当前位置:文档之家› 电动汽车蓄电池剩余电量预测方法的研究

电动汽车蓄电池剩余电量预测方法的研究

大连理工大学

硕士学位论文

电动汽车蓄电池剩余电量预测方法的研究

姓名:赵剑

申请学位级别:硕士

专业:控制理论与控制工程

指导教师:王孝良

20061201

电动汽车动力电池剩余电量在线测量

182 电动汽车动力电池剩余电量在线测量 程艳青 高明煜 徐 杰 徐洪峰 (杭州电子科技大学电子信息学院,浙江 杭州 310018) 摘要:为了精确可靠估算以蓄电池为动力的电动汽车所用电池的剩余电量,在讨论目前一些蓄电池剩余电量估算方法的基础上,以聚合物锂离子电池组为研究对象,将电池荷电状态作为系统的状态,建立了单变量的锂电池组的状态空间模型,采用了开路电压法和卡尔曼滤波递推算法相结合的方法。经试验这种方法能够获得蓄电池组精确和可靠的荷电状态预测值。 关键字:聚合物锂离子电池组;卡尔曼滤波;电动汽车;荷电状态 中图分类号:TM91 文献标识码:A The Estimation of the State of Charge of Storage Battery Based on the Kalman Filtering Theory for Electric Vehicle Cheng Yanqing Gao Mingyu Xu Jie Xu Hongfeng (School of Electronics Information, Hang Zhou Dianzi University, Hangzhou Zhejiang 310018, China) Abstract: To estimate residual capacity of traction battery in electric vehicle accurately and reliably, the paper chooses a lithium-ion polymer battery pack as a research object, takes the SOC (State of charge) as the state of the system, and builds the battery's state space model with single state, and then develops a method combining open circuit voltage method and Kalman filtering recursive algorithm method, based on some methods of residual capacity estimation of battery often used at present. The experiments proved that accurate and reliable battery SOC estimation of battery could be obtained by adopting the new method. Keywords: Lithium-Ion Polymer Battery ; Kalman Filter; Electric Vehicle; State-of-charge 蓄电池是各类电动汽车中最常用的储能元件, 其剩余电量的精确测量在电动汽车的发展中一直是一个非常关键的问题[1],因为只有对电池剩余电量进行精确测量才能使驾驶员及时掌握正确的信息,预测自己的后续行驶里程,并及时进行充电。蓄电池荷电状态SOC(State of charge)描述蓄电池的剩余电量,其大小直接反映了电池所处的状态,是电池使用过程中最重要的参数之一。 1 SOC 定义 蓄电池的荷电状态SOC 被用来反映电池的剩余容量情况,这是目前国内外比较统一的认识,其数值上定义为为蓄电池所剩电量占电池总容量的比值: m n m Q ]/ )I ( Q - Q [ = SOC (1) 国家自然科学基金项目,60871088 dt I t = ) I ( Q n n ∫ (2) 式中: Q m 为蓄电池最大放电容量,指的是在室温条件下,电池从完全充电后开始工作一直到电池完全放电为止,其所能放出的最大安时数值,表示为标准放电电流和放电时间的乘积;Q ( I n ) 为标准放电电流 I n 下 t 时间蓄电池释放的电量。 公式1还可以表示为: m n Q )/I ( Q - 1 = SOC (3) 式中:SOC=1表示电池为充满电状态,SOC=0则表示电池已处于全放电状态。 由于电池所放出的电量受自放电率、充放电倍率、电池温度、电池充放电循环次数等影响,表示电池容量状态的SOC也必然与这些因素有关。在放电电流变化的情况下,上述定义就会出现不适应性,得到矛盾的结果,因此实际使用中要对SOC 的定义进行调整,不同电动汽车对SOC 定义的使用形式不一致,最常用的定义为:

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

电动汽车动力蓄电池尺寸相关标准

一、电动汽车用动力蓄电池标准尺寸 1.圆柱形电池单体 序号N1N2 118±2.0mm65±2.0mm 221±2.0mm70±2.0mm 326±2.0mm65±2.0mm/70±2.0mm 432±2.0mm70±2.0mm/134±5.0mm 2.方形电池单体

序号N1N2N3 120±2.0mm65±2.0mm138±5.0mm 2(20/27)±2.0mm70±2.0mm(107/120/130)±5.0mm 3(12/20)±2.0mm100±5.0mm(140/310)±5.0mm 4(12/20)±2.0mm120±5.0mm(80/85)±2.0mm 527±2.0mm135±5.0mm(192/214)±5.0mm 6(20/27/40/53/57/7 9/86)±2.0mm 148±5.0mm(91/95/98)±2.0mm/ (129/200/396)±5.0mm 7(12/20/32/40/45/4 8/53/71)±2.0mm 173±5.0mm85±2.0mm/ (110/125/137/149/166/184/ 200)±5.0mm 8(32/53)±2.0mm217±5.0mm98±2.0mm 注:考虑整车布置的需要,推荐方形电池极柱高度不超过10mm 3.电池模组 序号N1N2N3 1211~515mm141mm211/235mm 2252~590mm151mm108/119/130/141mm 3157mm159mm269mm 4285~793mm178mm130/163/177/200/216/240/255/265mm 5270~793mm190mm47/90/110/140/197/225/250mm 6191/590mm220mm108/294mm 7547mm226mm144mm 8269~319mm234mm85/297mm 9280mm325mm207mm

电动汽车用铅酸电池、镍氢电池和锂电池的对比分析(圣阳电源)

电动汽车用铅酸电池、镍氢电池和锂电池的对比分析 山东圣阳电源高海洋 随着科学技术的提高和制造水平的进步,电源技术也在新一代技术变革中不断提高,面对如今新能源电动汽车对动力电源的迫切需求,现阶段似乎哪一种动力电池都不能完全适合作为动力源用在电动汽车上。 目前来说,电动汽车上普遍采用的动力电池有三种:铅酸电池、锂电池以及镍氢电池。比较这三类动力性蓄电池就需要从两方面分析比对:一个是比能量,另一个是比功率,简单说,就是指电池的可持久性和力量大小。比能量高的蓄电池可以长时间工作,持续的能量较多,里程长;比功率高的蓄电池,速度快,力量大,可以保证汽车的加速性能。下面从这两方面对这三类动力蓄电池进行对比分析: 铅酸电池 作为目前电动汽车使用最广泛的蓄电池,在国内已经生产的电动汽车上,使用比例占到90%,这主要得益于其优点:技术较为成熟,比功率较大,循环寿命可达800~1000次,且成本低。不过,铅酸电池缺点也较明显,那就是比能量很低,仅为40W·h/kg左右,快速充电技术也尚未成熟(一般慢充都在8小时以上),而且污染严重,受到环保制约。 锂离子电池 相对来讲,其比能量和比功率都很高,可达150W·h/kg和1600W/kg,循环寿命长,约1200次,且充电时间较短,为2~4h,使用电压可达到4V,安全性相对较好。但锂离子电池缺点在于其价格较高、快速充放电性能差、过充和过放电保护性差,影响了其应用和发展的空间。 镍氢蓄电池 其的优点是比能量和比功率都相对中等,快速充电能力较好,15分钟可充满容量的40%~80%,适宜温度范围宽。但镍氢蓄电池循环使用寿命较短,为600次,价格昂贵,只有期待大批量生产,才有望降低成本。 结语 显而易见,比能量高、比功率大、价格便宜、易于维护的动力蓄电池才是电动汽车动力源的首选,从上面分析可以得知,每种蓄电池都存在这样或那样的问题。总体来看,现在的动力电池比能量都较低,以三种电池中性能最好的锂电池为例,在能量密度上,它与达到10000~12000W·h/kg的汽油相比还相差甚远,仔细计算,1L汽油约重0.742kg,按车载50L 计算,就是满载37.1kg的汽油,约相当于2968~3091kg锂电池所含有的电量,如果将汽油机较低的效率计算进去,两者之间也有约50倍的差距。所以现在电动汽车上安装的蓄电池数百公斤重,再加上高昂的价格,电动汽车形成高价格门槛便成为必然。 另外,不同类型电动汽车对电池的要求也不一样,纯电动汽车(PEV)由于只有电池驱动,所以需要较高的比能量,而在一般混合动力汽车(HEV)中,电池往往担任制动能量回收、辅助起步加速的作用,因而对电池的比功率要求苛刻,所以说要针对不同车型需求来设计作为动力源的动力蓄电池,现阶段还没有完美的设计方法。 2012.09.04

电动汽车电池分类标准

电动汽车电池分类标准 现在电动车早已经很普及了,电动汽车也开始越来越受欢迎。毕竟电动汽车相比较汽车是很环保的。对于电动汽车电池以及电动汽车电池价格,有些人还是不太了解,接下来我们就以口碑一直不错的天能汽车电池为例,天能在电动车电池的品牌中,算是数一数二的大品牌了,不管是在质量还是价格上,都非常受消费者的喜爱。接下来我就为大家做个详细的介绍。 首先我们来看下电动汽车电池: 电动汽车电池分两大类,蓄电池和燃料电池。 蓄电池适用于纯电动汽车,包括铅酸蓄电池、镍基电池、钠硫电池、二次锂电池、空气电池。 燃料电池专用于燃料电池电动汽车,包括碱性燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池,质子交换膜燃料电池,直接甲醇燃料电池。 随着电动汽车的种类不同而略有差异。在仅装备蓄电池的纯电动汽车中,蓄电池的作用是汽车驱动系统的惟一动力源。而在装备传统发动机(或燃料电池)与蓄电池的混合动力汽车中,蓄电池既可扮演汽车驱动系统主要动力源的角色,也可充当辅助动力源的角色。可见在低速和启动时,蓄电池扮演的是汽车驱动系统主要动力源的角色;在全负荷加速时,充当的是辅助动力源的角色;在正常行驶或减速、制动时充当的是储存能量的角色。 电动汽车电池按电解液分为: a. 碱性电池。即电解液为碱性水溶液的电池;

b. 酸性电池。即电解液为酸性水溶液的电池; c. 中性电池。即电解液为中性水溶液的电池; d. 有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a. 活性物质保存在电极上。可分为一次电池(非再生式,原电池)和二次电池(再生式,蓄电池); b. 活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。 按电池的某些特点分为: a. 高容量电池; b. 免维护电池; c. 密封电池; d. 燃结式电池; e. 防爆电池; f. 扣式电池、矩形电池、圆柱形电池等。 看完电动汽车电池的介绍,相信对你在选择电动汽车电池的时候一定能够会有所帮助。

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

电动汽车用动力电池

电动汽车用动力电池 摘要 能源危机和环境恶化已成为传统汽车发展的最大障碍,而发展电动汽车能够很好的解决这些问题.电动汽车不仅能够减少燃油消耗,提高经济性,而且还能降低尾气的排放,提高环境质量.电动汽车的关键技术之一是动力电池,动力电池的好坏一方面决定着电动汽车的成本,另一方面决定着电动汽车的动力性和续驶里程,这2个方面也是电动汽车与传统的燃油汽车竞争的关键所在.能否开发出性价比高的动力电池对电动汽车的未来发展具有至关重要的作用. 关键词:铅酸蓄电池,正负极板,电极,电解液,电子等等。 前言 电池是电动汽车的动力源,是能量的储存装置,也是目前制约电动汽车发展的关键因素。要使电动汽车能与燃油汽车相竞争,关键是开发比能高,比功率大,使用寿命长,成本低的电池...... 电动汽车使用的动力电池可以分为化学电池,物理电池和生物电池三大类。在三大电池当中化学电池又分为:原电池,蓄电池,燃料电池和储备电池,从化石燃料向可再生能源转换的能源革命中蓄电池所起的作用非常大,政府民间都在大力进行研发。物理电池是利用大自然的能量来吸附储存,有太阳能电池,超级电容器,飞轮电池等等。生物电池是利用生物化学反应发电的电池,如微生物电池,酶电池,生物太阳能电池等。 电动汽车用动力电池的性能指标主要是:电压,容量,内阻,能量,功率,输出功率,自放电率,使用寿命等,根据电池种类不同,其性能指标也有所不同。 电动汽车对动力电池的要求是:(1)比能量高:主要是为了提高电动汽车的继驶里程;(2)比功率大:为了能使电动汽车的加速行驶以及负载能力;(3)充放电效率高;(4)相对稳定性好;(5)使用成本低;(6)安全性好等等。 正文 在电池的发展史之中,铅酸蓄电池是最成熟的电动汽车蓄电池。我们常用的铅酸蓄电池主要分为三类,分别为普通蓄电池、干呵蓄电池和免维护蓄电池三种。铅酸蓄电池是蓄电池的一种,主要是采用稀硫酸做电解液,用二氧化铅和绒状铅分别作为电池的正极和负极的一种酸性蓄电池。 基本构造:铅酸蓄电池主要由以下部分构成:1.硬橡胶管 2.负极板 3.正极板4。隔板5.鞍子6.汇流排7.封口胶8.电池槽盖9.连接10.极柱11.排气栓

电动汽车电池的分类及性能参数

电动汽车电池的分类及性能参数 电池的分类 电动汽车用电池为化学电源,它的分类方法很多。按电解液分为: a.碱性电池。即电解液为碱性水溶液的电池; b.酸性电池。即电解液为酸性水溶液的电池; c.中性电池。即电解液为中性水溶液的电池; d.有机电解质溶液电池。即电解液为有机电解质溶液的电池。 按活性物质的存在方式分为: a.活性物质保存在电极上。可分为一次电池(非再生式,原电池)和 二次电池(再生式,蓄电池); b.活性物质连续供给电极。可分为非再生燃料电池和再生燃料电池。按电池的某些特点分为: a.高容量电池; b.免维护电池; c.密封电池; d.燃结式电池; e.防爆电池; f.扣式电池、矩形电池、圆柱形电池等。 尽管由于化学电源品种繁多,用途广泛,外形差别大,使上述分类方法难以统一,但习惯上按其工作性质及存贮方式不同,一般分为四类: a. 一次电池

一次电池,又称“原电池”,即放电后不能用充电的方法使它复原的电池。换言之,这种电池只能使用一次,放电后电池只能被遗弃了。这类电池不能再充电的原因,或是电池反应本身不可逆,或是条件限制使可逆反应很难进行。如: 锌锰干电池 Zn│NH4Cl·ZnCl2│MnO2(C) 锌汞电池 Zn│KOH│HgO 银锌电池 Zn│KOH│Ag2O b.二次电池 二次电池,又称“蓄电池”,即放电后又可用充电的方法使活性物质复原而能再次放电,且可反复多次循环使用的一类电池。这类电池实际上是一个化学能量贮存装置,用直流电将电池充足,这时电能以化学能的形式贮存在电池中,放电时,化学能再转换为电能。如:铅酸电池 Pb│H2SO4│PbO2 镍镉电池 Cd│KOH│NiOOH 镍氢电池 H2│KOH│NiOOH 锂离子电池 LiCoO2│有机溶剂│6C 锌空气电池 Zn│KOH│O2(空气) c.贮备电池 贮备电池,又称“激活电池”,是正、负极活性物质和电解液不直接接触,使用前临时注入电解液或用其他方法使电池激活的一类电池。这类电池的正、负极活性物质的化学变质或自放电,因与电解液的隔离而基本上被排除,从而使电池能长时间贮存。如:镁银电

电动汽车用先进电池的现状及发展

电动汽车用先进电池的现状及发展 前言 由氮氧化物生成的酸雨和CO2引发的全球变暖所造成的环境破坏以及如何使能源资源多样化已成为 现代社会亟待解决的课题。而CO2气体主要来自燃料燃烧排放气体,据估计,约20%的CO2气体来自汽车 排放。因此,环保的要求带动了电动汽车(EV)及电动汽车用电池的发展。1997年在东京举行的汽车展览和1998年在底特律举行的汽车展览均向人们展示了一些使用电池的技术。本文主要论述了EVs用先进电池的现状及其发展。 1 电动汽车业及所用电池的发展现状 1.1 美国 在美国,已有几个州要求汽车制造商发展和销售零排放汽车(ZEVs)。加利福尼亚航空资源委员会(CA RB)和7个主要汽车制造商(克莱斯勒、福特、通用、本田、马自达、尼桑和丰田) 在1996年签订协议,要求在这个州销售新的汽车和轻型卡车必须有2%为零排放,到2003年有10%为零排放。同样在马塞诸塞州和纽约及缅因州、马里兰州和新泽西州,也要求到1998年至少有2%汽车为零排放,到2003年有10%为零排放。因此,估计到1998年,美国将有2万辆EV s在路上行驶,而到2018年,EVs将超过700万辆。 由于ZEV法案的颁布和实施,美国几大主要汽车制造商已广泛深入地开展了EVs研究及开发。其中, 通用(GM)汽车公司一直是电动汽车行业的领导者,已开发了Saturn EVI两座铅酸电池电动汽车。1998年,GM-Ovonic公司与美国能源部合作,用MH/Ni电池取代铅酸电池,使电动车的一次充电行驶距离达到 160km,但价格为10000美元/只,是US ABC规定的2倍还多。GM公司希望能在2001年开始生产混合 电动车,在2004年开始生产燃料电池电动车,它们都将配备MH/Ni电池。福特汽车公司在1998年生产 的Ranger卡车,使用阀控式免维护908kg铅酸电池。公司将在1999年的Ranger EV模型中采用MH/N i 电池,并将使用Aero Vironment公司的快速充电技术为Ranger电动车的铅酸电池进行快速充电,使在 20min内再充电达80%。因为直到现在,Ranger行驶50km仍需4h充电时间。克莱斯勒公司在1998年的EPIC汽车上使用先进的铅酸电池。现克莱斯勒公司正与SAFT公司合作,为EPIC配备MH/Ni电池。据称,使用MH/Ni电池后,一次充电行驶距离从68km提高到90km。 1.2 日本 日本国际贸易与工业厅(MIZI)在东京发起一个大的工程-锂电池贮能及技术联合会(LIBES),发展电 动车用二次电池。日本电动车协会于1991年10月制定了2000年电动汽车普及计划,到2000年日本电 动汽车将达到20万辆为1991年的200倍。因而也大大推动了EVs用电池的发展[4]。由于加州ZEV法 案及世界各国对环保的要求,日本的几大主要汽车制造商开发研制电动汽车的活动均较为活跃。在发展电动车和混合车技术中,丰田汽车公司较为积极。其最新的RAV4LV-EV汽车使用MH/Ni电池,一次 充电行驶距离为130km,最大速度为80km/h,所用电池是与松下公司共同开发的,在展览会上展出的 PEM-FC型电动车,使用燃料电池和MH/Ni电池。而另一汽车公司尼桑公司,1998年在日本市场销售电动车,并将在美国销售Altra-EV。电动车采用索尼公司的锂离子电池,一次充电行驶距离为124km,充电 5h后,最大速度为75km/h。尼桑北美公司的Altra-EV于1998年1月在Los Angeles汽车展览上亮相, 并第一次在美国对锂离子电池电动车进行大规模的路上测试。使用索尼公司锂离子电池的四人汽车一次 充电行驶里程为120km,最大速度为75km/h。Altra-EV所用锂离子电池比能量达90Wh/kg,是传统铅酸 电池的 3倍,比MH/Ni电池高约50%,且循环寿命长,可达1200次,使用寿命约为10年。尼桑公司相 信当大规模生产时,锂离子电池价格可与铅酸电池竞争。 1.3 欧洲 据估计,到2000年,德国电动汽车总数将达到564万辆,法国每年销售电动车将达到10万辆,其[6] 它国家将会达到40万辆。欧洲电动汽车联合体,欧洲电池研究与发展联合会(BRADE)主要研究MH/Ni 电池和锂离子电池。欧洲第一辆锂离子电池电动汽车于 1997年10月在法国Poiton-Charentes地区进行测试,标致106是其中的一种。所用锂离子电池由SAFT公司提供,比能量为100Wh/kg,一次充电行驶距离可达124km。 1.4 亚太地区 在亚太地区,随着人们经济能力的增强,汽车的销售量正逐步上升。据预测,在1999年和2000年,亚洲汽车销售将会分别增长15%。因此,在东南亚,尤其是在中国,电池工业也因汽车工业的发展而得 到快速发展。1997年到2002年,亚太地区电动车用电池数列于表1中。 表1 亚太地区电动车用电池万只

现有电动汽车用动力电池及其发展趋势

电动汽车用动力电池分类及其发展趋势 / 、八 1 前言 上个世纪80 年代以来, 随着全球经济的稳步发展, 汽车的产量和保有量急剧增加。这些燃油汽车所排放的废气造成空气质量日趋恶化。环境问题, 特别是大气环境污染问题, 已引起世界各国, 尤其是发达国家的普遍关注。同时, 目前世界石油资源日趋紧张, 石油价格始终居高不下。因此, 各国政府和各大汽车企业都正在加紧开发无排放或低排放、低油耗的清洁汽车。 进入90 年代, 以美欧为主的一些西方国家开始制订并逐步执行严厉的汽车尾气排放标准, 低能耗、无污染的绿色汽车开始成为人们关注的热点。而电动汽车又是能达到这一目标的为数很少的环保型汽车。迫于形势的要求, 各种新材料和新技术在电动汽车上不断被开发应用, 电动汽车的发展异常迅猛。 2 电动汽车用动力电池分类 2.1 铅酸电池 铅酸电池是采用金属铅作为负极,二氧化铅作为正极,用硫酸作为电解液,放电时,铅和二氧化铅都与电解液反应生成硫酸铅。充电时反应过程正好相反。现在比较广泛的采用免维护的阀控式铅酸电池(VRLA)。总体上说,铅酸电池具有可靠性好、原材料易得、价格便宜等优点,比功率也基本上能满足电动汽车的动力性要求。但它有两大缺点;一是比能量低,所占的质量和体积太大,且一次充电行驶里程较短;另一个是使用寿命短,使用成本过高。由于铅酸电池的技术比较成熟,经过进一步改进后的铅酸电池仍将是近期电动汽车的主要电源。 2.2 镍金属电池 镍氢蓄电池正极活性物质采用氢氧化镍,负极活性物质为贮氢合金,电解液为氢氧化钾溶液,电池充电时,正极的氢进入负极贮氢合金中,放电时过程正好相反。在此过程中,正、负极的活性物质都伴随着结构、成分、体积的变化,电解液也发生变化。相对于其他电池,N 12MH 电池的优异特性表现在:高比 能量(衡量电动车一次充电行驶里程)已与锂离子电池水平相当;高比功率(赋予电

电动车用铅酸蓄电池充电方法

我的电池是用在电动车上的,我的电动车是今年过了春节才买的,用了没到一年就不耐要了。我以前充满电时可以跑50多公里,现在30公里都不到就没电了。储电量少了一半有没有人知道我这个问题可以修吗 铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化,也就是常说的老化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免的硫化 ! 这个说法对吗 ⑴ 维护: 及时充电,不要过放电。 ②也不要过充电,以电池不感觉很热为标志。 ③在时间允许的情况下,用小电流充电。 ④及时补足电解液。一般情况下,电解液不会损失,损失的是水(蒸发),请补蒸馏水!不可补电解液!! ⑵ 区别:①锂离子电池和铅酸电池的化学原理和材料不同,但都是以可逆的电化学过程为技术支持。 ②相对于铅酸电池,锂电具有重量轻,容量大,电流量大,无记忆效应等优点。但缺点是目前太贵。预计,锂电必将淘汰铅酸,镍镉,镍氢电池。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法 ①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初

新能源电动汽车电池性能对比

新能源电动汽车电池性能对比 目前车载电池主要有铅酸电池、镍氢电池和锂电池。镍氢电池技术成熟,成本较低,使用安全,是目前全球唯一商品化和规模化的车载电池产品。而锂电池,被认为是目前综合性能最好的电动汽车电池,但量产技术和成本有待改进。铅酸蓄电池和大功率镍氢动力电池的技术及应用较为成熟。铅酸蓄电池成本低廉、技术成熟,制造企业的盈利能力偏低。除了在电动自行车上广泛应用之外,主要应用于大型电动车辆。镍氢动力电池造价较高,应用集中在小型高档混合动力电动汽车领域。当今混合动力电动汽车市场份额最大的丰田公司即采用大功率镍氢电池方案。锂电池具有轻巧方便、比能量高、比功率高、高效环保等优点,已是公认的未来汽车动力电池的不二之选。 但考虑安全性、输出功率、成本等问题,车用锂动力电池仍处于产业起步期。我们估计满足性能要求及市场需求的成熟锂动力电池仍需至少两年左右时间。解决锂动力电池市场化的技术关键在于合适的电池正极材料。现有成熟材料钴酸锂存在安全性及成本方面的缺陷,替代选择磷酸铁锂、锰酸锂等材料发展迅速,但其比能量导电性均较弱,新材料性能稳定性及电池输出功率等方面的问题仍然亟待解决。 各类动力电池参数对比 电池种类比能量 /(Wh/kg)比功率/(W/kg)循环寿命/次能量密度/(Wh/L)价格/(元/kWh))锂电池75~140300~4001500170~2503380~4060 镍氢电池50~70180~2501500~2000135~1502030~2700 镍锌电池70~85170~220300~400-1010 镍铁电池50~60160~200800~1000-1350 镍铬电池50~60160~200100080~110880 锌空气电池1801501-680~1010 铝空气电池2001001250680~1010 铝酸电池35~50100~150500~80065~90540 超级电容器5>300050万~100万3380~4060- 锂电池正极是含锂的过渡金属氧化物,如LiMn2O4;负极是碳素材料,如石墨。电解质是含锂盐的有机溶液。由于锂电池不含任何贵重金属,原材料便宜,如成品率有效提升,量产后将成为最便宜的电池、最具推广价值。作为大功率电动汽车动力电池组,锂电池有突出的优点: 1. 比功率高。锂电池的平均工作电压为3.6V,是镍镉和镍氢电池工作电压的3倍,单位重量电池能释放更高功率。 2. 比能量高。锂电池比能量目前可达140Wh/kg,远高于镍氢及铅酸电池,单位重量能存储更多能量。 3. 循环寿命长。目前锂电池循环寿命已达1000次以上,在低放电深度下可达几万次,性能领先。 4. 自放电小。锂电池月自放电率仅为6%~8%,低于镍镉电池(25%~30%)及镍氢电池(30%~40%)。 5. 无记忆效应。可以根据要求随时充电,不会降低电池性能。 6. 对环境无污染。锂电池中不存在有害物质。 虽然锂电池拥有诸多优点,但目前量产工艺仍难以达到电池一致性标准,成品率低,成本过高。 综上所述,锂电池具有长寿命、小体积、无污染、高安全性(铁锂电池)等优点,是未来研究的重点和新型动力电池力量。虽然正极材料和电池生产短期内还不够成熟,但长期来看将是新能源汽车中的主要动力电池品种。根据预测,动力锂电池将在2020年达到200亿美元的市场规模,年均成长速度50%。 智能电网的智能供电,需要大量的储能系统,而电动汽车的动力电池成为分布式储能系统,效率可达90%。据报道,90%以上的车辆95%的时间处于停驶状态,如果通过V2G(车辆到电网)充放电技术把这些闲置不用的电能充分利用起来,将可降低用电量的峰谷差值,避免电能的浪费。如果按照1000万辆纯电动车进行估算,储电能力可达2亿kWh,而2015年国内平均每天的用电量在100亿kWh,极限节电效果可以达到4%。

电动汽车用阀控密封铅酸蓄电池设计方案

电动汽车用阀控密封铅酸蓄电池设计方案 目录 一、设计要求及电池参数 1.1设计要求 1.2电池参数 二、电池设计及计算 2.1 单体电池数目 2.2单体电池容量 2.3电极片数与隔膜片数的确定 2.4活性物质用量 2.5生产用铅粉需求量 2.6生产用铅膏需求量 三、板栅的设计及电池实际容量的计算 3.1板栅结构的选择 3.2板栅尺寸的确定 3.3板栅体积的计算 3.4电池实际容量的计算 四、隔板的选择与设计 五、电解液用量的计算 5.1硫酸用量计算 5.2硫酸用量核算 六、汇流排的设计与核算 7.1汇流排的设计 7.2汇流排的核算 七、限压阀的设计 八、电池槽设计和选择 参考文献

一、 设计要求及电池参数 1.1 设计要求 本设计欲设计一电动汽车用阀控密封铅酸蓄电池,要求能够使总质量为1t 的电动汽车在均速为50km/h 的条件下连续运行3小时,续航能力为150km 以上,且最高时速可以达到90km/h 。整个系统工作效率为80%。 1.2 电池参数 工作方式:间歇工作,并要求可以长时间中等电流放电,短时间大电流放电。 工作电压:288V 电池尺寸:单电池尺寸:150mm*40mm*200mm 电池组尺寸[1]:303mm*121mm*215mm 电池系统尺寸:1215mm*740mm*230mm 工作电流: 根据要求计算:时速90km/h 时, 汽车电机提供的最大功率可通过以下公式计算: kW V A C V Mgf P d e 16.7509761405.4157.14.0093600015.08.90010.8017614036001 33max max =??? ? ?????+???=???? ??+= η 车重M 1000kg ,行驶时空气阻力系数Cd 0.4,滚动阻力系数f 0.015, 电动机传动效率0.8 ,车宽1750mm ,车高1450mm ,最大时速 90km/h 平均时速50km/h ,续航150km 平均时速下电机功率为: kW V A C V Mgf P d e 4.6505761405.4157.14.0053600015.08.90010.801761403600133=??? ? ?????+???=??? ? ??+= η 因此最大电流为 16.75x1000/288=58.16A 平均电流为 4.65x1000/288=16.15A 工作时间:均速50km/h 可以连续工作3小时 循环寿命:500次以上 工作环境:温度-5-55℃,湿度5%-95%

电动汽车动力电池研究综述

目录 1引言 (2) 2电动汽车对动力电池的发展及要求3? 2.1动力电池的发展 (3) 2.2?电动汽车对动力电池的要求 ............................................................. 43?铅蓄电池?4 3.1铅蓄电池工作原理 (4) 3.2铅蓄电池性能特点 (5) 3.3铅蓄电池应用范围5? 4?镍氢电池........................................................................................................... 6 4.1?镍氢电池工作原理 (6) 4.2镍氢电池性能特点.......................................................................... 6 4.3?镍氢电池应用范围 (7) 5?锂离子电池7? 5.1?锂离子电池工作原理?错误!未定义书签。 5.2?锂离子电池性能特点7? 5.3锂离子电池应用范围8? 6?电动汽车动力电池发展趋势?8 6.1铅蓄电池发展趋势.......................................................................... 8 6.2?镍氢电池发展趋势 (9) 6.3?锂离子电池发展趋势 ......................................................................... 9 7?结论................................................................................................................. 10参考文献11? ? 电动汽车动力电池研究综述

电动车电池容量匹配规范

1 概述 动力电池作为纯电动汽车的唯一能量来源,动力电池的匹配对整车动力性和经济性都有较大影响。动力电池的容量、比功率等参数选择越大,汽车储能能力就越强,纯电动行驶里程越大。但是参数选择越大,势必使得电池质量增大,而又影响了整车性能且大大增加了成本,因此动力电池匹配优化非常重要。本规范将指导在本公司纯电动客车设计中,动力电池匹配的方法。 2术语 能量型蓄电池 以高能量密度为特点,主要用于高能量输出的蓄电池。 功率型蓄电池 以高功率密度为特点,主要用于瞬间高功率输出、输入的蓄电池。 容量恢复能力 蓄电池在一定的温度条件下,储存一段时间后再充电,其后放电容量与额定容量之比。 充电终止电流 在指定恒压充电时,蓄电池终止充电时的电流。 I 放电能量 3 蓄电池在20°C±5°C温度下,以1I3(A)电流放电,达到终止电压是所放出的能量(Wh)。此值可从电压-容量曲线的覆盖面积积分求得,要求至少50个等值时间间隔点,或用积分仪直接求得。 3蓄电池要求 3.1 单体 a) 外观:不得有变形及裂纹,表面平整、干燥、无外伤、无污物,标志清晰、 正确。 b) 外形尺寸及质量:蓄电池外形尺寸、质量应符合生产企业提供的技术条件。 c) 20°C放电容量:容量不能低于企业提供的技术条件中规定的额定容量值, 也不能高于额定值的110%。

d) -20°C放电容量:容量不能低于企业提供的技术条件中规定的额定容量值的 70%。 e) 55°C放电容量:容量不能低于企业提供的技术条件中规定的额定容量值的 70%。 f) 20°C倍率放电容量:对于功率型容量不能低于企业提供的技术条件中规定 的额定容量值的90%;对于能量型容量不能低于企业提供的技术条件中规定的额定容量值的80%; g) 常温与高温荷电保持与容量恢复能力:常温与高温荷电保持率不低于额定值 的80%;容量恢复能力不低于额定值的90%。 h) 安全性:满足相关标准实验要求,不爆炸、不起火、不泄露。 3.2 电池组模块 a) 外观:不得有变形及裂纹,表面平整、干燥、无外伤、无污物,排列整齐、 连接可靠、标志清晰、正确。 b) 外形尺寸及质量:蓄电池外形尺寸、质量应符合生产企业提供的技术条件。 c) 20°C放电容量:电池组模块总容量不能低于企业提供的技术条件中规定的 额定容量值,也不能高于额定值的110%。 d) 简单模拟工况:分析电池组模块单体一致性。 e) 耐振动性:电池组模块在振动试验中不能发生电流锐变、电压异常、蓄电池 壳体变形、电解液溢出等现象,并保持连接可靠、结构完好,不允许装机松动。 f) 安全性:满足相关标准实验要求,不爆炸、不起火、不泄露。 4 电池组匹配 4.1 电池组总容量的确定 电池组的总容量决定了整车的续驶里程,匹配大容量的电池组可以增加续驶里程,但同时会增加整车重量并大大增加成本,所以合理的匹配电池容量对提升整车性能非常重要。 对于M2类的纯电动客车,计算整车的续驶里程引用GB/T 18386 电动汽车能量消耗率和续驶里程标准,即采用等速法(40Km/h)和续驶里程设计目标值反向计算

特斯拉电动汽车电池管理系统解析

1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统 (Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C 之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。 图 1.(a)是一层(sheet)内部的热管理系统。冷却管道曲折布置在电池间,冷却液在管道内部流动,带走电池产生的热量。图 1.(b)是冷却管道的结构示意图。冷却管道内部被分成四个孔道,如图 1.(c)所示。为了防止冷却液流动过程中温度逐渐升高,使末端散热能力不佳,热管理系统采用了双向流动的流场设计,冷却管道的两个端部既是进液口,也是出液口,如图 1(d)所示。电池之间及电池和管道间填充电绝缘但导热性能良好的材料(如Stycast 2850/ct),作用是:1)将电池与散热管道间的接触形式从线接触转变为面接触;2)有利于提高单体电池间的温度均一度;3)有利于提高电池包的整体热容,从而降低整体平均温度。

相关主题
文本预览
相关文档 最新文档