当前位置:文档之家› 科氏力质量流量计的工作原理和典型结构特性18466

科氏力质量流量计的工作原理和典型结构特性18466

科氏力质量流量计的工作原理和典型结构特性18466
科氏力质量流量计的工作原理和典型结构特性18466

科氏力质量流量计的工作原理和典型结构特性

科氏力质量流量计的工作原理和典型结构特性

作者:中国计量研究院流量室李旭

一、工作原理

如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在丈量管上,在O点两边方向相反,大小相同,为:

δFc =2ωVδm

因此,直接或间接丈量在旋转管道中活动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。

图1 科里奥利力的形成图2 早期科氏力质量流量计

二、结构

早期设计的科氏力质量流量计的结构如图2所示。将在由活动流体的管道送进一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的丈量。这种流量计只是在试验室中进行了试制。

在商品化产品设计中,通过丈量系统旋转产生科氏力是不切合实际的,因而均采用使丈量管振动的方式替换旋转运动。以此同样实现科氏力对丈量管的作用,并使得丈量管在科氏力的作用下产生位移。由于丈量管的两端是固定的,而作用在丈量管上各点的力是不同的,所引起的位移也各不相同,因此在丈量管上形成一个附加的扭曲。丈量这个扭曲的过程在不同点上的相位差,就可得到流过丈量管的流体的质量流量。

我们常见的丈量管的形式有以下几种:S形丈量管、U形丈量管、双J形丈量管、B形丈量管、单直管形丈量管、双直管形丈量管、Ω形丈量管、双环形丈

量管等,下面我们分别对其结构作一简单介绍。

1.S形丈量管质量流量计

如图3所示,这种流量计的丈量系统由两根平行的S形丈量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在丈量管对称位置上装有传感器,在这两点上丈量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。

图3 S形质量流量计结构

这种质量流量计的工作原理及工作过程,如图4所示。

图4 无活动时位移传感器的输出

当丈量管中流体不活动时,两根丈量管在驱动力作用下(作用在每根管子

上的力大小相等、方向相反)作对称的等振幅运动。由于管子两端是固定的,在管子中间振幅最大,到两端逐渐减为零。这时在两个传感器上测得的相位如图4B所示,由图中可以看出,两传感器测得的相位差为零。当丈量管内流体以速度V活动时,流体中任意值点的流速,可以为是两个分流速的合成:水平方向Vx及垂直方向Vy(与振动方向相同)。在恒定流条件下,流体沿水平方向的流速Vx保持恒定。从图5中可以看出,管子的进、出口处振幅为零,流体质点垂直移动速度Vx为零;

图5 振动管受力分析

当流体质点有进口流进图示振动方向的丈量管时,流体质点的垂直活动速度为+Vy,同样在流体质点流向出口时,其垂直活动速度为-Vy。由此可以推出,流体质点在通过振动的丈量管时,垂直方向的速度是一个从零逐渐加大,直到中间最大,再逐渐减小到零的过程。由力学原理可知,速度的变化是由加速度引起的,而加速度是力作用于其上的结果。根据这个原理,称这个垂直速度变化为科氏加速度Ac,因此作用于流体质量M上的科氏力为Fc=Mac。在丈量管上与中心间隔相等的两点上,作用的科氏力大小相等,方向相反。

此科氏力作用在丈量管上,就产生了如图5所示的结果,即在中间点上产生一对力,引起丈量管稍微的扭曲或变形。而实际上在振荡运动时是两根S管同时所受的振荡,其运动方向相反,受力相等,如图6所示。

图6 作用在丈量管上的科氏力

随着振荡运动的进行,丈量管被周期性地分开、靠拢,科氏力也周期性地作用在两根丈量管上,通过安装在丈量管上的位移创按其A、B,测出由科氏力引起的丈量管相对位置的变化,通常转化为测两点的相位差,如图7所示。这个相位差的大小与质量流量成正比。

图7 位移传感器的输出

2.U形丈量管质量流量计

如图8所示,U形管为单、双丈量管两种结构,单丈量管型工作原理

图8a 单U形管结构

图8b 双U形管结构

如图9所示,电磁驱动系统以固定频率驱动U形丈量管振动,当流体被强制接受管子的垂直运动时,在前半个振动周期内,管子向上运动,丈量管中流

体在驱动点前产生一个向下压的力,阻碍管子的向上运动,二在驱动点后产生向上的力,加速管子向上运动。这两个力的合成,使得丈量管发生扭曲;在振动的另外半周期内,扭曲方向则相反。

图9 U形管工作原理

丈量管扭曲的程度,与流体流过丈量管的值来质量流量成正比,在驱动点两侧的丈量管上安装电磁感应器,以丈量其运动的相位差,这一相位差直接正比于流过的质量流量。

在双U形丈量管结构中,两根丈量管的振动方向相反,使得丈量管扭曲相位相差180度,如图10所示。相对单丈量管型来说,双管型的检测信号有所放大,流通能力也有所进步。

图10 丈量管变形示意图

3.双J形管质量流量计

如图11所示,两根J形管以管道为中心,对称分布;安装在J形部分的驱动器使管子以某一固定的频率振动。

图11 J形管质量流量计结构

其工作原理如图12所示,当丈量管中的流体以一定速度活动时,由于振动的存在使得丈量管中的流体产生一个科氏力效应。此科氏力作用在丈量管上,但在上下两支管上所产生的科氏力的方向不同,管的直管部分产生不同的附加运动,即产生一个相对位移的相位差。

图12 J形管工作原理

在双J形管丈量系统中,两根管在同一时刻的振动方向相反,加大了其上部与下部两直管间的相对位移的相位差。如图13 所示,在流体不活动时,从A、B两传感器测得的位移信号的相位差为零。

图13 无活动时丈量管振动状态

当丈量管内的流体活动时,在驱动其振动的某一方向上,科氏力产生的反

作用力在丈量管上的影响结果如图14所示,管1分开和管2靠近时,管1上部运动加快,下部减慢,管2则在相反的方向上同样上部加快,下部减慢;结果在上部和下部安装的传感器测得的信号之间存在一个相位差,如图15所示。这个信号的大小直接反映了质量流量。

图14 有活动时丈量管振动状态

图15 传感器输出信号

4.B形管质量流量计

如图16所示,流量丈量系统由两个相互平行的B形管组成。被测流体经过分流器被均匀送进两根B形丈量管中,驱动装置安装在两管之间的中心位置,以某一稳定的谐波频率驱动丈量管振动。在丈量管产生向外运动时,如图17a 所示,直管部分被相互推离开,在驱动器的作用下回路L1'和L1''相互靠近,同样回路L2'和L2''也相互靠近。由于每个回路都由一端固定在流量计主体上,旋转运动在端区被抑制因而集中在节点四周。

图16 B形管质量流量计结构

而回路中的流体在科氏力作用下示的回路L1'和L1''相互靠近的速度减慢,而另一端L2'和L2''两回路相互靠近速度增加。

图17 B形管工作时的受力状态

在丈量管产生向内运动时,如图17b所示,则相反的情况发生。直管段部分在驱动力的作用下相互靠近,而两断面上的两回路朝相互离开的方向运动。管道内流体产生的科氏力叠加在这个基本运动上会使L1'和L1''两回路的分离速度加快,而使L2'和L2''两回路的分离速度减小。

通过在端面两回路之间公道的安装传感器,这些由科氏力引进的运动就可用来精确测定流体的质量流量。

5.单直管形质量流量计

这种流量计的结构如图18所示,丈量系统由一两端固定(法兰)的直管及其上的振动驱动器组成。

图18 单直管质量流量计结构

在管中流体不活动时,驱动器使管子振动,管中流体不产生科氏力,A、B 两点受力相等,变化速度相同,如图19b所示。

图19 单直管质量流量计工作原理

当丈量管中流体以速度V在管中活动时,由于受到C点振动力的影响(此时的振动力是向上的),流体质点从A点运动到C点时被加速,质点产生反作用力F1,使管子向上运动速度减慢;而在C点到B点之间,流体质点被减速,使管子向上的运动速度加快。结果在C点两边的这两个方向相反的力使管子产生一个变形,这个变形的相位差与测管中流体流过的质量流量成正比。

6.双直管形质量流量计

图20 双直管质量流量计结构

图20 双直管质量流量计结构

相对单直管来说双直管形可减少压力损失,增大传感器感受信号,实在际中的结构如图20所示,驱动器安放与中心位置,两个光电传感器只与中心两侧对称位置上,其中图20a所示结构丈量管受轴向力的影响很小。双直管形质量流量计的工作原理如图21所示,当流体不活动时,光电传感器受到的管子所产生的位移的相位是相同的;当流体介质流过两根振动的丈量管时,便产生了科里奥利力,这个力使丈量管的振点两边发生相反的位移,振点之前的测管中流体介质使管子振荡衰减,即管子位移速度减慢;振点之后的测管中流体介质使振荡加强,即管子位移速度加快。通过光电传感器,测得两真个相位差,这个相位差在振荡频率一定时正比与测管中的质量流量。

图21 双直管丈量原理

7.Ω形丈量管质量流量计

这种流量计的结构如图22所示,驱动器放在直管部分的中间位置,当管中流体以一定速度活动时,由于驱动器的振动作用,使管子分开或靠近。

图22 Ω形丈量管质量流量计结构

如图23a,当管子分开时,在振点前的流体中产生的科里奥利力与振动力方向相反,减慢管子的运动速度;而在振点之后管中流体产生的科氏力与振动方

向相同,加快管子的运动速度。当驱动器使管子靠近时,如图23b,则产生相反的结果。在A、B两点的传感器可测的两处管字运动的相位差,由此可得到流过测管中流体的质量流量。

图23Ω形管质量流量计丈量原理

8.双环形丈量管质量流量计

这种流量计有一对平行的带有短直管的螺旋管组成,如图24所示。在管子的中间位置D装有驱动器,使两根丈量管受到周期性的相反的振动,在椭圆螺旋管的两端,与中间点D等间隔位置上,设置两个传感器,丈量这两点的管子间相对运动速度,这两个相对运动速度的相位差与流过丈量管中的流体质量流量成正比。

图24 双环形质量流量计

其工作原理简述如下:当测管中流体不活动时,振动力使管子产生的变形,在中间点两边是一样的,传感器处的两测点上,测得的振动位移的相位差为零,当测管中流体活动时,在振幅最大点之前,流体质点由于受到科氏力的作用产生一个与振动方向相反的作用力,而在这点之后产生一个与振动方向相同的作用力,由于在同一时刻两根丈量管所受到的作用力大小相等,方向相反,因此反映在两传感器处测点上管子的运动速度得到增大或减小,丈量这两点的相位差就可得到通过丈量管流体的质量流量。

三、质量流量计结构特性

在一个丈量系统中,流体质点作用在丈量管上的科氏力是很小的,这给精确的丈量带来很大的困难。为使丈量管产生足够强的信号,就应加大科氏力对丈量管的作用或在同样的科氏力的作用下增大丈量管的变形。ω从原理上讲Fc =2ωVM,在被测流体一定时,只有加大ω或V,才能进步Fc。实际中ω的增加,在仪表上就需要进步振动频率和振动的振幅。振动频率的进步,严重地影响丈量管的寿命,而振幅的进步就需提供较大的动力。V的增加就是增加流速,这样即增加了丈量管上的静压,也增大流量计对整个系统的压力损失。这些对流量计本身和整个系统都是不利的。

另一方面从结构设计上,就要考虑进步科氏力作用在振动管上的效率及进

步传感器的检测能力,对后者性能的进步在此不讨论。要想进步科氏力作用在丈量管上的效率,必须在结构外形上进步丈量管整体的系统弹性,减少钢性,选用弹性好、性能稳定的材料,并正确选择系统的振荡频率。以达到同样的科氏力作用下,丈量管的变形量增加。一般来说,丈量管的管壁越薄,长度越长,结构外形的系统弹性越好,作用在管上的科氏力就越明显。这样可使丈量管的变形加大,信噪比增加,还可减少外界带来的干扰。丈量管上所受的应力不要过于集中在一点上,以免造成机械疲惫。应力作用的形式不同,也对管子的疲惫和丈量灵敏度造成一定的影响。对于不同的结构,由于其设计思路不同,各有特色,但也存在着一些题目,每一种形式均不可能达到尽善尽美。针对这些题目,制造厂商也不断地对其产品进行改善,以进步其产品的性能,增强其竞争能力。下面就具体的结构对性能的影响进行简单分析。

1.丈量管的外形:

丈量系统弹性的增加,增大了作用于振动管系统的科氏力的效应,但也增大外界机械噪声的干扰和仪表体积。丈量管应尽量减少急剧弯曲,最大可能的增大丈量管内径,这样可以减少压力损失。双丈量管型的信噪比得到增加,流通能力也增加,别普遍采用。

2.管壁

壁厚增加使管子更具有刚性,也增加了活动时管子的固定质量,减少了流体中夹杂气体时,由于其分布的不均匀引起比重变化对管子振动的影响,同时进步丈量管耐压、耐磨性,但会降低系统弹性,影响丈量的灵敏性。

3.制造和安装

丈量管的外形在制作过程应保证其对称性,在双丈量管结构中应保证两根管的一致性,传感器的定位要正确,以减少丈量中由于密度或粘度变化对丈量

结果的影响。流量质量分配的不稳定性,给丈量结果的正确性带来影响。

从原理上讲,丈量管所受科氏力的大小只与流体的质量流量有关,与流体密度、粘度无关。但密度的变化会带来附加的惯性力;而粘度的变化时丈量管的内壁附着层不同,产生不同的边界层效应。结果引起丈量管的质量分配不稳定,对丈量结果的正确度带来影响。(end)

质量流量计测量原理

科氏力质量流量计Coriolis flowmeters
Classification: Advanced Customer training 01/8/2010 Li jugang Slide 1
测量原理Measuring principle

FC010BPEA
本模块的学习目标
Objective of this learning module
参加人员能够理解: The participant understands… 这项技术的历史 …the history of the technology. 科氏力质量流量计的物理原理 …the physical principle of a Coriolis mass flowmeter. 科氏力流量计所能测量的过程参量 …what process values can be measured by a Coriolis flowmeter.
Classification: Advanced Customer training 01/08/2010 Li jugang Slide 2
科氏力流量计的一般设计 …the general design of a Coriolis flowmeter. 科氏力流量计的优点和局限 …the advantages and limitations of a Coriolis flowmeter.

FC010BPEA
科氏力流量计的历史 History of Coriolis flowmeters 1835年科里奥利(数学家)首次描述了科氏力的效应。 1835 – Gaspard Gustave de Coriolis (1792 – 1843) describes the Coriolis effect. 1851年费科通过科氏力效应演示了地球的自转-费科单摆 1851 – Jean Bernard Léon Foucault (1819 – 1868) demonstrates the earth rotation using the Coriolis effect (Foucault’s pendulum). 1977年Micromotion公司生产全球首台工业应用的科氏力流量计 1977 – MicroMotion Inc. introduces the first industrial Coriolis mass flowmeter. 1984年E+H公司生产了世界上第一台直管型科氏力流量计 1984 – Endress+Hauser Flowtec starts producing m-point, the first straight tube Coriolis flowmeter. 1994年E+H公司生产Promass系列产品。 1994 – Endress+Hauser introduces the Promass series.
Classification: Advanced Customer training 01/08/2010 Li jugang Slide 3

质量流量计工作原理的学习

质量流量计工作原理的学习 质量流量计以科氏力为基础,在传感器内部有两根平行的T型振管,中部装有驱动线圈,两端装有拾振线圈,质量流量计直接测量通过流量计的介质的质量流量,还可测量介质的密度及间接测量介质的温度。质量流量计是一种重要的流量测量仪表。质量流量计是采用感热式测量。 流体的体积是流体温度和压力的函数,它是一个因变量,而流体的质量是一个不随时间、空间温度、压力的变化而变化的量。如前所述,常用的流量计中,如孔板流量计、涡轮流量计、涡街流量计、电磁流量计、转子流量计、超声波流量计和椭圆齿轮流量计等的流量测量值是流体的体积流量。在科学研究、生产过程控制、质量管理、经济核算和贸易交接等活动中所涉及的流体量一般多为质量。采用上述流量计仅仅测得流体的体积流量往往不能满足人们的要求,通常还需要设法获得流体的质量流量。以前只能在测量流体的温度、压力、密度和体积等参数后,通过修正、换算和补偿等方法间接地得到流体的质量。这种测量方法,中间环节多,质量流量测量的准确度难以得到保证和提高。随着现代科学技术的发展,相继出现了一些直接测量质量流量的计量方法和装置,从而推动了流量测量技术的进步。 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P ?正比于2 qρ,如图1所示,密度计 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为

科氏力质量流量计的工作原理和典型结构特性

科氏力质量流量计的工作原理和典型结构特性 中国计量研究院流量室李旭 一、工作原理 如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在测量管上,在O点两边方向相反,大小相同,为: δFc = 2ωVδm 因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。 图1 科里奥利力的形成图2 早期科氏力质量流量计 二、结构 早期设计的科氏力质量流量计的结构如图2所示。将在由流动流体的管道送入一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的测量。这种流量计只是在试验室中进行了试制。 在商品化产品设计中,通过测量系统旋转产生科氏力是不切合实际的,因而均采用使测量管振动的方式替代旋转运动。以此同样实现科氏力对测量管的作用,并使得测量管在科氏力的作用下产生位移。由于测量管的两端是固定的,而作用在测量管上各点的力是不同的,所引起的位移也各不相同,因此在测量管上形成一个附加的扭曲。测量这个扭曲的过程在不同点上的相位差,就可得到流过测量管的流体的质量流量。 我们常见的测量管的形式有以下几种:S形测量管、U形测量管、双J形测

量管、B形测量管、单直管形测量管、双直管形测量管、Ω形测量管、双环形测量管等,下面我们分别对其结构作一简单介绍。 1. S形测量管质量流量计 如图3所示,这种流量计的测量系统由两根平行的S形测量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在测量管对称位置上装有传感器,在这两点上测量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。 图3 S形质量流量计结构 这种质量流量计的工作原理及工作过程,如图4所示。 图4 无流动时位移传感器的输出 当测量管中流体不流动时,两根测量管在驱动力作用下(作用在每根管子上的力大小相等、方向相反)作对称的等振幅运动。由于管子两端是固定的,在管子中间振幅最大,到两端逐渐减为零。这时在两个传感器上测得的相位如图4B 所示,由图中可以看出,两传感器测得的相位差为零。当测量管内流体以速度V 流动时,流体中任意值点的流速,可认为是两个分流速的合成:水平方向Vx及垂直方向Vy(与振动方向相同)。在恒定流条件下,流体沿水平方向的流速Vx 保持恒定。从图5中可以看出,管子的进、出口处振幅为零,流体质点垂直移动 速度Vx为零;

科里奥利质量流量计介绍

科里奥利质量流量计 科里奥利质量流量计(Coriolis Mass Flowmeter)简称科氏力流量计,是利用流体在振动管中流动时,将产生与质量流量成正比的科里奥利力的原理测量的。由于它实现了真正意义上的高精度的直接流量测量,具有抗磨损、抗腐蚀、可测量多种介质及多个参数等诸多优点,现已在石油化工、制药、食品及其他工业过程中广泛应用。 科氏力质量流量计计量准确、稳定、可靠,在需要对流体进行精确计量或控制的场合选用较多,但其售价较高,在不需要精确计量及控制的场合一般选用其他质量流量计代替。科氏力质量流量计对于液体和气体都可选用,但是在现场应用中,氢气流量的精确测量一般都选用热式质量流量计。 在我国,艾默生高准公司的科里奥利质量流量计已在兰州石化、安庆石化、新疆塔河油田、中国海洋石油等中低压天然气中的流量计量得到良好的应用。2007年末,高准公司的科里奥利质量流量计,顺利通过了中国最权威的原油大流量计量站成都天然气流量分站(CVB)的天然气实流测试,测量精度达到0.5%,并具有良好的重复性。 1 科里奥利质量流量计的工作原理 科氏力流量计由传感器和变送器两大部分组成。其中传感器用于流量信号的检测,主要由分流器、测量管、驱动、检测线圈和驱动、检测磁钢构成,如图1所示。 变送器用于传感器的驱动和流量检测信号的转换、运算及流量显示、信号输出,变送器主要有电源、驱动、检测、显示等部分电路组成。所有流量计都必须人为地建立一个旋转体系,以双“U”型测量管传感器为例,用电磁驱动的方法使“U”型测量管的回弯部分作周期性的微小振动。这相当于使“U”型管绕一个固定轴(OO 轴)作周期性时上时下的旋转,其旋转方向周期性的变化,像钟摆一样运动。“U”型管的出入口段被固定,这样就建立一个以“U”形管出入口段为固定轴的旋转体系。传感器力学分析如图2所示。

电磁流量计工作原理

电磁流量计的工作原理 电磁流量计(Eletromagnetic Flowmeters,简称EMF)是20世纪50~60年代随着电子技术的发展而迅速发展起来的新型流量测量仪表。电磁流量计是根据法拉第电磁感应定律制成的,电磁流量计用来测量导电液体体积流量的仪表。由于其独特的优点,电磁流量计目前已广泛地被应用于工业过程中各种导电液体的流量测量,如各种酸、碱、盐等腐蚀性介质;电磁流量计各种浆液流量测量,形成了独特的应用领域。 在结构上,电磁流量计由电磁流量传感器和转换器两部分组成。传感器安装在工业过程管道上,它的作用是将流进管道内的液体体积流量值线性地变换成感生电势信号,并通过传输线将此信号送到转换器。转换器安装在离传感器不太远的地方,它将传感器送来的流量信号进行放大,并转换成流量信号成正比的标准电信号输出,以进行显示,累积和调节控制。 电磁流量计的基本原理 (一)测量原理 根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端即产生感生电势e,其方向由右手定则确定,其大小与磁场的磁感应强度B,导体在磁场内的长度L及导体的运动速度u成正比,如果B,L,u三者互相垂直,则 e=Blu (3-35) 与此相仿.在磁感应强度为B的均匀磁场中,垂直于磁场方向放一个内径为D的不导磁管道,当导电液体在管道中以流速u流动时,导电流体就切割磁力线.如果在管道截面上垂直于磁场的直径两端安装一对电极(图3—17)则可以证明,只要管道内流速分布为轴对称分布,两电极之间也特产生感生电动势: e=BD (3-36) 式中,为管道截面上的平均流速.由此可得管道的体积流量为: qv=πDUˉ=(3-37) 由上式可见,体积流量qv与感应电动势e和测量管内径D成线性关系,与磁场的磁感应强度B成反比,与其它物理参数无关.这就是电磁流量计的测量原理. 需要说明的是,要使式(3—37)严格成立,必须使测量条件满足下列假定: ①磁场是均匀分布的恒定磁场; ②被测流体的流速轴对称分布; ③被测液体是非磁性的; ④被测液体的电导率均匀且各向同性。 图3-17电磁流量计原理简图 1-磁极;2-电极;3-管道 (二)励磁方式 励磁方式即产生磁场的方式.由前述可知,为使式(3—37)严格成立,第一个必须满足的条件就是要有一个均匀恒定的磁场.为此,就需要选择一种合适的励磁方式。目前,一般有三种励碰方式,即直流励磁、交流励磁和低频方波励磁.现分别予以介绍. 1.直流励磁 直流励磁方式用直流电产生磁场或采用永久磁铁,它能产生一个恒定的均匀磁场.这种直流励磁变送器的最大优点是受交流电磁场干扰影响很小,因而可以忽略液体中的自感现象的影响.但是,使用直流磁场易使通过测量管道的电解质液体被极化,即电解质在电场中被电解,产生正负离子.在电场力的作用下,负离子跑向正极,正离子跑向负极.如图3—18所示.这样,将导致正负电极分别被相反极性的离子所包围,严重影响电磁流量计的正常工作.所以,直流励磁一般只用于测量非电解质液体,如液态金属等. 图3-18直流励磁方式 2.交流励磁

简述各种流量计原理及特点

简述各种流量计原理及特点(1) 1. 简述 目前工程实际中,流量测量方法及流量仪表的种类繁多,至今为止,可供工业用的流量仪表种类多达数十余种。在流量仪表的家族中,每种产品都有它特定的适用性及使用局限性。按测量对象划分就有封闭管道和明渠两大类:按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 本文简要介绍目前最常用流量计分类法,主要有:差压式流量计、容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计质量流量计等分别简述各种流量计的原理及特点。 2. 差压式流量计 差压式流量计是通过安装于是工业管道中流量检测元件产生的差压,将已知流体条件和检测件与管道的几何尺寸来计差压式流量计算流量计。 差压式流量计由一次检测件及二次仪表(差压转换器或变送器和流量显示仪表)组成。以检测件形式划分差压式流量计分类,有孔板流量计、文丘里流量计、均速管流量计等。二次仪表为各种机械、电子、机电一体式差压式流量计、差压变送器及流量显示仪表。差压式流量仪表是流量仪表大家族中应用最广泛的一中流量仪表,目前国内外已系列化、通用化、标准化,差压式流量计既可单独测量流量参数,也可测量其它参数(压力、物位、密度)等。差压式流量计的检测件按其作用原理可分为:节流装置、水利阻力、动压头式、动压头增益及射流式、以及离心式等几大类。 检测件有标准化型式或非标准两大类。标准型检测元件是以标准文件设计、制造、安装和使用,无需经实流标定即可确定其流量值和估算测量误差。而非标型检测元件一般尚未列入国际标准中检测元件。差压式流量计也是应用最广泛的一种流量仪表,在各种流量计使用量中占据首位。 主要优点是:(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一流量计可与之比拟;(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。 主要缺点是:(1)测量精度普遍偏低:(2)范围度窄,一般仅3:1~4:1; (3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。

科里奥利质量流量计工作原理和基本结构

标 题: 科里奥利质量流量计工作原理和基本结构 说明:众所周知,当一个位于旋转系内的质点作朝向或者离开旋转中心的运动时,将产生一惯性力。如 图6-1所示,当质量为(δm的质点以匀速u在一个围绕旋转轴P以角速度ω旋转的管道内轴向移动时,这个质点将获得两个加速度分量: (1)法向加速度a r (向心加速度),其值等于ω2r,方向指向P轴。 (2)切向加速度a t (科里奥利加速度),其值等于2ωu,方向与a r 垂直,正方向符合右手定则,如图6-1所示。 为了使质点具有科里奥利加速度a t ,需在a t 的方向上加一个大小等于2ωuδm的力,这个力来自 管道壁面。反作用于管道壁面上的力就是流体施加在管道上的科里奥利力F c 。 方向与α t 相反。 从图6-1可以看出,当密度为ρ的流体以恒定流速u沿图6-1所示的旋转管流动时,任一段长度ΔX的管道都将受到一个大小为ΔF e的切向科里奥利力: 式中,A为管道内截面积。由于质量流量q m =ρuA,因此: 基于上式,只要能直接或者间接地测量出在旋转管道中流动的流体作用于管道上的科里奥利力,就可以测得流体通过管道的质量流量。 在过程工业应用中,要使流体通过的管道围绕P轴以角速度ω旋转显然是不切合实际的。这也是早期的质量流量计始终未能走出实验室的根本原因。经过几十年的探索,人们终于发现,使管道

绕P轴以一定频率上下振动,也能使管道受到科里奥利力的作用。而且,当充满流体的管道以等于或接近于其自振频率振动时,维持管道振动所需的驱动力是很小的。从而从根本上解决了CMF 的结构问题。为CMF的迅速商用化打下了基础。 经过近二十年的发展,以科里奥利力为原理而设计的质量流量计已有多种形式。根据检测管的形状来分,大体上可以归纳为四类,即:直管型和弯管型;单管型和多管型(一般为双管型)。 弯管型检测管的仪表管道刚度低,自振频率也低,可以采用较厚的管壁,仪表耐磨、耐腐蚀性能较好,但易存积气体和残渣引起附加误差。直管型仪表不易存积气体,流量传感器尺寸小,重量轻。但自振频率高,为使自振频率不至于太高,往往管壁做得较薄,易受磨损和腐蚀。单管型仪 表不分流,测量管中流量处处相等,对稳定零点有好外,也便于清洗,但易受外界振动的干扰,仅见于早期的产品和一些小口径仪表。双管型仪表由于实现了两管相位差的测量,可降低外界振动干扰的影响。 科氏力质量流量计的性能特点: 与传统的流量测量方式相比,该流量计具体优点有如下几个方面: 直接测量管道内流体的质量流量 测量准确度高、重复性好,可在较大量程比范围内,对流体质量流量实现高准确度直接测量。 计量的准确度高 该流量计的质量流量测量准确度是0.2级;同时,它还能准确地测出流体介质的温度和密度。 工作稳定可靠 流量计管道内部无障碍物和活动部件,因而可靠性高、寿命长、维修量小;使用方便、安全。 适应的流体介质面宽 除一般粘度的均匀流体外,还可测量高粘度、非牛顿型流体;不仅可以测量单一溶液的流体参数,还可以测量混合较均匀的多相流;无论介质是层流还是紊流,都不影响其测量准确度。 广泛的应用领域 可在石油化工、制药、造纸、食品、能源等多种领域实施计量和监控。 防腐性能好 能适用各种常见的腐蚀性流体介质。 多种实时在线测控功能 除质量流量外,还可直接测量流体的密度和温度。智能化的流量变送器,可提供多种参数的显示和控制功能,是一种集多功能为一体的流量测控仪表。 可扩展性好 公司可根据用户需要,专门设计和制造特殊规格型号和特殊功能的质量流量计;还可进行远程监控操作等。 两相分离计量的另一种形式的计量设备由两相分离器、质量流量计和气体流量计组成。质量流量计测量分离出的液量,并计算出其中的含水率,从而测量出油井的油、气、水产量。这种计算装置投资较少、操作简便,在我国油田中获得了较多的应用。 由这一段话可以看出液体和气体的计量是有区别的。 点击下面的文字可以看清楚的。

质量流量计工作原理

质量流量计工作原理 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P qρ,如图1所示,密度计 ?正比于2 v 连续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为 (1-1)靶式流量计的输出信号与2 qρ也成正比关系,故同样可按上述方法与密度计组合 v 构成质量流量计。密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。 图1 节流式流量计与密度计组合 (2)体积流量计与密度计的组合

如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等, q成正比,这类流量计与密度计组合,通过乘测得的输出信号与流体体积流量 v 法运算,即可求出质量流量为 (1-2)(3)体积流量计与体积流量计的组合 如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为 (1-3) 图2体积流量计和密度计组合图3 节流式流量计和其他体积流量计组合除上述几种组合式质量流量计外,在工业上还常采用温度、压力自动补偿式质量流量计。由于流体密度是温度和压力的函数,而连续测量流体的温度和压力要比连续测量流体的密度容易,因此,可以根据已知被测流体密度与温度和压力之间的关系,同时测量流体的体积流量以及温度和压力值,通过运算求得质量流量或自动换算成标准状态下的体积流量。但这种测量方式不适合高压或温度变化范围大的情形,因为在此条件下自动补偿检测出来的温度、压力很困难。 2.直接式质量流量计 直接式质量流量计的输出信号直接反映质量流量,其测量不受流体的温度、压力、密度变化的影响。直接式质量流量计有许多种形式。

科氏力质量流量计安装要求

质量流量计作为精密的测量仪表,有着十分高的安装要求。在安装时首先要明确安装的位置,在安装传感器的时候,要保护好传感器不受损坏。还要做好减振工作,当然,还有一些其他 的注意事项,下面的文章都有具体说明。 一、质量流量计安装的位置 1)安装位置应远离能引起管道机械振动的干扰源,如工艺管线上的泵等。如果传感器在同一 管线上串联使用,应特别防止由于共振而产生的相互影响,传感器间的距离至少大于传感器 外形尺寸宽度的三倍。 2)传感器的安装位置应注意工艺管线由于温度变化引起的伸缩和变形,特别不能安装在工艺 管线的膨胀节附近。如果安装在膨胀节附近,由于管道伸缩会造成横向应力,使得传感器零 点发生变化,影响测量准确度。 3)传感器的安装位置应远离工业电磁干扰源,如大功率电动机、变压器等,否则传感器中测 量管的自谐振动会受到干扰,速度传感器检测出来的微弱信号有可能被淹没在电磁干扰的噪 声中。传感器应远离变压器、电动机至少5 米以上的距离。 4)传感器的安装位置应使管道内流体始终保证充满传感器测量管,且有一定憋压,这就要求 安装位置应在管道的低端。 二、质量流量计传感器安装方式的选择 传感器的安装方式主要根据流体的相别及其工艺情况确定,有三种安装方式。 1)水平安装主体朝下:若被测流体是液体,一般采用外壳朝下安装传感器,避免空气聚积在 传感器振动管内,从而达到准确测量质量流量的目的 2)水平安装主体朝上:如果被测流体是气体,一般采用外壳朝上安装传感器,避免冷凝液聚 积在传感器振动管内。 3)旗帜安装:如果被测流体是液体、固体的混合浆液时,将传感器安装在垂直管道上,这可 避免微粒聚积在传感器科氏力测量管内。此外,如果工艺管线需要用气体和蒸汽清扫,这种 安装方式还可以便于清扫,但这种安装方式较前二种难于固定,且压损较大。 三、安装过程中其它注意事项 1)传感器在安装到工艺管线上之前,应首先确认传感器的速度传感器线圈、驱动线圈的直流 电阻以及铂电阻温度计的电阻值是否正常。 2)传感器安装法兰必须与管道法兰同轴连接,这样才能减小安装应力,保证测量精度。安装 时应保证管道支撑物只支撑工艺管道,禁止用传感器支撑工艺管道。应保证传感器外壳悬空,不与任何物体接触。 3)传感器安装在工艺管线上时应保证管道系统与传感器上游、下游侧各两个位置的稳固支撑 物牢固连接,所有螺纹连接处必须紧固,夹紧工艺管道有助于减弱潜在的振动干扰。 4)在安装过程中,应避免利用传感器外壳搬动传感器。 5)在传感器安装位置附近工艺管道线上的阀门或泵都需要有其自己的支撑物,不能用支撑传 感器的支撑物来支撑阀门和泵。 6)在传感器的上游、下游应装上断流阀。 7)消除安装应力:在安装传感器时,为了消除安装应力,最有效的方法是先配管,将工艺管 线及阀门与传感器整体预先安装好,然后吊装,再将其与工艺主管线相焊接。为了使消除应 力的效果最好,应使传感器、断流阀与工艺主管线处于同一铅垂面内 四、减振

质量流量计工作原理精编版

质量流量计工作原理精 编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

质量流量计工作原理 流体的体积是流体温度、压力和密度的函数。在工业生产和科学研究中,仅测量体积流量是不够的,由于产品质量控制、物料配比测定、成本核算以及生产过程自动调节等许多应用场合的需要,还必须了解流体的质量流量。 质量流量计的测量方法,可分为间接测量和直接测量两类。间接式测量方法通过测量体积流量和流体密度经计算得出质量流量,这种方式又称为推导式;直接式测量方法则由检测元件直接检测出流体的质量流量。 1.间接式质量流量计 间接式质量流量测量方法,一般是采用体积流量计和密度计或两个不同类型的体积流量计组合,实现质量流量的测量。常见的组合方式主要有3种。 (1)节流式流量计与密度计的组合 由前述知,节流式流量计的差压信号P qρ,如图1所示,密度计连 ?正比于2 v 续测量出流体的密度ρ,将两仪表的输出信号送入运算器进行必要运算处理,即可求出质量流量为 (1-1)靶式流量计的输出信号与2 qρ也成正比关系,故同样可按上述方法与密度计组合构 v 成质量流量计。密度计可采用同位素、超声波或振动管式等连续测量密度的仪表。 图1 节流式流量计与密度计组合 (2)体积流量计与密度计的组合 如图2所示,容积式流量计或速度式流量计,如涡轮流量计、电磁流量计等, q成正比,这类流量计与密度计组合,通过乘法运测得的输出信号与流体体积流量 v 算,即可求出质量流量为 (1-2)(3)体积流量计与体积流量计的组合 如图3所示,这种质量流量检测装置通常由节流式流量计和容积式流量计或速度式流量计组成,它们的输出信号分别正比于和通过除法运算,即可求出质量流量为

超声波流量计工作原理及常见问题概述.

超声波流量计工作原理及常见问题概述 一、工作原理 1、概述 超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。 由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。 图2-1 信号反射路径 2 、流速的测量 超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有: L tD = ——————— -------------- (2.1) C + V ? cos 和 L tU = ——————— -------------- (2.2) C — V ? cos 式中,L代表两个传感器之间声道的直线长度,可按下式确定L: L D —— = ———— -------------- (2.3) 2 sin ^ 采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V ^ L 1 1 V = ————(—————)-------(2.4)

流量计的分类和工作原理

流量计的分类和工作原 理 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

流量计的分类和工作原理 一.流量计的分类 按测量原理分有:力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 按流量计的结构原理进行分类,即分为:容积式流量计、压差式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计、探针式流量计。 二.常用流量计的工作原理及应用 1.压差式流量计 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的集合尺寸来计算流量的仪表。 应用:差压式流量计应用范围特别广泛,在封闭管道的流量测量中各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作方面:常压、高压、真空、常温、高温、低温等;管径方面:从几毫米到几米;流动方面:亚音速、音速、脉动流等。它在各工业部门的用量约占流量计全部用量的1/4~1/3。 2.浮子流量计 浮子流量计又称转子流量计,是变面积式流量计的一种,在一根由下向上扩大的垂直锥管中,圆形横截面的浮子的重力式由液体动力承受的,从而使浮子可以在锥管内自由地上升和下降。 应用:浮子流量计是仅次于差压式流量计应用范围最宽广的一类流量计,特别在小、

微流量方面有举足轻重的作用 3.容积式流量计 容积式流量计,又称定排量流量计,简称PD流量计,在流量仪表中是精度最高的一类,它利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体体积总量。 应用:容积式流量计与差压式流量计、浮子流量计并列为三类使用量最大的流量计,常应用于昂贵介质(油品、天然气等)的总量测量。 4.涡轮流量计 涡轮流量计是速度式流量计中的主要种类,它采用多叶片的转子(涡轮)感受流体平均流速,从而且推导出流量或总量的仪表。一般它由传感器和显示仪器两部分组成,也可做成整体式。 应用:涡轮流量计在测量石油、有机液体、无机液、液化气、天然气和低温流体获得广泛应用。 5.电磁流量计 电磁流量计是根据法拉第电磁感应定律制成的一种测量导电性液体的仪表。 应用:电磁流量计有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。

各种流量计工作原理结构图

第一节节流式流量检测 如果在管道中安置一个固定的阻力件,它的中间是一个比管道截面小的孔,当流体流过该阻力件的小孔时,由于流体流束的收缩而使流速加快、静压力降低,其结果是在阻力件前后产生一个较大的压力差。它与流量(流速)的大小有关,流量愈大,差压也愈大,因此只要测出差压就可以推算出流量。把流体流过阻力件流束的收缩造成压力变化的过程称节流过程,其中的阻力件称为节流件。 作为流量检测用的节流件有标准的和特殊的两种。标准节流件包括标准孔板、标准喷嘴和标准文丘里管,如图9.1所示。对于标准化的节流件,在设计计算时都有统一标准的规定要求和计算所需的有关数据、图及程序;可直接按照标准制造、安装和使用,不必进行标定。 标准节流装置9.1 图 圆缺喷特殊节流件也称非标准节流件,如双重孔板、偏心孔板、圆缺孔板、1/4嘴等,他们可以利用已有实验数据进行估算,但必须用实验方法单独标定。特殊节流件主要用于特殊;介质或特殊工况条件的流量检测。目前最常见的节流件是标准孔板,所以在以下的讨论中将主要以标 准孔板为例介绍节测式流量检测的原理、设计以及实现方法等。一、检测原理

设稳定流动的流体沿水平管流经节流件,如刚在节流件前后将产生压力和速度的变化,流在截面 1处流体未受节流件影响,所示。9.2,流体静压力为p,束充满管道,管道截面为A11?是经节,流体密度为平均流速为v2。截面11,A流件后流束收缩的最小截面,其截面积为2?。图,流体密度为,平均流速为压力为Pv222中的压力曲线用点划线代表管道中心处静9.2流体的静压力压力,实线代表管壁处静压力。充分地反映和流速在节流件前后的变化情况,流体向中心在节流件前,了能量形式的转换。. 9.2 流体流经节流件时压力和流速变化情况图处,流束截面收缩到最小,流速达到最大,静压力最低。然后流束扩加速,至截面2处。由于涡流区的存在,导致流体能量张,流速逐渐降低,静压力升高,直到截面3?。P不等于原先静压力p,而产生永久的压力损 失损失,因此在截面3处的静压力13p设流体为不可压缩的理想流体,在流经节流件时,流体不 对外作功,和外界没有热 处沿管中心的流线、2能交换,流体本身也没有温度变化,则根据伯努利方程,对于截面1 有以下能量关系:22ppvv10201020???(9-1) ??2221?????。由于流速分布的不均匀,因为是不可压缩流体,则2处平均流速与截面1、21管中心的流速有以下关系:vCv,v?v?C) ( 9-222110120处流速分布不均匀的修正系数。1、2式中C,C为截面2112??v为能 量其损失的能量为,考虑到实际流体有粘性,在流动时必然会产生摩擦力,22损失系数。处的能量关系可写成:在考虑上述因素后,截面1、222?ppCC222102021v?v?v??) (9-3 212??222根据流体的连续性方程,有??vAvA? 9-4)(2211?,(9-2)-A 。/A ,收缩系数联解式=A/。又设节流件的开孔面积为A 定义开口截面比m=A 0210)可得式(9-421??p?pv?9-5)(20210?2222??mC?C?12的位置随流速而变,而实际取压点的位置是固定的;另外实际取2因为流束最小截面 压是在管壁取的,所测得的压力是管壁处的静压力。考虑到上述因素,设实际取压点处取??p

工作压力对科氏力质量流量计的影响

工作压力对科氏力质量流量计的影响 一、科氏力质量流量计的工作原理科氏力质量流量计是运用流体质量流量对振动管振荡的调制作用即科里奥利力现象为原理,以质量流量测量为目的的质量流量计。一般由传感器和变送器组成。 如图一所示。当质量为δm的流体质点,以速度V 沿管道AB 运动,同时, 管道AB 又以A 点为圆心以角速度Ω转动,当该质点做上述复合运动时,在任意一点M 处,质点具有两个加速度分量:向心加速度ar, 方向指向A 点;科氏加速度ak,方向向上,量值为2ΩV。为使流体质点具有科氏加速度,需要在ak 方向施加一个大小等于2ΩVδm的力,这个力来自管道,而流体质点反作用于 管道上的力就是科氏力Fc,方向如图所示。Fc=2ΩVδm(1) 如图二所示,若流体密度为ρ,以速度V 沿管道AB 流动,设管道横截面积为S,则任一段长 度为△X 管道上的科氏力△Fc 为:Fc= -△mak (2) 式中△m 为长度△X 管道中的流体质量。△m=ρS△X △Fc=-2ρS△X(Ω×V)(3) 由于上述管道中的流体,其Ω与V 的夹角为90oC,质量流量qm=ρSV,有:qm=△Fc/2Ω△X (4) 从式(4)中可以看出,测量在旋转管道中流体的科氏力就可以直接测得质量流量。在实际应用中使测量管道做简谐振动,用振动的方式代替旋转的方式,利用电磁或光电的检测器检测科氏力对振动的影响从而测得管道中的质量流量。按照传感器测量管的形状,质量流量计分为直管型和弯管型两大类。直管型一般尺寸较小,不易积气,易于清洗,但由于其振动系统刚度大,谐振频率高,相位差小,电信号处理较困难。为了降低谐振频率,管壁必须较薄,而较薄的管壁会使耐磨性和抗腐蚀性变差。弯管型的振动系统刚度较低,电信号容易处理,可选用较厚的测量管壁,其耐磨性和抗腐蚀性较好,但由于形状复杂,容易积存残渣和气体,引起误差,结构尺寸也较大。从式(4)中还可以看出,质量流量并不受

质量流量计基本原理

质量流量计基本原理 质量流量计结构原理 在工业生产过程中,有时需要测量流体的质量流量,如化学反应的物料平衡、热量平衡、配料等,都需要测量流体的质量流量。质量流量是指在单位时间内,流经封闭管道截面处流体的质量。用来测量质量流量的仪表统称为质量流量计。 质量流量计由传感器,变送器及数字指示累积器等三部分组成。传感器根据科里奥利效应制成的,由传感管、电磁驱动器、和电磁检测器三部分组成。电磁驱动器使传感器以其固有频率振动,而流量的导入使u形传感器在科氏力的作用下产生一种扭曲,在它的左右两侧产生一个相位差,根据科里奥利效应,该相位差与质量流量成正比。电磁监测器把该相位差转变为相应的电平信号送入变送器,经滤波、积分、放大等电量处理后。转变成与质量成正比的4-20mA模拟信号和一定范围的频率信号两种形式输出。 质量流量计的测量原理以牛顿第二运动定律为基础 F=ma 式中F-流体作用力;m-被测介质质量;a-加速度。 当流体通过两个平行的测量管时,会产生一个与流速方向横向的加速度及相应的科里奥利力,该力使测量管振荡而发生扭曲,这一扭曲现象被称之为科里奥利现象。 根据牛顿第二运动定律,测量管扭曲量的大小是完全与流经测量管的质量流量的大小成正比的。当流体流过测量管时,流体就会受到科里奥利力的作用,测量管里流体所受科里奥利力的反作用,产生进口和出口的相位差。当流体为零

时,测量管在固有频率下振动,测量管不产生扭曲,流体进口和出口的相位差为零。当有流体流经测量管时进口处管子振动减速,出口处管子振动加速,进口与出口产生相位差。当质量流量增加时该相位差也增加。通过安装于进口和出口测量管上电磁信号检测器可测得相位差。 质量流量计的特点: 对示值不用加以理论的或人工经验的修正; 输出信号仅与质量流量成正比例,而与流量的物性(如温度、压力、粘度、密度雷诺数等)无关; 与环境条件(如温度、湿度、大气压等)无关; 只需检测、处理一个信号(即仪表的输出信号),就可进行远传和控制;只需一个变量对时间进行积分,所以流量的积算简单等等。

质量流量计原理:科里奥利力

科里奥利力 科里奥利力(英语:Coriolis force,简称:科氏力)是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。 概述 认识历史 旋转体系中质点的直线运动 科里奥利力是以牛顿力学为基础的。1835年,法国气象学家科里奥利(Gaspard-Gustave Coriolis)提出,为了描述旋转体系的运动,需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理旋转体系中的运动方程,大大简化了旋转体系的处理方式。由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。 物理学中的科里奥利力 科里奥利力来自于物体运动所具有的惯性,在旋转体系中进行直线运动的质点,由于惯性的作用,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。

如右图所示,当一个质点相对于惯性系做直线运动时,相对于旋转体系,其轨迹是一条曲线。立足于旋转体系,我们认为有一个力驱使质点运动轨迹形成曲线,这个力就是科里奥利力。 根据牛顿力学的理论,以旋转体系为参照系,这种质点的直线运动偏离原有方向的倾向被归结为一个外加力的作用,这就是科里奥利力。从物理学的角度考虑,科里奥利力与离心力一样,都不是真实存在的力,而是惯性作用在非惯性系内的体现。 科里奥利力的计算公式如下: 式中为科里奥利力;m为质点的质量;为质点的运动速度;为旋转体系的角速度;表示两个向量的外积符号。 科里奥利力与科里奥利加速度的关系 通常,在惯性系中观察到的科里奥利加速度,其中为圆盘转动的角速 度矢量,为质点所具有的径向速度。可见科里奥利加速度的方向与科里奥利力的方向 相反。这是因为,科里奥利加速度是在惯性系中观察到的,由作用力产生;而科里奥利力则是在转动的参考系中观察到的,它产生的加速度是相对于非惯性系而言的。不能认为科里奥利加速度是由科里奥利力产生的[1]。 科里奥利力产生的影响 在地球科学领域 由于自转的存在,地球并非一个惯性系,而是一个转动参照系,因而地面上质点的运动会受到科里奥利力的影响。地球科学领域中的地转偏向力就是科里奥利力在沿地球表面方向的一个分力。地转偏向力有助于解释一些地理现象,如河道的一边往往比另一边冲刷得更厉害。 傅科摆

质量流量计工作原理

今天我们就来介绍质量流量计工作原理。 质量流量计工作原理:质量流量计是采用感热式测量,通过分体分子带走的分子质量多少从而来测量流量,因为是用感热式测量,所以不会因为气体温度、压力的变化从而影响到测量的结果。质量流量计是一个较为准确、快速、可靠、高效、稳定、灵活的流量测量仪表,在石油加工、化工等领域将得到更加广泛的应用,相信将在推动流量测量上显示出巨大的潜力。质量流量计是不能控制流量的,它只能检测液体或者气体的质量流量,通过模拟电压、电流或者串行通讯输出流量值。但是,质量流量控制器,是可以检测同时又可以进行控制的仪表。质量流量控制器本身除了测量部分,还带有一个电磁调节阀或者压电阀,这样质量流量控制本身构成一个闭环系统,用于控制流体的质量流量。质量流量控制器的设定值可以通过模拟电压、模拟电流,或者计算机、PLC提供。 质量流量计的工作原理和典型结构 科氏力式质量流量计一般由传感器和信号处理系成,而流量传感器又是一种基于科里奥利力效应的谐振式传感器。这种传感器的敏感元件——振动管,是处于谐振状态的空心金属管,又称测量管。科氏力式质量流量传感器的测量管有各种不同的结构形式,按照传感器测量管的数量可将其分为单管型、双管型和连续管型三种结构。单管型结构简单,不存在分流问题,管路清洗方便。一般地说,它对外来振动比较敏感。双管型结构容易实现相位差的测量,可以较好地克服外来振动的影响,并对提高振动系统的Q值有利。目前大多数产品均采用这种结构。但这种结构同时带来的问题是两测量管中流过的流量不可能做到绝对相等,其中的沉积物和磨蚀也不可能绝对一致,从而引起附加误差。而且在两相流工作状态下,难以作到两测量管中流体分布的均匀一致,以致影响振动系统的稳定性。随着单管型结构中测量管系统的振动不平衡问题的解决,单管型结构仍具有一定的发展前景。连续管型是一种特殊形式的单管.它以环绕两圈的单管结构试图集单、双管型的优点于-身。根据测量管的形状,又可分为直管型和弯管型两大类。直管型一般外形尺寸小且不易于积存气体,但由于其振动系统刚度大,谐振频率高,相位差为微秒级,电信号的处理就比较困难。为了不使谐振频率过高,管壁必须较薄,以致其耐磨及抗腐蚀性能较差。弯管型的振

罗斯蒙特质量流量计说明及操作规范,罗斯蒙特质量流量计中国总代理

罗斯蒙特质量流量计中国总代理(网址:https://www.doczj.com/doc/789380958.html,),德莱美(北京)国际贸易有限公司中国总代理(网址:https://www.doczj.com/doc/789380958.html,)罗斯蒙特质量流量计工作特性及原理,罗斯蒙特质量流量计中国总代理,罗斯蒙特质量流量计广泛应用于石化等领域,是当今世界上最先进的流量测量仪表之一,在我厂主要产品如乙烯、丙烯和主要原料轻烃等的测量中使用可靠,精度高达1.7‰,为我厂的能源、物料的流量测量提高了准确度,避免了不必要的损失,创造了可观的经济效益。 质量流量测量原理 一台质量流量计的计量系统包括一台传感器和一台用于信号处理的变送器。Rosemount质量流量计依据牛顿第二定律:力=质量×加速度(F=ma) 如图1所示,当质量为m的质点以速度V在对P轴作角速度ω旋转的管道内移动时,质点受两个分量的加速度及其力: (1)法向加速度,即向心加速度αr,其量值等于2ωr,朝向P轴; (2)切向角速度αt,即科里奥利加速度,其值等于2ωV,方向与αr垂直。由于复合运动,在质点的αt方向上作用着科里奥利力Fc=2ωVm,管道对质点作用着一个反向力-Fc=-2ωVm。 当密度为ρ的流体在旋转管道中以恒定速度V流动时,任何一段长度Δx的管道将受到一个切向科里奥利力ΔFc:ΔFc=2ωVρAΔx (1) 式中,A—管道的流通截面积。 由于存在关系式:mq=ρV A 所以:ΔFc =2ωqmΔx (2) 因此,直接或间接测量在旋转管中流动流体的科里奥利力就可以测得质量流量。 传感器内是U型流量管(图2),在没有流体流经流量管时,流量管由安装在流量管端部的电磁驱动线圈驱动,其振幅小于1mm,频率约为80Hz,流体流入流量管时被强制接受流量管的上下垂直运动。在流量管向上振动的半个周期内,流体反抗管子向上运动而对流量管施加一个向下的力;反之,流出流量管的流体对流量管施加一个向上的力以反抗管子向下运动而使其垂直动量减少。这便导致流量管产生扭曲,在振动的另外半个周期,流量管向下振动,扭曲方向则相反,这一扭曲现象被称之为科里奥利(Coriolis)现象,即科氏力。 根据牛顿第二定律,流量管扭曲量的大小完全与流经流量管的质量流量大小成正比,安装于流量管两侧的电磁信号检测器用于检测流量管的振动。当没有流体流过流量管时,流量管不产生扭曲,两侧电磁信号检测器的检测信号是同相位的(图3);当有流体流经流量管时,流量管产生扭曲,从而导致两个检测信号产生相位差,这一相位差的大小直接正比于流经流量管的质量流量。 由于这种质量流量计主要依靠流量管的振动来进行流量测量,流量管的振动,以及流过管道的流体的冲力产生了科氏力,致使每个流管产生扭转,扭转量与振动周期内流过流管的质

相关主题
文本预览
相关文档 最新文档