当前位置:文档之家› 三层交换机和二层交换机区别的详解

三层交换机和二层交换机区别的详解

三层交换机和二层交换机区别的详解
三层交换机和二层交换机区别的详解

三层交换机和二层交换机区别的详解

我们习惯说,在二层网络环境中相同vl a n之间可以通信,不同vl a n之间不可以通信,如果想通信必须借助三层设备,所以说三层交换机必须要做的事情是路由转发,但是二、三层交换机具体有什么区别呢?

二层交换机工作于O SI模型的第2层(数据链路层),故而称为二层交换机。

二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的M AC地址信息,根据MAC地址进行转发,并将这些MA C地址与对应的端口记录在自己内部的一个地址表中。

二层交换技术发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MA C地址信息,根据MA C地址进行转发,并将这些M AC地址与对应的端口记录在自己内部的一个地址表中。具体的工作流程如下:

(1)当交换机从某个端口收到一个数据包,它先读取包头中的源M AC地址,这样它就知道源MA C地址的机器是连在哪个端口上的;

(2)再去读取包头中的目的MA C地址,并在地址表中查找相应的端口;

(3)如表中有与这目的MA C地址对应的端口,把数据包直接复制到这端口上;

(4)如表中找不到相应的端口则把数据包广播到所有端口上,当目的机器对源机器回应时,交换机又可以学习一目的M AC地址与哪个端口对应,在下次传送数据时就不再需要对所有端口进行广播了。

不断的循环这个过程,对于全网的MA C地址信息都可以学习到,二层交换机就是这样建立和维护它自己的地址表。

二层交换技术从网桥发展到VL AN(虚拟局域网),在局域网建设和改造中得到了广泛的应用。第二层交换技术是工作在O SI七层网络模型中的第二层,即数据链路层。它按照所接收到数据包的目的M AC地址来进行转发,对于网络层或者高层协议来说是透明的。它不处理网络层的I P地址,不处理高层协议的诸如TC P、UD P的端口地址,它只需要数据包的物理地址即M AC地址,数据交换是靠硬件来实现的,其速度相当快,这是二层交换的一个显著的优点。但是,它不能处理不同I P子网之间的数据交换。传统的路由器可以处理大量的跨越I P子网的数据包,但是它的转发效率比二层低,因此要想利用二层转发效率高这一优点,又要处理三层I P数据包,三层交换技术就诞生了。

三层交换(也称多层交换技术,或IP交换技术)是相对于传统交换概念而提出的。众所周知,传统的交换技术是在O SI 网络标准模型中的第二层——数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。简单地说,三层交换技术就是:二层交换技术+三层转发技术。

三层交换机就是具有部分路由器功能的交换机。

三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。对于数据包转发等规律性的过程由硬件高速实现,而像路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。三层交换技术就是二层交换技术+三层转发技术。

三层交换技术的出现,解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。

举个栗子,在上课的时候学生偷偷传纸条,当一个男生偷偷传张纸条给女生,女生这时候会干嘛?是要打开纸条查看里面写了什么内容吧!三层交换机在接收到目的m ac地址是自己的时候要做的事情也是向上层解封装,查看三层目的I P 地址,然后呢?

女生打开,上面写着“请将纸条递给下一个人”,三层交换机也是这样一看原来目的I P地址不是自己,这才执行路由层面的转发;所以说交换机在执行要不要三层转发,是在目的m ac是自己的同时,IP地址是不是自己,如果是自己那还转发个啥来,就不用转发了。

交换机在判断出目的I P不是自己的时候是不是一定就去查看路由表呢?不是,这个就是交换机的关键所在了,交换机此时不会查看路由表,不会查看ar p表,不会查看ma c地址表;那交换机会查看什么表?

交换机此时会查看自己集成在A SI C硬件转发卡中的硬件转发表,那这个硬件转发表都包含了什么内容呢?

?

当第一个包过来的时候,发现硬件转发表并没有什么表项,所以此时必须将数据包交由路由进程处理,一旦交由cp u处理,必然会消耗cp u资源,此时会查看路由表,然后发现此I P地址个自己是直连的,此时就去查看ar p找出此地址对应的m ac 地址,就可以转发出去了

?

?

在决定转发出去过程中,交换机至少会做三件事情,一,修改I P包头的t tl值;二,修改原m a c地址,改成自己出接口ma c 地址;三,建立交换机硬件转发表,包括目的I P地址,目的I P地址(下一跳)对应的ma c地址,m a c地址对应的vla n,以及对应的端口(这个每个厂家有自己的理解)

?

?

这样当一下包过来的时候,交换机就会查看硬件转发表直接转发而不会在经过路由表的查询了,也即是交换机的一次路由,多次交换机原理。

总之,二层交换机用于小型的局域网络。这个就不用多言了,在小型局域网中,广播包影响不大,二层交换机的快速交换

功能、多个接入端口和低廉价格为小型网络用户提供了很完

善的解决方案。

而三层交换机的最重要的功能是加快大型局域网络内部的数

据的快速转发,加入路由功能也是为这个目的服务的。如果

把大型网络按照部门,地域等等因素划分成一个个小局域网,这将导致大量的网际互访,单纯的使用二层交换机不能实现网际互访;如单纯的使用路由器,由于接口数量有限和路由转发速度慢,将限制网络的速度和网络规模,采用具有路由功能的快速转发的三层交换机就成为首选。

一般来说,在内网数据流量大,要求快速转发响应的网络中,如全部由三层交换机来做这个工作,会造成三层交换机负担过重,响应速度受影响,将网间的路由交由路由器去完成,充分发挥不同设备的优点,不失为一种好的组网策略,当然,前提是你的腰包很鼓,不然就退而求其次,让三层交换机也兼为网际互连。

传统交换技术是在O SI网络标准模型第二层--数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发,既可实现网络路由功能,又可根据不同网络状况做到最优网络性能。

三层交换原理及示例详解

三层交换原理及示例详解 7.7.5 三层交换原理 二层交换机的二层数据交换一般都是使用ASIC(Application Specific Integrated Circuit ,专用集成电路)的硬件芯片中的CAM表来实现的,因为是硬件转发,所以转发性能非常高。而三层交换机的三层转发也是依靠ASIC芯片完成的(路由器的路由功能主要依靠CPU软件进行的),但其中除了二层交换用的CAM表外,还保存有专门用于三层转发的三层硬件转发表。 三层交换机的三层交换原理比较复杂,不同网络环境下、不同厂家的三层交换机的三层交换流程都不完全相同。如图7-55所示的仅一个直接连接在一台三层交换机上的两个不同网段主机三层交换的基本流程,各主要步骤解释如下: (1)源主机在发起通信之前,将自己的IP地址与目的主机的IP地址进行比较,如果源主机判断目的主机与自己位于不同网段时,它需要通过网关来递交报文的,所以它首先需要通过一个ARP请求报文获取网关的MAC地址(在源主机不知道网关MAC地址的情形下),即源主机先发送ARP请求帧以获取网关IP地址对应的MAC 地址。 (2)网关在收到源主机发来的ARP请求报文后以一个ARP应答报文进行回应,在应答报文中的“源MAC地址”就包含了网关的MAC地址。 (3)在得到网关的ARP应答后,源主机再用网关MAC地址作为报文的“目的MAC地址”,以源主机的IP 地址作为报文的“源IP地址”,以目的主机的IP地址作为“目的IP地址”,先把发送给目的主机的数据发给网关。 图7-55 三层交换基本流程 (4)网关在收到源主机发送给目的主机的数据后,由于查看得知源主机和目的主机的IP地址不在同一网段,于是把数据报上传到三层交换引擎(ASIC芯片),在里面查看有无目的主机的三层转发表。 (5)如果在三层硬件转发表中没有找到目的主机的对应表项,则向CPU请求查看软件路由表,如果有目的主机所在网段的路由表项,则还需要得到目的主机的MAC地址,因为数据包在链路层是要经过帧封装的。于是三层交换机CPU向目的主机所在网段发送一个ARP广播请求包,以获得目的主机MAC地址。 (6)交换机获得目的主机MAC地址后,向ARP表中添加对应的表项,并转发由源主机到达目的主机的灵气包。同时三层交换机三层引擎会结合路由表生成目的主机的三层硬件转发表。 以后到达目的主机的数据包就可以直接利用三层硬件转发表中的转发表项进行数据交换,不用再查看CPU中的路由表了。 以上流程适用位于不同VLAN(网段)中的主机互访时属于这种情况,这时用于互连的交换机作三层交换转发。这就是“一次路由,多次交换”的原理。 7.7.6 三层交换示例 在三层交换中,同一交换机上的不同网段主机通信和不同交换机上的不同网段主机通信的基本原理是一样的,只是具体流程有所区别。本节仅以比较简单的“同一交换机上的不同网段主机通信”这种情形来解释上节介绍的三层交换原理。

三层交换机配置实例

三层交换综合实验 一般来讲,设计方案中主要包括以下内容: ◆????? 用户需求 ◆????? 需求分析 ◆????? 使用什么技术来实现用户需求 ◆????? 设计原则 ◆????? 拓扑图 ◆????? 设备清单 一、模拟设计方案 【用户需求】 1.应用背景描述 某公司新建办公大楼,布线工程已经与大楼内装修同步完成。现公司需要建设大楼内部的办公网络系统。大楼的设备间位于大楼一层,可用于放置核心交换机、路由器、服务器、网管工作站、电话交换机等设备。在每层办公楼中有楼层配线间,用来放置接入层交换机与配线架。目前公司工程部25人、销售部25人、发展部25人、人事部10人、财务部加经理共15人。 2.用户需求 为公司提供办公自动化、计算机管理、资源共享及信息交流等全方位的服务,目前的信息点数大约100个,今后有扩充到200个的可能。 公司的很多业务依托于网络,要求网络的性能满足高效的办公要求。同时对网络的可靠性要求也很高,要求在办公时间内,网络不能宕掉。因此,在网络设计过程中,要充分考虑到网络设备的可靠性。同时,无论是网络设备还是网络线路,都应该考虑冗余备份。不能因为单点故障,而导致整个网络的瘫痪,影响公司业务的正常进行。 公司需要通过专线连接外部网络。 【需求分析】 为了实现网络的高速、高性能、高可靠性还有冗余备份功能,主要用于双核心拓扑结构的网络中。

本实验采用双核心拓扑结构,将三层交换技术和VTP、STP、EthernetChannel 综合运用。 【设计方案】 1、在交换机上配置VLAN,控制广播流量 2、配置2台三层交换机之间的EthernetChannel,实现三层交换机之间的高速互通 3、配置VTP,实现单一平台管理VLAN, 同时启用修剪,减少中继端口上不必要的广播信息量 4、配置STP,实现冗余备份、负载分担、避免环路 5、在三层交换机上配置VLAN间路由,实现不同VLAN之间互通 6、通过路由连入外网,可以通过静态路由或RIP路由协议 【网络拓扑】 根据用户对可靠性的要求,我们将网络设计为双核心结构,为了保证高性能,采用双核心进行负载分担。当其中的一台核心交换机出现故障的时候,数据能自动转换到另一台交换机上,起到冗余备份作用。 注意:本实验为了测试与外网的连通性,使用一个简单网络

H3C自学笔记及常用命令

H3C自学笔记 进入管理模式 system-view 显示正在运行的配置信息 [H3C] display current-configuration 保存配置信息 [H3C]quit 退回上一级 save 保存 配置telnet 管理的用户和口令 [H3C]local-user admin 创建本地用户admin [H3C-]password simple password 123 设置明文密码为:123 [H3C-]service-type telnet 登陆方式为telnet [H3C-]bind-attribute ip 192.168.0.20 这个本地用户只属于192.168.0.20使用 [H3C-]authorization-attribute level 3 本地用户访问级别为3 [H3C-]expiration-date 12:10:20-2014/11/30 (可选)该用户有效期为2014年11月30日 12点 [H3C-]group abc 设置该用户属于abc用户组 [H3C-]quit 退回上一级 2、配置web管理 [H3C]int vlan 1 进入VLAN1接口模式下 [H3C-]ip add 192.168.1.253 255.255.255.0 设置VLAN1接口iP为

192.168.1.253 24 Web界面配置:(默认开启web界面,关闭 undo ip http enable 开启 ip http enable) [H3C]local-user admin 创建本地用户admin [H3C-]password simple password123 密码设置为明文密码:password123 [H3C-]service-type telnet level 3 配置本地用户的服务类型为telnet且命令级别为3级 [H3C-]quit [H3C]user-interface vty 0 4 进入vty0 4用户界面视图 [H3C-]authentication-mode scheme VTY用户界面登陆交换机的用户进行scheme认证 [H3C-]quit save 保存 [H3C-]quit SSH+密码认证基本SSH配置方法 1. Switch的配置 # 配置VLAN接口1的IP地址,客户端将通过该地址连接Stelnet服务器。 system-view [Switch] interface vlan-interface 1

三层交换机工作原理及特点

三层交换机 三层交换机就是具有部分路由器功能的交换机,三层交换机的最重要目的是加快大型局域网内部的数据交换,所具有的路由功能也是为这目的服务的,能够做到一次路由,多次转发。对于数据包转发等规律性的过程由硬件高速实现,而象路由信息更新、路由表维护、路由计算、路由确定等功能,由软件实现。 应用背景 出于安全和管理方便的考虑,主要是为了减小广播风暴的危害,必须把大型局域网按功能或地域等因素划成一个个小的局域网,这就使VLAN技术在网络中得以大量应用,而各个不同VLAN间的通信都要经过路由器来完成转发,随着网间互访的不断增加。单纯使用路由器来实现网间访问,不但由于端口数量有限,而且路由速度较慢,从而限制了网络的规模和访问速度。基于这种情况三层交换机便应运而生,三层交换机是为IP设计的,接口类型简单,拥有很强二层包处理能力,非常适用于大型局域网内的数据路由与交换,它既可以工作在协议第三层替代或部分完成传统路由器的功能,同时又具有几乎第二层交换的速度,且价格相对便宜些。 在企业网和教学网中,一般会将三层交换机用在网络的核心层,用三层交换机上的千兆端口或百兆端口连接不同的子网或VLAN。不过应清醒认识到三层交换机出现最重要的目的是加快大型局域网内部的数据交换,所具备的路由功能也多是围绕这一目的而展开的,所以它的路由功能没有同一档次的专业路由器强。毕竟在安全、协议支持等方面还有许多欠缺,并不能完全取代路由器工作。 在实际应用过程中,典型的做法是:处于同一个局域网中的各个子网的互联以及局域网中VLAN间的路由,用三层交换机来代替路由器,而只有局域网与公网互联之间要实现跨地域的网络访问时,才通过专业路由器。 三层交换机工作原理 三层交换技术就是二层交换技术+三层转发技术。传统的交换技术是在OSI网络标准模型中的第二层——数据链路层进行操作的,而三层交换技术是在网络模型中的第三层实现了数据包的高速转发。应用第三层交换技术即可实现网络路由的功能,又可以根据不同的网络状况做到最优的网络性能。 为什么使用三层交换机? 1、网络骨干少不了三层交换 要说三层交换机在诸多网络设备中的作用,用“中流砥柱”形容并不为过。在校园网、城域教育网中,从骨干网、城域网骨干、汇聚层都有三层交换机的用武之地,尤其是核心骨干网一定要用三层交换机,否则整个网络成千上万台的计算机都在一个子网中,不仅毫无安全可言,也会因为无法分割广播域而无法隔离广播风暴。

三层交换机配置实例

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 三层交换机配置实例 三层交换综合实验一般来讲,设计方案中主要包括以下内容: 用户需求需求分析使用什么技术来实现用户需求设计原则拓扑图设备清单一、模拟设计方案【用户需求】 1. 应用背景描述某公司新建办公大楼,布线工程已经与大楼内装修同步完成。 现公司需要建设大楼内部的办公网络系统。 大楼的设备间位于大楼一层,可用于放置核心交换机、路由器、服务器、网管工作站、电话交换机等设备。 在每层办公楼中有楼层配线间,用来放置接入层交换机与配线架。 目前公司工程部 25 人、销售部 25人、发展部 25 人、人事部 10 人、财务部加经理共 15 人。 2. 用户需求为公司提供办公自动化、计算机管理、资源共享及信息交流等全方位的服务,目前的信息点数大约 100 个,今后有扩充到 200 个的可能。 公司的很多业务依托于网络,要求网络的性能满足高效的办公要求。 同时对网络的可靠性要求也很高,要求在办公时间内,网络不能宕掉。 1 / 14

因此,在网络设计过程中,要充分考虑到网络设备的可靠性。 同时,无论是网络设备还是网络线路,都应该考虑冗余备份。 不能因为单点故障,而导致整个网络的瘫痪,影响公司业务的正常进行。 公司需要通过专线连接外部网络。 【需求分析】为了实现网络的高速、高性能、高可靠性还有冗余备份功能,主要用于双核心拓扑结构的网络中。 本实验采用双核心拓扑结构,将三层交换技术和 VTP、 STP、EthernetChannel综合运用。 【设计方案】 1、在交换机上配置 VLAN,控制广播流量 2、配置 2 台三层交换机之间的 EthernetChannel,实现三层交换机之间的高速互通 3、配置 VTP,实现单一平台管理 VLAN,同时启用修剪,减少中继端口上不必要的广播信息量 4、配置 STP,实现冗余备份、负载分担、避免环路 5、在三层交换机上配置 VLAN 间路由,实现不同 VLAN 之间互通 6、通过路由连入外网,可以通过静态路由或 RIP 路由协议【网络拓扑】根据用户对可靠性的要求,我们将网络设计为双核心结构,为了保证高性能,采用双核心进行负载分担。 当其中的一台核心交换机出现故障的时候,数据能自动转换到另一台交换机上,起到冗余备份作用。 注意: 本实验为了测试与外网的连通性,使用一个简单网络【设备

交换机维护常用show命令

1.查看交换机的版本信息 通过show ver命令可以查看交换机具体型号、软件版本、硬件版本、交换机序列号等信息 2.查看交换机CPU利用率 通过show cpu进行查看,可以查看5分钟、1分钟、5秒钟的CPU利用率。

说明:健康状态下,“CPU utilization in five minutes”应该维持在30%以下;承载业务的压力越大,CPU会越高,也属正常现象,但超出60%时就务必引起注意 3.查看交换机内存利用率 通过show memory进行查看,可以查看总的内存大小,可用内存大小及当前内存利用率 4.查看交换机的电源信息 通过show power命令可以查看交换机的电源供电状态 5.查看交换机的风扇信息 通过show fan命令可以查看交换机的风扇是否正常

6.查看交换机的温度 通过show tem命令可以查看交换机的温度 7.查看交换机时间命令 在特权模式下使用showclock命令查看交换机的时间,如下:Ruijie#show clock ------>查看交换机的时间18:01:03 beijing Tue, Dec 3, 2013 8.查看交换机的log信息: 在特权模式下使用show log命令查看日志信息

2)通过more flash:xxx来查看保存到flash中的log信息 说明:需要用命令Ruijie(config)#logging file flash:syslog 131072来将缓存区的log保存到flash 9.查看交换机FLASH空间大小及文件 通过dir命令进行查看,可以查看主程序文件、配置文件、总FLASH空间大小及当前空闲的FLASH空间大小

二层交换机、三层交换机和路由器的基本工作原理

二层交换机:二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中. 具体如下: (1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上; (2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口 (3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上 三层交换机: 三层交换技术就是将路由技术与交换技术合二为一的技术。在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率. 路由器:传统地,路由器工作于OSI七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC地址,同时IP数据包头的TTL(Time To Live)域也开始减数,并重新计算校验和。当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。 路由器在工作时能够按照某种路由通信协议查找设备中的路由表。如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济)的传输路径。由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。 主要区别:二层交换机工作在数据链路层,三层交换机工作在网络层,路由器工作在网络层。

H3C三层交换机配置实例

H3C三层交换机配置实例 1 网络拓扑图 (1) 2 配置要求 (1) 3划分VLAN并描述 (2) 3.1进入系统视图 (2) 3.2 创建VLAN并描述 (2) 4 给VLAN设置网关 (3) 4.1 VLAN1的IP地址设置 (3) 4.2 VLAN100的网关设置 (3) 4.3 VLAN101的网关设置 (3) 4.4 VLAN102的网关设置 (3) 4.5 VLAN103的网关设置 (4) 5 给VLAN指定端口,设置端口类型 (4) 5.1 VLAN100指定端口 (4) 5.2 VLAN102指定端口 (4) 5.3 VLAN1/101/103指定端口 (5) 6 配置路由协议 (6) 6.1 默认路由 (6) 6.2配置流分类 (6) 6.3 定义行为 (6) 6.4 应用QOS策略 (6) 6.5 接口配置QOS策略 (7)

1 网络拓扑图 图1-1 网络拓扑图 2 配置要求 用户1网络:172.16.1.0/24 至出口1网络:172.16.100.0/24 用户2网络:192.168.1.0/24 至出口2网络:192.168.100.0/24实现功能:用户1通过互联网出口1,用户2通过互联网出口2。

3划分VLAN并描述 3.1进入系统视图 system-view //进入系统视图 图3-1 系统视图 3.2 创建VLAN并描述 [H3C]vlan 1 //本交换机使用 [H3C-vlan1]description Manager //描述为“Manager” [H3C-vlan1]quit [H3C]vlan 100 //划分vlan100 [H3C-vlan100]description VLAN 100 //描述为“VLAN 100”[H3C-vlan100]quit [H3C]vlan 101 //划分vlan101 [H3C-vlan101]description VLAN 101 //描述为“VLAN 101”[H3C-vlan101]quit [H3C]vlan 102 //划分vlan102 [H3C-vlan102]description VLAN 102 //描述为“VLAN 102”[H3C-vlan102]quit [H3C]vlan 103 //划分vlan103 [H3C-vlan103]description VLAN 103 //描述为“VLAN 103”[H3C-vlan103]quit [H3C] 图3-2 划分VLAN及描述

三层交换机基本配置及利用三层交换机实现不同VLAN间通信

实验四 三层交换机基本配置及利用三层交换机实现不同VLAN 间通信 一、实验名称 三层交换机基本配置及VLAN/802.1Q -VLAN 间通信实验。 二、实验目的 理解和掌握通过三层交换机的基本配置及实现VLAN 间相互通信的配置方法。 三、实验内容 若企业中有2个部门:销售部和技术部(2个部门PC 机IP 地址在不同网段),其中销售部的PC 机分散连接在2台交换机上,配置交换机使得销售部PC 能够实现相互通信,而且销售部和技术部之间也能相互通信。 在本实验中,我们将PC1和PC3分别连接到SwitchA (三层交换机)的F0/5端口和SwitchB 的F0/5端口并划入VLAN 10,将PC2连接到SwitchA (三层交换机)的F0/15端口并划入VLAN 20,SwitchA 和SwitchB 之间通过各自的F0/24端口连接。配置三层交换机使在不同VLAN 组中的PC1、PC2、PC3能相互通信。 三、实验拓扑 四、实验设备 S3550-24(三层交换机)1台、S2126交换机1台、PC 机3台。 五、实验步骤 VLAN/802.1Q -VLAN 间通信: 1.按实验拓扑连接设备,并按图中所示配置PC 机的IP 地址,PC1、PC3网段相同可以通信,但是PC1、PC3和PC2是不同网段的,所以PC2(技术部)不能和另外2台PC 机(销售部)通信。 2.在交换机SwitchA 上创建VLAN 10,并将0/5端口划入VLAN 10中。 SwitchA(config)#vlan 10 !创建VLAN 10 SwitchA (config-vlan)#name sales ! 将VLAN 10 命名为sales SwitchA (config)#interface f0/5 !进入F0/5接口配置模式 SwitchA (config-if)#switchport access vlan10 !将F0/5端口划入VLAN 10 SwitchA #show vlan id 10 !验证已创建了VLAN 10并已将F0/5端口划入VLAN 10中 PC2

S5130系列交换机三层IP路由命令参考

H3C S5130-HI 系列以太网交换机 三层技术-IP 路由命令参考

前言 H3C S5130-HI 系列以太网交换机命令参考主要针对S5130-HI 系列交换机Release 1111 软件版本支持的命令进行了介绍。《三层技术-IP 路由命令参考》主要介绍各路由协议命令,包括IPv4、IPv6 网络的各种路由命令,以及影响路由选择或者路由表生成策略的命令。 前言部分包含如下内容: ?读者对象 ?本书约定 ?产品配套资料 ?资料获取方式 ?技术支持 ?资料意见反馈 读者对象 本手册主要适用于如下工程师: ?网络规划人员 ?现场技术支持与维护人员 ?负责网络配置和维护的网络管理员 本书约定 1. 命令行格式约定

2. 图形界面格式约定 3. 各类标志 本书还采用各种醒目标志来表示在操作过程中应该特别注意的地方,这些标志的意义如下: 4. 图标约定 本书使用的图标及其含义如下:

5. 端口编号示例约定 本手册中出现的端口编号仅作示例,并不代表设备上实际具有此编号的端口,实际使用中请以设备上存在的端口编号为准。 产品配套资料 H3C S5130-HI 系列以太网交换机的配套资料包括如下部分:

目录 1 IP路由基础·····································1-1 1.1 IP路由基础配置命令·································1-1 1.1.1 address-family ipv4 ····························································································1-1 1.1.2 address-family ipv6 ····························································································1-1 1.1.3 display ecmp mode ····························································································1-2 1.1.4 display ip routing-table ························································································1-2 1.1.5 display ip routing-table acl ···················································································1-5 1.1.6 display ip routing-table ip-address ·········································································1-8 1.1.7 display ip routing-table prefix-list ········································································· 1-10 1.1.8 display ip routing-table protocol ··········································································· 1-11 1.1.9 display ip routing-table statistics ·········································································· 1-13 1.1.10 display ipv6 rib attribute ··················································································· 1-14 1.1.11 display ipv6 rib graceful-restart ·········································································· 1-15 1.1.12 display ipv6 rib nib ·························································································· 1-15 1.1.13 display ipv6 route-direct nib ·············································································· 1-17 1.1.14 display ipv6 routing-table ················································································· 1-19 1.1.15 display ipv6 routing-table acl ············································································· 1-23 1.1.16 display ipv6 routing-table ipv6-address ·······························································1-24 1.1.17 display ipv6 routing-table prefix-list ···································································· 1-26 1.1.18 display ipv6 routing-table protocol ······································································ 1-28 1.1.19 display ipv6 routing-table statistics ····································································· 1-29 1.1.20 display max-ecmp-num ··················································································· 1-30 1.1.21 display rib attribute ························································································· 1-31 1.1.22 display rib graceful-restart ················································································ 1-32 1.1.23 display rib nib ································································································ 1-34 1.1.24 display switch-routing-mode status ···································································· 1-38 1.1.25 display route-direct nib ···················································································· 1-38 1.1.26 ecmp mode enhanced ····················································································· 1-41 1.1.27 fib lifetime ····································································································· 1-41 1.1.28 max-ecmp-num ····························································································· 1-42 1.1.29 protocol lifetime ····························································································· 1-42 1.1.30 reset ip routing-table statistics protocol ······························································· 1-43 1.1.31 reset ipv6 routing-table statistics protocol ···························································· 1-44 i

三层交换机的基本原理与设计思路

三层交换机还是比较常用的,于是我研究了一下三层交换机的基本原理与设计思路,在这里拿出来和大家分享一下,希望对大家有用。本文在介绍三层交换技术和三层交换机工作原理的基础上,给出了一款三层交换机的设计,依照该设计实现的三层交换机已投入实际运行。 1. 引言传统路由器在网络中起到隔离网络、隔离广播、路由转发以及防火墙的作业,并且随着网络的不断发展,路由器的负荷也在迅速增长。其中一个重要原因是出于安全和管理方便等方面的考虑,VLAN (虚拟局域网)技术在网络中大量应用。VLAN 技术可以逻辑隔离各个不同的网段、端口甚至主机,而各个不同VLAN 间的通信都要经过路由器来完成转发。由于局域网中数据流量很大,VLAN 间大量的信息交换都要通过路由器来完成转发,这时候随着数据流量的不断增长路由器就成为了网络的瓶颈。为了解决局域网络的这个瓶颈,很多企业内部、学校和小区建设局域网时都采用了三层交换机。三层交换技术将交换技术引入到网络层,三层交换机的应用也从最初网络中心的骨干层、汇聚层一直渗透到网络边缘的接入 2. 第三层交换技术 2.1三层交换的概念第三层交换技术也称为IP 交换技术或高速路由技术等,是相对于传统交换概念而提出的。众所周知,传统的交换技术是在OSI 网络标准模型中的第二层—数据链路层进行操作的,而第三层交换技术是在网络模型中的第三层实现了数据包的高速转发。简单地说,第三层交换技术就是:第二层交换技术+第三层转发技术,这是一种利用第三层协议中的信息来加强第二层交换功能的机制。一个具有第三层交换功能的设备是一个带有第三层路由功能的第二层交换机,但它是二者的有机结合,并不是简单地把路由器设备的硬件及软件简单地叠加在局域网交换机上。 2.2 三层交换的原理从硬件的实现上看,目前,第二层交换机的接口模块都是通过高速背板/ 总线交换数据的。在第三层交换机中,与路由器有关的第三层路由硬件模块也插接在高速背板/总线上,这种方式使得路由模块可以与需要路由的其他模块间高速地交换数据,从而突破了传统的外接路由器接口速率的限制(10Mbit/s ——100Mbit/s )。在软件方面,第三层交换机将传统的基于软件的路由器重新进行了界定: (1)数据封包的转发:如IP/IPX 封包的转发,这些有规律的过程通过硬件高速实现; (2)第三层路由软件:如路由信息的更新、路由表维护、路由计算、路由的确定等功能,用优化、高效的软件实现。 假设有两个使用IP 协议的站点,通过第三层交换机进行通信的过程为:若发送站点 A 在开始发送时,已知目的站 B 的IP 地址,但尚不知道它在局域网上发送所需要的MAC 地址,则需要采用地址解析(ARP )来确定 B 的MAC 地址。 A 把自己的IP 地址与 B 的IP 地址比较,采用其软件中配置的子网掩码提取出网络地址来确定 B 是否与自己在同一子网内。若 B 与 A 在同一子网内, A 广播一个ARP 请求, B 返回其MAC 地址, A 得到 B 的MAC 地址后将这一地址缓存起来,并用此MAC 地址封包转发数据,第二层交换模块查找MAC 地址表确定将数据包发向目的端口。若两个站点不在同一子网内,则 A 要向"缺省网关"发出ARP (地址解析)封包,而"缺省网关”的IP地址已经在系统软件中设置,这个IP地址实际上对应第三层交换机的第三层交换模块。当 A 对"缺省网关"的IP 地址广播出一个

三层交换机的配置命令

三层交换机的图,如图所示: 一.交换机的配置: S2的配置命令: Enable Conf terminal Hostname S2 Switch(config)#vlan 10 Switch(config-vlan)#name stu10 Switch(config-vlan)#vlan 20 Switch(config-vlan)#name stu20 Switch(config)#interface f0/1 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 10 Switch(config)#interface f0/2 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 20 Switch(config)#inte f0/24 Switch(config-if)#switchport mode trunk

S3的配置命令: Enable Conf terminal Hostname S3 Switch(config)#vlan 10 Switch(config-vlan)#name stu10 Switch(config-vlan)#vlan 20 Switch(config-vlan)#name stu20 Switch(config)#interface f0/1 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 10 Switch(config)#interface f0/2 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 20 Switch(config)#inte f0/24 Switch(config-if)#switchport mode trunk 二.三层交换机的配置命令 Enable Conf terminal Switch(config)#vlan 10 Switch(config-vlan)#vlan 20 Switch(config)#interface f0/1 Switch(config-if)#switchport trunk encapsulation dot1q Switch(config-if)#switchport mode trunk Switch(config)#interface f0/2 Switch(config-if)#switchport trunk encapsulation dot1q Switch(config-if)#switchport mode trunk Switch(config)#interface vlan 10 Switch(config-if)#ip address 192.168.10.254 255.255.255.0 Switch(config-if)#no shutdown

三层交换机基本配置

三层交换机基本配置 【实验名称】 三层交换机端口配置 【实验目的】 配置开启三层交换机的三层功能,实现路由作用。 【背景描述】 为了隔离广播域而划分了VLAN,但不同的VLAN之间需要通信,本实验将实现这一功能。即同一VLAN里的计算机能跨交换机通信,不同VLAN里的计算机系统也能互相通信。 【技术原理】 三层交换机是在二层交换的基础上实现了三层的路由功能。三层交换机基于“一次路由,多次交换”的特性,在局域网环境中转发性能远远高于路由器。而且三层交换机同时具备二层的功能,能和二层交换机进行很好的数据转发。三层交换机的以太网接口要比一般的路由器多很多,更加适合多个局域网段之间的互联。 三层交换机本身默认开启了路由功能,可利用IP Routing命令进行控制。 【实验设备】 S3350(一台),PC机(两台)。 【实验拓扑】

注意:先连线,在进行配置,注意连接线缆的接口编号。S3350为三层交换机。 【实验步骤】 步骤一 开启三层交换机的路由功能: Switch>enable //进程特权模式 Switch #configure terminal //进入全局模式 Switch (config)#hostname s3350-24 S3350-24 (config)#ip routing //开启三层交换机的路由功能 步骤二 配置三层交换机端口的路由功能: S3350-24>enable //进入特权模式 S3350-24#configure terminal //进入全局模式 S3350-241 (config)#interface fastethernet 0/2 //进入fa0/2端口 S3350-24 (config-if)#no switchport //开启端口的三层路由功能 S3350-24 (config-if)#ip address 192.168.5.254 255.255.255.0 //配置ip地址S3350-24 (config-if)#no shutdown //启用端口,使其转发数据

二层交换机、三层交换机和路由器的基本工作原理和三者之间的主要区别

二层交换机、三层交换机和路由器的基本工作原理和三者之间的主要区别(转)2009-10-15 09:06 二层交换机:二层交换技术是发展比较成熟,二层交换机属数据链路层设备,可以识别数据包中的MAC地址信息,根据MAC地址进行转发,并将这些MAC地址与对应的端口记录在自己内部的一个地址表中。 具体如下: (1)当交换机从某个端口收到一个数据包,它先读取包头中的源MAC地址,这样它就知道源MAC地址的机器是连在哪个端口上; (2)再去读取包头中的目的MAC地址,并在地址表中查找相应的端口; (3)如表中有与这目的MAC地址对应的端口,把数据包直接复制到这端口上。 三层交换机: 三层交换技术就是将路由技术与交换技术合二为一的技术。在对第一个数据流进行路由后,它将会产生一个MAC地址与IP地址的映射表,当同样的数据流再次通过时,将根据此表直接从二层通过而不是再次路由,从而消除了路由器进行路由选择而造成网络的延迟,提高了数据包转发的效率。 路由器:传统地,路由器工作于OSI七层协议中的第三层,其主要任务是接收来自一个网络接口的数据包,根据其中所含的目的地址,决定转发到下一个目的地址。因此,路由器首先得在转发路由表中查找它的目的地址,若找到了目的地址,就在数据包的帧格前添加下一个MAC地址,同时IP数据包头的TTL(Time To Live)域也开始减数,并重新计算校验和。当数据包被送到输出端口时,它需要按顺序等待,以便被传送到输出链路上。 路由器在工作时能够按照某种路由通信协议查找设备中的路由表。如果到某一特定节点有一条以上的路径,则基本预先确定的路由准则是选择最优(或最经济)的传输路径。由于各种网络段和其相互连接情况可能会因环境变化而变化,因此路由情况的信息一般也按所使用的路由信息协议的规定而定时更新。 主要区别:二层交换机工作在数据链路层,三层交换机工作在网络层,路由器工作在网络层。 具体区别如下: 二层交换机和三层交换机的区别: 三层交换机使用了三层交换技术 简单地说,三层交换技术就是:二层交换技术+三层转发技术。它解决了局域网中网段划分之后,网段中子网必须依赖路由器进行管理的局面,解决了传统路由器低速、复杂所造成的网络瓶颈问题。

三层交换机与路由器的配置_实例(图解)

三层交换机与路由器的配置实例(图解) 目的:学会使用三层交换与路由器让处于不同网段的网络相互通信 实验步骤:一:二层交换机的配置: 在三个二层交换机上分别划出两VLAN,并将二层交换机上与三层交换或路由器上的接线设置为trunk接口 二:三层交换机的配置: 1:首先在三层交换上划出两个VLAN,并进入VLAN为其配置IP,此IP将作为与他相连PC的网关。 2:将与二层交换机相连的线同样设置为trunk接线,并将三层交换与路由器连接的线设置为路由接口(no switchsport) 3:将路由器和下面的交换机进行单臂路由的配置 实验最终结果:拓扑图下各个PC均能相互通信

交换机的配置命令: SW 0: Switch> Switch>en Switch#conf Configuring from terminal, memory, or network [terminal]? Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#vlan 2 Switch(config-vlan)#exit Switch(config)#int f0/2 Switch(config-if)#switchport access vlan 2 Switch(config-if)#no shut Switch(config-if)#int f0/3 Switch(config-if)#switchport mode trunk %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to up Switch(config-if)#exit Switch(config)# SW 1: Switch>en Switch#conf Configuring from terminal, memory, or network [terminal]? Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#int f0/2 Switch(config-if)#switchport access vlan 2 % Access VLAN does not exist. Creating vlan 2 Switch(config-if)#no shut Switch(config-if)#exit Switch(config)#int f0/3 Switch(config-if)#switchport mode trunk %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/3, changed state to up Switch(config-if)# SW 2: Switch>en Switch#conf Configuring from terminal, memory, or network [terminal]?

相关主题
文本预览
相关文档 最新文档