当前位置:文档之家› 腐蚀时间对蓝宝石衬底上外延生长GaN质量的影响

腐蚀时间对蓝宝石衬底上外延生长GaN质量的影响

腐蚀时间对蓝宝石衬底上外延生长GaN质量的影响
腐蚀时间对蓝宝石衬底上外延生长GaN质量的影响

LED蓝宝石衬底

LED蓝宝石衬底 蓝宝石详细介绍 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C 面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料. 下图则分别为蓝宝石的切面图;晶体结构图上视图;晶体结构侧视图; Al2O3分之结构图;蓝宝石结晶面示意图 蓝宝石结晶面示意图 最常用来做GaN磊晶的是C面(0001)这个不具极性的面,所以GaN的极性将由制程决定 (a)图从C轴俯看(b) 图从C轴侧看

蓝宝石晶体的生长方法 蓝宝石晶体的生长方法常用的有两种: 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇. 蓝宝石晶体的应用: 广大外延片厂家使用的蓝宝石基片分为三种: 1:C-Plane蓝宝石基板 这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C 轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定. 2:R-Plane或M-Plane蓝宝石基板 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。 3:图案化蓝宝石基板(Pattern Sapphire Substrate简称PSS) 以成长(Growth)或蚀刻(Etching)的方式,在蓝宝石基板上设计制作出纳米级特定规则的微结构图案藉以控制LED之输出光形式,并可同时减少生长在蓝宝石基板上GaN之间的差排缺陷,改善磊晶质量,并提升LED内部量子效率、增加光萃取效率。

。蓝宝石(Al2O3),硅 (Si),碳化硅(SiC)LED衬底材料的选用比较)

?1、蓝宝石(Al2O3),硅(Si),碳化硅(SiC)LED衬底材料的选用 比较 ?通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。 ?蓝宝石衬底有许多的优点: 首先,蓝宝石衬底的生产技术成熟、器件质量较好; 其次,蓝宝石的稳定性很好,能够运用在高温生长过程中; 最后,蓝宝石的机械强度高,易于处理和清洗。 因此,大多数工艺一般都以蓝宝石作为衬底。图1示例了使用蓝宝石衬底做成的LED 芯片。 ? 图1 蓝宝石作为衬底的LED芯片[/url] 使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω·cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的

方法,使电流扩散,以达到均匀发光的目的。但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。 蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400nm减到100nm左右)。添置完成减薄和切割工艺的设备又要增加一笔较大的投资。 蓝宝石的导热性能不是很好(在100℃约为25W/(m·K))。因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。为了克服以上困难,很多人试图将GaN光电器件直接生长在硅衬底上,从而改善导热和导电性能。 硅衬底 目前有部分LED芯片采用硅衬底。硅衬底的芯片电极可采用两种接触方式,分别是L接触(Laterial-contact ,水平接触)和V接触(Vertical-contact,垂直接触),以下简称为L型电极和V型电极。通过这两种接触方式,LED芯片内部的电流可以是横向流动的,也可以是纵向流动的。由于电流可以纵向流动,因此增大了LED的发光面积,从而提高了LED的出光效率。因为硅是热的良导体,所以器件的导热性能可以明显改善,从而延长了器件的寿命。 碳化硅衬底 碳化硅衬底(美国的CREE公司专门采用SiC材料作为衬底)的LED芯片电极是L型电极,电流是纵向流动的。采用这种衬底制作的器件的导电和导热性能都非常好,有利于做成面积较大的大功率器件。采用碳化硅衬底的LED芯片如图2所示。 图2 采用蓝宝石衬底与碳化硅衬底的LED芯片[/url]

LED与蓝宝石衬底

LED与蓝宝石衬底 LED(Light-Emitting Diode,缩写LED)是发光二极管的简称。发光二极管的发光效率是白炽灯的10倍,其寿命可达10以上,具有节能和体积小的特点,产品主要用于液晶电视机、汽车、照明、交通信号、景观及显示牌。 2009年下半年开始,LED市场出现大飞跃,作为高成长性的新兴产业,预计到2015年,LED产业规模将突破5000亿元,其中普通照明行业1600亿元,大尺寸液晶电视背光行业1200亿元,汽车照明行业200亿元、普通照明行业1600亿元,景观、显示等行业1000亿元。 LED产业链条大致可以分为三个部分,分别是上游基片生长、外延片制造,中游的芯片封装和下游的应用产品。在整个产业链中,最核心的部分在基片生长和外延片制造环节,二者技术含量比较高,占全行业近70%的产值和利润。 LED的核心部分是外延片。蓝绿光LED是在蓝宝石基片上生长GaN(氮化镓)形成PN结,见图1。 图1 LED外延片结构

(2)几种LED衬底: 当前用于GaN基LED的衬底材料比较多,但是能用于商品化的衬底目前只有两种,即蓝宝石和碳化硅衬底。 蓝宝石(Al2O3) 通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。蓝宝石衬底有许多的优点:首先,蓝宝石(Al2O3)衬底的生产技术成熟、价格适中,化学稳定性好、不吸收可见光、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。因此,大多数工艺一般都以蓝宝石作为衬底。但蓝宝石导热性差的缺点,在大功率器件中显得突出。 碳化硅衬底 除了Al2O3衬底外,目前用于氮化镓生长衬底就是SiC,它在市场上的占有率位居第2,目前还未有第三种衬底用于氮化镓LED的商业化生产。采用SiC材料作为衬底制作的器件的导电和导热性能都非常好,有利于做成面积较大的大功率器件。但不足方面也很突出,如价格太高、晶体质量难以达到Al2O3和Si那么好、机械加工性能比较差。相对于蓝宝石衬底而言,碳化硅制造成本较高。 硅衬底 在硅衬底上制备发光二极管是LED领域梦寐以求的事情,但目前在Si 衬底上很难得到无龟裂及器件级质量的GaN材料。硅衬底对光的吸收严重,LED节能灯出光效率低。

蓝宝石生长方法

一、蓝宝石生长 1.1 蓝宝石生长方法 1.1.1 焰熔法Verneuil (flame fusion) 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil) 和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末 与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。后 来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil) 改进并发展这一技术使之能进行商业化生产。因此,这种方 法又被称为维尔纳叶法。 1)基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在 通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种 晶上固结逐渐生长形成晶体。 2)合成装置与条件、过程 焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生 高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在 一个冷却的结晶杆上结成单晶。下图是焰熔生长原料及设备 简图。这个方法可以简述如下。图中锤打机构的小锤7按一 定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过 筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。 氢经入口流进,在喷口和氧气一起混合燃烧。粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。炉体4设有观察窗。可由望远镜8观看结晶状况。为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。 焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。 A.供料系统 原料:成分因合成品的不同而变化。原料的粉末经过充分拌匀,放入料筒。如果合成红宝石,则需要Al2O 粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。三氧化 3 二铝可由铝铵矾加热获得。料筒:圆筒,用来装原料,底部有筛孔。料筒中部贯通有

国内生产蓝宝石衬底的有哪几家

国内生产蓝宝石衬底的有哪几家? 如题,最近对上上游的材料供应商感兴趣,请问国内有哪几家? 过去,晶粒厂多半向俄罗斯、日本、美国采购蓝宝石基板,不过包括越峰、鑫晶钻以及太阳能厂中美晶、合晶,都注意到这块市场。太阳能厂中美晶、合晶从去年起,也开始跨足蓝宝石基板切割、甚至长晶,都在显示出LED上下游产值已愈滚愈大。中美晶表示,中美晶之前是向其它业者买进晶棒,切割、研磨、抛光等制程后,才出货给晶粒厂切割成晶粒。但从今年3月起,中美晶打算直接自行长晶,2英寸晶棒仍然向日本、美国采购,但3英寸、4英寸晶棒将自行发展,原因在于“外购晶棒,切割后出售给晶粒厂”的模式获利有限。 西方的蓝宝石生产商停止向台湾的GaN LED生产商供应产品,他们宁愿在电子基材市场的交易中获取利润。市场分析机构Yole Développement在今年的产业报告中强调,“巨大的压力”迫使2英寸蓝宝石晶片的价格降至17美元,这样芯片制造商就能将每个裸片价格压到2-3美分。据该篇报告的作者Philippe Roussel表示,尽管美国Rubicon置身其中,现在台湾LED制造业仍是亚洲和俄国蓝宝石供应商的温床。 尽管全球的实验室中有其他多种技术在开发当中,2英寸蓝宝石晶片在LED制造业中仍然保持主导地位,而台湾是主要的市场。图片来源。其他的供应商则关注全球的其他市场,包括一般售价25美元的2英寸蓝宝石衬底,以及正要推出的4英寸衬底,售价在170-180美元之间。巨大的价格差异把全球领先的LED制造商(大部分在台湾之外)推至浪尖,酌情开始生产4英寸蓝宝石。据悉,Osram和Showa Denko已经开始将部分生产转至更大尺寸的衬底上了。但Roussel认为此举要谨慎。 Roussel在“Sapphire market 2008”报告中指出,去年面向LED产业的蓝宝石衬底产值超过1亿美元,年复合增长率是15%,蓝宝石衬底市场近期有些动荡,但销售额有望稳健成长。而针对RF应用的蓝宝石上硅(SoS)业务将于2011年超过1亿美元。由于Peregrine半导体公司力挽颓势,GaAs RF市场将不会立即受威胁。然而他也指出其中的症结:这个处境很尴尬,客户也不喜欢由一家公司掌控所有的专利。现在Peregrine公司正通过授权日本的Oki 来分散客户的风险,另外还将一些生产外包给代工厂。Peregrine的重组无疑给Rubicon的Q4收入有所影响。 结合LED和SoS两大市场,到2012年蓝宝石业务总计4亿美元。其中,亚洲的蓝宝石生产商所占市场份额67%,由俄国Monocrystal和法国Saint-Gobain为代表的欧洲厂商占了20%的总销售额,剩余的就是Rubicon执掌的北美市场。 俄国晶体专家、合成蓝宝石和其他先进电子材料市场的领军者Monocrystal公司表示,它的超大面积晶片将通过制造低本高效的LED芯片,从而加快步入固态照明领域。今年八月,该公司就已经开始为LED制造商批量生产这种8英寸的c面蓝宝石衬底。通过采用适合大面积蓝宝石生长的先进技术,Monocrystal能快速地提高新一代蓝宝石晶体的产量。已知在2005年该公司的大面积蓝宝石晶体的产量超过了65kg。 蓝宝石衬底制造商Rubicon宣布在上个月底获得一笔6英寸蓝宝石订单,目前只用于研究;但在18个月内,这家台湾LCD制造商进军LED制造业,期待在6英寸蓝宝石上获取更大突破,提高市场竞争力。Rubicon的CEO Raja Parvez说,“我们每隔四周到六周就要拜访客户,我们看到了这个领域内有更大的进步。我预测将会12-18个月内就能看到批量生产。”

图案化蓝宝石衬底的制备方法及关键技术分析

Material Sciences 材料科学, 2020, 10(1), 63-74 Published Online January 2020 in Hans. https://www.doczj.com/doc/7810300555.html,/journal/ms https://https://www.doczj.com/doc/7810300555.html,/10.12677/ms.2020.101009 Study of the Preparation Methods and Key Techniques of Patterned Sapphire Substrate Zhiyuan Lai1, Kaihong Qiu2, Xiang Hou2, Jiangtao Zhang1, Zhongwei Hu1* 1Institute of Manufacturing Engineering, Huaqiao University, Xiamen Fujian 2Fujian Zoomking Technology Co., Ltd., Longyan Fujian Received: Dec. 31st, 2019; accepted: Jan. 13th, 2020; published: Jan. 20th, 2020 Abstract The patterned sapphire substrate (PSS) is a new technology developed in recent years to improve the luminous rate of LED. This paper mainly introduces the principle of patterned sapphire sub-strate to improve the light-emitting rate of GaN-based LED, the effect of surface microstructure (geometry and size) on the luminous efficiency of LED, and focuses on the key technologies in the preparation of patterned sapphire substrates, including the preparation of mask and graphic transfer technology, as well as two main methods of substrate preparation are: dry etching and wet corrosion, and the advantages and disadvantages of the two preparation methods are com-pared. Finally, it is pointed out that the nano-patterned sapphire substrate is the key development direction of the future. Keywords Patterned Sapphire Substrate, Gallium Nitride (GaN), Mask, Etching 图案化蓝宝石衬底的制备方法及关键技术 分析 赖志远1,仇凯弘2,侯想2,张江涛1,胡中伟1 * 1华侨大学制造工程研究院,福建厦门 2福建中晶科技有限公司,福建龙岩 收稿日期:2019年12月31日;录用日期:2020年1月13日;发布日期:2020年1月20日 *通讯作者。

蓝宝石晶体生长技术回顾

蓝宝石晶体生长技术回顾 (2011-07-12 15:21:18) 转载 分类:蓝宝石晶体 标签: 蓝宝石 晶体生长 技术 历史 杂文 杂谈 引言 不少群众提出意见,博主说了这多不行的,能不能告诉广大投身蓝宝石长晶事业的什么设备行?说实话,这真的是为难我了!怎么讲?举个例子吧,Ky技术设备在Mono手里还真的是Ky,但到了你手里可能就是YY了。 可能你觉得受打击了,可是没有办法啊,事实如此啊,实话听 起来往往比较刺耳!本博主前面发表的《从缺陷的角度谈谈蓝宝石生长方向的选择》博文,迄今为止只有寥寥无几群众真正看出精髓所在..................................不服气群众可以留言谈谈自己了解了什么? 古人云“博古通今”、“温故知新”,我觉得很有道理,技术之道也是如此。如果没有对以往技术的熟练掌握、熟知精髓所在,没有

对以往技术的总结提炼,你就不可能对一个新技术真正的掌握。任何新技术新设备到你手里,充其量你只是一个熟练操作工而已。 还觉得不信的话,我就在这篇博文里用大家认为最古老的火焰法宝石生长的经验理论总结来给大家进行目前流行的衬底级蓝宝石晶体生长进行理论指导。 蓝宝石晶体生长技术简介

焰熔法(flame fusion technique)&维尔纳叶法(Verneuil technique) 1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳叶法。 弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)这几个哥们实际上就是做假珠宝的,一群有创新精神的专业人士。 博主对两类造假者比较佩服,一类是以人造珠宝以假乱真的,一类是造假文物的。首先、他们具有很高的专业素养;其次、他们也无关民生大计;还有利于社会财富的再分配。 至于火焰法简单的描述我就不啰嗦了,我讲讲一些你所不知道的火焰法长宝石的一些前人总结;这些总结和经验对今天的任何一种新方法长蓝宝石单晶都是有借鉴意义的。 100多年来火焰法工作者在气泡、微散射,晶体应力和晶体生长方向的关系,晶体生长方向与缺陷、成品率之间的关系做了大量的数据总结,可以讲在各个宝石生长方法中研究数据是最完备的。在这篇博文里我只讲讲个人认为对其他方法有借鉴意义的一些总结。

蓝宝石衬底

蓝宝石衬底 展开 对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。应该采用哪 种合适的衬底,需要根据设备和LED器件的要求进行选择。目前市面上一般有三种材料可作为衬底: 〃蓝宝石(Al2O3)、硅(Si)、碳化硅(Sic) 蓝宝石衬底 通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。因此,大多数工艺一般都以蓝宝石作为衬底。 使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω〃cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。 蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400μm减到100μm左右)。添置完成减薄和切割工艺的设备又要增加一笔较大的投资。 蓝宝石的导热性能不是很好(在100℃约为25W/(m〃K))。因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。为了克服以上困难,很多人试图将GaN光电器件直接生长在硅衬底上,从而改善导热和导电性能。 硅衬底 目前有部分LED芯片采用硅衬底。硅衬底的芯片电极可采用两种接触方式,分别是L接触(Laterial-contact ,水平接触)和 V接触(Vertical-contact,垂直接触),以下简称为L型电极和V型电极。通过这两种接触方式,LED芯片内部的电流可以是横向流动的,也可以是纵向流动的。由于电流可以纵向流动,因此增大了LED的发光面积,从而提高了LED

在图形化蓝宝石衬底上生长氮化镓薄膜的方法

说明书 在图形化蓝宝石衬底上生长氮化镓薄膜的方法 技术领域 本发明涉及氮化镓(GaN)基Ⅲ族氮化物的异质外延生长方法,特别涉及一种在图形化蓝宝石衬底(PSS,Patterned Sapphire Substrate)上生长高质量GaN薄膜的方法。 背景技术 GaN基Ⅲ族氮化物是宽禁带直接带隙半导体材料,因其优异的电学性能和物理、化学稳定性,是制造发光二极管(LED,Light Emitting Diode)、短波长激光器、高功率晶体管、紫外光探测器等的理想材料。尽管GaN基LED早已实现产业化,但目前LED器件的发光效率仍然较低,有待进一步提高。 蓝宝石(Al2O3)是异质外延GaN薄膜最为通用的一种衬底材料,但由于蓝宝石与GaN外延层的晶格常数和热膨胀系数的失配,会引发界面处大量位错和缺陷的产生,缺陷密度高达108—1010/cm3,造成载流子泄露和非辐射复合中心增加,从而降低器件的内量子效率;另一方面由于GaN材料(折射率为2.5)和空气(折射率为1)的折射率差异较大,有源区产生的光子有70%在GaN层上下两个界面处发生多次全反射,降低了器件的光提取效率。图形化衬底技术通过在衬底表面制作细微结构图形,图形的存在有利于GaN外延层中的应力弛豫,且能抑制外延材料生长过程中向上延升的位错,从而提高器件的内量子效率;而且图形化衬底能使原本在临界角范围外的光线通过图形的反射重新进入到临界角内出射,因此提高了光提取效率。 对本领域技术人员而言,基于蓝宝石衬底的低温生长缓冲层和高温生长GaN外延层的“两步法”工艺是一项成熟技术。但是与非图形衬底相比,图形化衬底表面均匀分布的图形将使GaN初期的生长模式发生较大变化,如直接采用普通蓝宝石衬底上的GaN生长工艺,可能会导致GaN薄膜出现表面粗糙、晶体质量差的现象,所以基于图形化衬底的GaN生长工艺参数也需要作相应的改变。其工艺应保证如下要求:a、表面平整;b、晶体质量良好。 发明内容 本发明的目的在于提供一种在图形化蓝宝石衬底上生长高质量GaN薄膜的方法,该方法通过在生长初期采用低Ⅴ/Ⅲ比(氨气与镓源摩尔流量比)生长来改变生长模式,以获得表面平整及晶体质量良好的GaN薄膜。 本发明采用金属有机物化学气相沉积(MOCVD,Metalorganic Chemical Vapor Deposition)技术。在MOCVD外延生长GaN材料过程中,在位监控是

蓝宝石应力

蓝宝石应力 1. 概述 在晶体生长过程中晶体内存在的应力将引起应变,当应变超过了晶体材料本身塑性形变的屈服极限时,晶体将发生开裂。一般来说,根据晶体内应力的形成原因,可将其分为三类:热应力,化学应力和结构应力。 1.1热应力 蓝宝石晶体在从结晶温度冷却至室温过程中并不发生相结构的转变,因此,晶体内应力主要是由温度梯度引起的热应力。晶体热应力正比于晶体内的温度梯度、晶体热膨胀系数及晶体直径。最大热应力总是出现在籽晶与新生晶体的界面区域,较大热应力一般出现在结晶界面、放肩、收尾及直径发生突变的部位,在等径部位热应力相对较小。 1.2结构应力 由特定材料构建成的一个功能性物体叫做结构,在结构的材料内部纤维受到结构自身重力或者外界作用力下,纤维会产生变形,这种变形的能量来自于材料所受的应力,这种应力就叫结构应力。 2. 产生因素 晶体全开裂主要与晶体的生长速率和冷却速率有关,生长速率或冷却速率过快,必将使晶体整体的热应力过大。当热应力值超过屈服应力时,裂纹大量萌生,不断扩展,相互交织造成晶体整体碎裂,具有此种裂纹的晶体已失去使用价值,应当严格避免。通过相关理论分析和多次实验证明,采用匀速的降温程序,降温速率控制在1.5~3.0 K/h的范围

内,晶体生长速率为1.0~5.0 mm/h;依据蓝宝石晶体退火工艺,晶体强度与温度的变化关系,在10~30 K/h范围内设计晶体的冷却程序,完成晶体的退火和冷却。此晶体生长速率及冷却程序,可使晶体的整体碎裂得到有效控制。 在晶体生长中时常发现在晶体的引晶、放肩及晶体直径突变等部位发生裂纹萌生,并沿特定的晶面扩展。具有该种裂纹的晶体虽然仍可利用,但会使器件的尺寸受到一定的限制,降低晶体坯料的利用率,故应尽力避免。 此种裂纹的形成与泡生法晶体生长控制工艺密切相关。在晶体生长的引晶和放肩阶段主要是通过调节热交换器的散热能力来控制晶体生长,在籽晶和新生晶体的界面区域,受热交换器工作流体温度的影响较显著,温度梯度较大。同时,在此阶段需不断的调整晶体的生长 状态,造成此位置晶体外形不规则以及较高的缺陷浓度等都极易引起应力集中,裂纹萌生的机率也相对较大。在后续实验中,本实验室采用加长籽晶杆长度,增加温度梯度过渡区长度和恒定热交换器工作流体温度等措施来控制该区域的裂纹萌生,并取得了较好的效果。 3. 检测方法 检测工具为应力仪。 台式应力仪:S-18应力测试仪应用范围广泛。该仪器可以从水平或垂直角度,对玻璃和塑料配件进行检测,大多运用于品控。S-18有足够大的使用空间供各种产品进行测量。测量过程中,主要通过手持被测物体在偏光下进行观察测量。 标准配置的S-18包括一个光源,一个装有四分之一波盘的分析器和另一个装有四分之一波盘的偏光装置。S-18应力仪中已经置入了一块全波盘。 S-18应力测试仪使用时要垂直放置。机身上有2对橡胶脚垫减震器,便于从水平或垂直方向操作。 应力仪功能的优越点 应力仪是一种无损检测应力情况的机器,便于人们在生产国产中更直观的判别样品的应力情况。做好分析应力的情况,更好的改进生产工艺,做出更好的产品。 应力仪的操作简便易学,机器性能一般可以稳定维持3-5年。

蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究 【摘要】蓝宝石晶体具有硬度大、熔点高、物理化学性质稳定的特点,是优质光功能材料和氧化物衬底材料,广泛用于电子技术,军事、通信、医学等国防民用, 科学技术等领域。自19 世纪末, 法国化学家维尔纳叶采用焰熔法获得了蓝宝石晶体后,人工生长蓝宝石工艺不断发展, 除了焰熔法外还有冷坩埚法、泡生法、温度梯度法、提拉法、热交换法、水平结晶法、弧熔法、升华法、导模法、坩埚下降法等。本文主要对应用较为广泛的焰熔法、提拉法、泡生法、热交换法、导模法、下降法、等生长工艺进行论述。 【关键词】蓝宝石晶体晶体生长工艺研究蓝宝石晶体的化学成分是氧化铝(a -AI2O3 ),熔点高达2050C,沸点3500C,硬度仅次于金刚石为莫氏硬度9,是一种重要的技术晶体。蓝宝石晶体在光学性能、机械性能和物理化学性质方面表现出了优异性能,因此被各行业广泛应用,同时随着现代科学技术的发展,对蓝宝石晶体的质量要求也不断提升,这就对蓝宝石晶体生长工艺提出了新的挑战。 焰熔法。确切来讲焰熔法是由弗雷米、弗尔、乌泽在

1885 年发明的,后来法国化学家维尔纳叶改进、发 展并投入生产使用。焰熔法是以Al2O3 粉末为原 料,置于设备上部,原料在撒落过程中通过氢及氧气 在燃烧过程中产生的高温火焰,熔化,继续下落,落 在设备下方的籽晶顶端,逐渐生长成晶体。焰熔法生 产设备主要有料筒、锤打机构、筛网、混合室、氢气 管、氧气管、炉体、结晶杆、下降机构、旋转平台等 组成。锤打机构使料筒振动,与筛网合作使粉料少 量、等量或周期性的下落;氧气与粉末一同下降、氢气与氧气混合燃烧;在炉体设有观察窗口可通过望远镜查看结晶状况,下降机构控制结晶杆的移动,旋转平台为晶体生长平台,下方置以保温炉。焰熔法具有生长速度快、设备简单、产量大的优点,但是生产出的晶体缺陷较多,适用于对蓝宝石质量要求不高的晶体生产。 提拉法。提拉法能够顺利地生长某些易挥发的化合物,应用较为广泛。提拉法工艺:将原料装入坩埚中熔化为熔体,籽晶放入坩埚上方的提拉杆籽晶夹具中,降低提拉杆使籽晶插入熔体中,在合适的温度下籽晶不会熔掉也不会长大,然后转动和提升晶体,当加热功率降低时籽晶就会生长,通过对加热功率的调节和提升杠杆的转动即可使籽晶生长成所需的晶体。

蓝宝石晶体热性能的各向异性对SAPMAC法晶体生长的影响

第36卷第6期 人 工 晶 体 学 报 V o.l 36 N o .6 2007年12月 J OURNAL O F S YNTHET I C CRY STA LS D ece m ber ,2007 蓝宝石晶体热性能的各向异性对S APMAC 法晶体生长的影响 许承海,杜善义,孟松鹤,韩杰才,汪桂根,左洪波,张明福 (哈尔滨工业大学复合材料与结构研究所,哈尔滨150001) 摘要:采用有限元法对冷心放肩微量提拉法蓝宝石晶体生长过程中晶体内的温度、应力分布进行了模拟计算,结合实验结果讨论了蓝宝石晶体热性能的各向异性对晶体生长的影响。研究结果表明,对于冷心放肩微量提拉蓝宝石晶体生长系统,较大的轴向热导率有利于提高晶体的生长速率和界面稳定性,而稍大的径向热导率则有利于保持微凸的生长界面。晶体内的热应力受径向热膨胀系数的影响显著,随着径向热膨胀系数的增大而增大,最大热应力总是出现在籽晶与新生晶体的界面区域。在实验中选a 轴为结晶取向,成功生长出了直径达230mm 、高质量蓝宝石晶体。 关键词:各向异性;热性能;蓝宝石;冷心放肩微量提拉法中图分类号:O 782 文献标识码:A 文章编号:1000 985X (2007)06 1261 05 E ffect of Sapphire Thermal Performance Anisotropy on Crystal Gro w th by S APMAC M ethod XU Cheng hai ,DU Shan y i ,ME NG Song he ,HAN J ie cai ,WANG G ui gen, ZUO H ong bo ,Z HANG M i n g fu (C enter for Co m positeM at eri a l s ,H arb i n Ins tit u te ofTechnol ogy ,H arb i n 150001,Ch i na) (R e ce i ved 17M arc h 2007) 收稿日期:2007 03 17 作者简介:许承海(1978 ),男,黑龙江省人,博士生。E m ai:l h i txu c h engha@i s i na .co m 通讯作者:张明福,副教授。E m ai:l m f zhang1@h it .edu .cn Abst ract :Finite ele m entm ethod w as adopted to si m ulate t h e te m perature and stress distri b ution i n si d e the sapph ire si n g le crysta l duri n g its gro w th w ith SAP MAC m et h od .The effect o f anisotropic ther m a l perfor m ance o f sapphire on crystal gro w th w as d iscussed w ith t h e exper i m enta l results .R esearching resu lts sho w ed that b i g ger ax ial ther m al conducti v ity w as prop itious to i m prove the crystal gro w th ve l o c ity and stab ilizati o n of t h e i n terface and larger radial ther m al conducti v ity w as prop iti o us to keep the sligh t convex ity gro w i n g i n terface for the sapph ire crystal g r ow th syste m w ith SAP MAC m et h od .Ther m a l stress i n si d e the crystalw as influenced notab l y by radia l t h er m a l expansion coe ffi c ient and increased along w ith i.t The largest t h er m a l stress al w ays occurred at the i n terface of the seed and the ne w born crysta.l I n the experi m en,t a sapph ire crystal w ith h i g h quality w hose dia m eter is up to 230mm w as pr oduced successfully by choosi n g a ax is as the crysta llization o ri e ntation .K ey w ords :anisotr opy ;ther m o physica l perfor m ance ;sapph ire ;SAP MAC m ethod

蓝宝石衬底制作工艺流程简要说明

蓝宝石衬底制作工艺流程简要说明 长晶: 利用长晶炉生长尺寸大且高品质的单晶蓝宝石晶体 定向: 确保蓝宝石晶体在掏棒机台上的正确位置,便于掏棒加工 掏棒: 以特定方式从蓝宝石晶体中掏取出蓝宝石晶棒 滚磨: 用外圆磨床进行晶棒的外圆磨削,得到精确的外圆尺寸精度 品检: 确保晶棒品质以及以及掏取后的晶棒尺寸与方位是否合客户规格 定向:在切片机上准确定位蓝宝石晶棒的位置,以便于精准切片加工 切片:将蓝宝石晶棒切成薄薄的芯片 研磨:去除切片时造成的芯片切割损伤层及改善芯片的平坦度 倒角:将芯片边缘修整成圆弧状,改善薄片边缘的机械强度,避免应力集中造成缺陷 抛光:改善芯片粗糙度,使其表面达到外延片磊晶级的精度 清洗:清除芯片表面的污染物(如:微尘颗粒,金属,有机玷污物等) 品检:以高精密检测仪器检验芯片品质(平坦度,表面微尘颗粒等),以合乎客户要求 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响 江洋罗毅汪莱李洪涛席光义赵维韩彦军 【摘要】:在柱状图形蓝宝石衬底(PSS-p)和孔状图形蓝宝石衬底(PSS-h)上外延了GaN体材料和LED结构并进行了详细对比和分析.X射线衍射仪(XRD)和原子力显微镜(AFM)测试结果表明,PSS-h上体材料的晶体质量和表面形貌都优于PSS-p上体材料的特性,通过断面扫面电子显微镜(SEM)照片看出PSS-h上GaN的侧向生长是导致这种差异的原因.另外,基于PSS-p和PSS-h上外延的LED材料制作而成的器件结果表明,其20mA下光功率水平相比普通蓝宝石衬底(CSS)分别提高了46%和33%.通过变温光荧光谱(PL)分析发现,样品的内量子效率十分接近.因此,可以推断PSS-h上侧向外延中存留的空气隙则会影响光提取效率的提高. 【作者单位】:清华大学电子工程系集成光电子学国家重点实验室; 【关键词】:蓝宝石图形衬底氮化镓发光二极管侧向生长光提取效率内量子效率原子力显微镜体材料蓝宝石衬底晶体质量 【基金】:国家自然科学基金(批准号:60536020,60723002)国家重点基础研究发展计划“973”(批准号:2006CB302801,2006CB302804,2006CB302806,2006CB921106)国家高技术研究发展计划“863”(批准号:2006AA03A105)北京市科委重大计划(批准号:D0404003040321)资助的课题~~ 1·引言利用GaN基大功率LED作为一种新型高效的固体光源,具有能耗小、高功率、寿命长、体积小、环保等显著优点,将成为人类照明史上继白炽灯、荧光灯之后的第三代照明工具,被公认为21世纪最具发展前景的高技术领域之一[1,2].目前使用最广泛的外延GaN材料的衬底是成本较低的蓝

冷心放肩微量提拉法生长蓝宝石位错分析

冷心放肩微量提拉法生长蓝宝石位错分析 1、简介 蓝宝石(Al2O3)是一种很重要的单晶,因其出众的物理和化学特性,有很广泛的应用。大尺寸、高质量蓝宝石在军事窗口材料领域占有优势。然而,众所周知,位错是蓝宝石中非常重要且很常见的一种缺陷,会对蓝宝石的生长,特性和塑性形变产生重要的影响。迄今为止,只有少数几种方法如热交换法(HEM),温度梯度法(TGT)等能够生产出大尺寸的蓝宝石。然而,这些方法都因其生长方式而具有固有的位错特性,在本文中,我们基于直拉法和泡生法,发明出一种新的长晶方法:冷心放肩微量提拉法(SAPMAC),并通过化学蚀刻,电子显微镜扫描和伯格- 巴雷特X射线形貌探测等方法来研究蓝宝石的位错。 2、实验 2.1 SAPMAC法生长蓝宝石单晶 SAPMAC法是基于直拉法和泡生法而发明的一种生长大尺寸蓝宝石单晶的方法,通过使用一种Ikal-200改进型单晶生长炉,其中包含钼制坩锅,钨发热体和钼制隔热屏等。钨发热体设计成鸟笼状,顶端焊接在具有水冷的铜电极上,通过调整发热体的电阻和水冷系统来建立合适的温度梯度。 在长晶开始前,需要先把钼坩埚空烧至1800°数个小时,用以排除坩埚表面杂质,从而减少污染。把准备好的氧化铝颗粒块(纯度至少99.995%)装入坩埚中,把具有一定晶相的籽晶通过籽晶夹安装在热交换器底部。把炉内抽真空至小于 1.0×10-4Pa。加热至熔化氧化铝原料并保持恒温数个小时。缓慢降低溶液温度,旋转并下降籽晶至其几何中心接触溶液的冷心位置,进行引晶。引晶结束后,通过微量提拉籽晶和降温来完成晶体生长过程中的扩肩、等径、退火等过程。一些技术参数参见Table1。 2.2 样品制备 蓝宝石单晶通过SAPMAC法生长,从晶锭不同的方位垂直的截取(0001)晶相的蓝宝石样品(10mm×10mm×2mm),所有的样品表面都经机械化学抛光(CMP)处理过。 2.3化学蚀刻和位错坑观察 在熔化的KOH(320°)中进行化学蚀刻,蚀刻坑的数量通过光学显微镜来计算,位错坑通过SEM(S-3400N, Hitachi)来计算。 2.4 X射线形貌拓扑结构 X射线形貌实验通过实验室高分辨率X射线衍射仪来完成,衍射形貌法用于具有对称反射结构的平面上(00012),样片至镜头的距离设为44mm,入射光的尺寸为14mm×2mm。大面积的布拉格形貌布局通过一个配有CCD镜头,帧捕捉器和相应的软件组成的设备来生成。 3、结果和讨论 3.1 SAPMAC法生长的大尺寸蓝宝石 通过SAPMAC法A相生长的大尺寸蓝宝石(?230×210 mm, 27.5 kg) 如下图:

GaN外延片的主要生长方法

2008-1-14 外延技术与设备是外延片制造技术的关键所在,金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称MOCVD)技术生长III-V族,II-VI族化合物及合金的薄层单晶的主要方法。II、III族金属有机化合物通常为甲基或乙基化合物,如:Ga(CH3)3,In(CH3)3,Al(CH3)3,Ga(C2H5)3,Zn(C2H5)3等,它们大多数是高蒸汽压的液体或固体。用氢气或氮气作为载气,通入液体中携带出蒸汽,与V族的氢化物(如NH3,PH3,AsH3)混合,再通入反应室,在加热的衬底表面发生反应,外延生长化合物晶体薄膜。 MOCVD具有以下优点: 用来生长化合物晶体的各组份和掺杂剂都可以以气态方式通入反应室中,可以通过控制各种气体的流量来控制外延层的组分,导电类型,载流子浓度,厚度等特性。 因有抽气装置,反应室中气体流速快,对于异质外延时,反应气体切换很快,可以得到陡峭的界面。 外延发生在加热的衬底的表面上,通过监控衬底的温度可以控制反应过程。 在一定条件下,外延层的生长速度与金属有机源的供应量成正比。 MOCVD及相关设备技术发展现状: MOCVD 技术自二十世纪六十年代首先提出以来,经过七十至八十年代的发展,九十年代已经成为砷化镓、磷化铟等光电子材料外延片制备的核心生长技术。目前已经在砷化镓、磷化铟等光电子材料生产中得到广泛应用。日本科学家Nakamura将MOCVD应用氮化镓材料制备,利用他自己研制的MOCVD设备(一种非常特殊的反应室结构),于1994年首先生产出高亮度蓝光和绿光发光二极管,1998年实现了室温下连续激射10,000小时,取得了划时代的进展。到目前为止,MOCVD是制备氮化镓发光二极管和激光器外延片的主流方法,从生长的氮化镓外延片和器件的性能以及生产成本等主要指标来看,还没有其它方法能与之相比。 国际上MOCVD设备制造商主要有三家:德国的AIXTRON公司、美国的EMCORE公司(Veeco)、英国的Thomas Swan 公司(目前Thomas Swan公司被AIXTRON公司收购),这三家公司产品的主要区别在于反应室。 这些公司生产MOCVD设备都有较长的历史,但对氮化镓基材料而言,由于材料本身研究时间不长,对材料生长的一些物理化学过程还有待认识,因此目前对适合氮化镓基材料的MOCVD设备还在完善和发展之中。国际上这些设备商也只是1994年以后才开始生产适合氮化镓的MOCVD设备。目前生产氮化镓中最大MOCVD设备一次生长24片(AIXTRON公司产品)。国际上对氮化镓研究得最成功的单位是日本日亚公司和丰田合成,恰恰这些公司不出售氮化镓生产的 MOCVD设备。日本酸素公司生产的氮化镓-MOCVD设备性能优良,但该公司的设备只在日本出售。 MOCVD设备的发展趋势: 研制大型化的MOCVD设备。为了满足大规模生产的要求,MOCVD设备更大型化。目前一次生产24片2英寸外延片的设备已经有商品出售,以后将会生产更大规模的设备,不过这些设备一般只能生产中低档产品;研制有自己特色的专用MOCVD设备。这些设备一般只能一次生产1片2英寸外延片,但其外延片质量很高。目前高档产品主要由这些设备生产,不过这些设备一般不出售。 1)InGaAlP

相关主题
文本预览
相关文档 最新文档