度的减小而呈线

常见岩石密度

花岗石263~3.3,正长岩:2.5?3.3,闪长岩:2.5?3.3, 斑岩:2.8,安山岩:2.5?3.3,辉绿岩:2.7、2.9 , 流纹岩:2.5?3.3,花岗片麻岩:2.7?2.9,片麻岩:2.5?2.8,石英岩:2.61、2.8?3.0,大理岩:2.5?3.3,千枚岩(板岩):凝灰岩:2.5?3.3,火山角砾岩(火山集块岩): 2.5?3.3,砾岩:2.2?3.3,石英砂岩:2.6?2.71,砂岩:1.2?3.0 岩石密度(t/m 3 ) 辉石 2.7 ?-3.7 泥质岩 2.0 ?~ 2.5 橄榄石 2.2 ?~ 3.4 粉砂岩 2.0 ?~ 2.4 花岗岩 2.5?~ 2.75 砂岩 2.1 ?7 2.65 石英岩 2.5?-3.6 灰岩 2.3?~ 2.9 片岩和角闪岩 2.5?-3.7 岩盐 1.95 ?2.20 石膏 2.3 ?2.5 砂土一般是 1.4 g/cm3 粉质砂土及粉质粘土 1.4 g/cm3 粘土为 1.4 g/cm3 泥炭沼泽土: 1.4 g/cm3 路面材料计算基础数据 1.多种材 料混合结构,按压实混合料干密度计算。单位:t/m3 路面名称干密度 水泥稳定土基层水泥土 1.75 水泥砂2.05 水泥砂砾2.2 水泥碎石2.1 2.5 ? 3.3,

水泥石渣2.1

水泥砂砾土 2.2 石灰稳定土基层石灰土 1.68 石灰砂砾2.1 石灰碎石2.05 石灰砂砾土 2.15 石灰稳定土基层石灰碎石土 2.1 石灰土砂砾2.15 石灰土碎石2.1 石灰、粉煤灰稳定土基层石灰粉煤灰石灰粉煤灰土 1.45 石灰粉煤灰砂1.65 石灰粉煤灰砂砾1.95 石灰粉煤灰碎石 1.92 石灰粉煤灰矿渣 1.65 石灰粉煤灰煤矸石1.7 石灰煤渣稳定土基层石灰煤渣1.28 石灰煤渣土 1.48 石灰、煤渣稳定土基层石灰煤渣碎石石灰煤渣砂砾1.8 石灰煤渣矿渣1.6 石灰煤渣碎石土 1.8 水泥石灰稳定砂砾2.1 碎(砾)石2.1 土 1.7 土砂 1.94 粒料改善砂、粘土 1.9 砾石2.1 嵌锁级配型基、面层级配碎石2.2 级配砾石2.2 嵌锁级配型基、面层填隙碎石1.98 泥结碎(砾)石2.15 磨耗层砂土 1.9 级配砂砾2.2 1.17 1.8

常见岩石密度

花岗石:2、63~3、3,正长岩:2、5~3、3,闪长岩:2、5~3、3, 斑岩:2、8,安山岩:2、5~3、3,辉绿岩:2、7、2、9, 流纹岩:2、5~3、3,花岗片麻岩:2、7~2、9,片麻岩:2、5~2、8, 石英岩:2、61、2、8~3、0,大理岩:2、5~3、3,千枚岩(板岩):2、5~3、3, 凝灰岩:2、5~3、3,火山角砾岩(火山集块岩):2、5~3、3, 砾岩:2、2~3、3,石英砂岩:2、6~2、71,砂岩:1、2~3、0 岩石密度( t/m 3 ) 辉石2、7 ~3、7 泥质岩2、0 ~2、5 橄榄石2、2 ~3、4 粉砂岩2、0 ~2、4 花岗岩2、5 ~2、75 砂岩2、1 ~2、65 石英岩2、5 ~3、6 灰岩2、3 ~2、9 片岩与角闪岩2、5 ~3、7 岩盐1、95 ~2、20 石膏 2、3 ~ 2、5 砂土一般就是1、4 g/cm3 粉质砂土及粉质粘土1、4 g/cm3 粘土为1、4 g/cm3 泥炭沼泽土:1、4 g/cm3 路面材料计算基础数据 1、多种材料混合结构,按压实混合料干密度计算。单位:t/m3 路面名称干密度 水泥稳定土基层水泥土1、75 水泥砂2、05 水泥砂砾2、2 水泥碎石2、1 水泥石屑2、08 水泥石渣2、1

水泥碎石土2、15 水泥砂砾土2、2 石灰稳定土基层石灰土1、68 石灰砂砾2、1 石灰碎石2、05 石灰砂砾土2、15 石灰稳定土基层石灰碎石土2、1 石灰土砂砾2、15 石灰土碎石2、1 石灰、粉煤灰稳定土基层石灰粉煤灰1、17 石灰粉煤灰土1、45 石灰粉煤灰砂1、65 石灰粉煤灰砂砾1、95 石灰粉煤灰碎石1、92 石灰粉煤灰矿渣1、65 石灰粉煤灰煤矸石1、7 石灰煤渣稳定土基层石灰煤渣1、28 石灰煤渣土1、48 石灰、煤渣稳定土基层石灰煤渣碎石1、8 石灰煤渣砂砾1、8 石灰煤渣矿渣1、6 石灰煤渣碎石土1、8 水泥石灰稳定砂砾2、1 碎(砾)石2、1 土1、7 土砂1、94 粒料改善砂、粘土1、9 砾石2、1 嵌锁级配型基、面层级配碎石2、2 级配砾石2、2 嵌锁级配型基、面层填隙碎石1、98 泥结碎(砾)石2、15 磨耗层砂土1、9 级配砂砾2、2 煤渣1、6 沥青碎石粗粒式2、28 中粒式2、27

相关主题
文本预览
相关文档 最新文档