当前位置:文档之家› 超声诊断学教程总论

超声诊断学教程总论

超声诊断学教程总论
超声诊断学教程总论

超声诊断学教程

第一章总论

超声医学(ultrasonic medicine)是利用超声波的物理特性与人体器官、组织的声学特性相互作用后得到诊断或治疗效果的一门学科。向人体发射超声,并利用其在人体器官、组织中传播过程中,由于声的透射、反射、折射、衍射、衰减、吸收而产生各种信息,将其接收、放大和信息处理形成波型、曲线、图像或频谱,籍此进行疾病诊断的方法学,称为超声诊断学(ultrasonic

diagnostics);利用超声波的能量(热学机制、机械机制、空化机制等),作用于人体器官、组织的病变部位,以达到治疗疾病和促进机体康复的目的方法学,称为超声治疗学(ultrasonic therapeutics)。

超声治疗(ultrasonic therapy)的应用早于超声诊断,1922年德国就有了首例超声治疗机的发明专利,超声诊断到1942年才有德国Dussik应用于脑肿瘤诊断的报告。但超声诊断发展较快,20世纪50年代国内外采用A型超声仪,以及继之问世的B型超声仪开展了广泛的临床应用,至20世纪70年代中下期灰阶实时(grey scale real time)超声的出现,获得了解剖结构层次清晰的人体组织器官的断层声像图,并能动态显示心脏、大血管等许多器官的动态图像,是超声诊断技术的一次重大突破,与此同时一种利用多普勒(Doppler)原理的超声多普勒检测技术迅速发展,从多普勒频谱曲线能计测多项血流动力学参数。20世纪80年代初期彩色多普勒血流显示(color Doppler flow imaging, CDFI)的出现,并把彩色血流信号叠加于二维声像图上,不仅能直观地显示心脏和血管内的血流方向和速度,并使多普勒频谱的取样成为快速便捷,80 ~ 90年代以来超声造影、二次谐波和三维超声的相继问世,更使超声诊断锦上添花。

第一节超声成像基本原理简介

一.一. 二维声像图(two dimensional ultrasonograph, 2D USG)

现代超声诊断仪均用回声原理(图1-1-1、图1-1-2、

图1-1-3、图1-1-4),由仪器的探头向人体发射一束超

声进入体内,并进行线形、扇形或其他形式的扫描,遇到

不同声阻抗的二种组织(tissue)的交界面(界面,interface),即有超声反射回来,由探头接收后,经过信号放大和信息处理,显示于屏幕上,形成一幅人体的断层图像,称为声像图(sonograph)或超声图(ultrasonograph),供临床诊断用。连续多幅声像图在屏幕上显示,便可观察到动态的器官活动。由于体内器官组织界面的深浅不同,使其回声被接收到的时间有先有后,借此可测知该界面的深度,测得脏器表面的深度和背面的深度,也就测得了脏器的厚度。

回声反射(reflection)的强弱由界面两侧介质的声阻抗(acoustic impedance)差决定。声阻抗相差甚大的两种组织(即介质,medium),相邻构成的界面,反射率甚大,几乎可把超声的能量全部反射回来,不再向深部透射。例如空气—软组织界面和骨骼—软组织界面,可阻挡超声向深层穿透。反之,声阻抗相差较小的两种介质相邻构成的界面,反射率较小,超声在界面上一小部分被反射,大部分透射到人体的深层,并在每一层界面上随该界面的反射率大小,有不同能量的超声反射回来,供仪器接收、显示。均匀的介质中不存在界面,没有超声反射,仪器接收不到该处的回声,例如胆汁和尿液中就没有回声,声像图上出现无回声的区域,在排除声影和其他种种原因的回声失落后,就应认为是液性区。

界面两侧介质的声阻抗相差0.1%,即有超声反射,声阻抗为密度和声速的乘积,所以在病理状态下,超声检查是一种极为灵敏的诊断方法。

超声成像(ultrasonic imaging)还与组织的声衰减(acoustic attenuation)特性有关。声波在介质中传播时,质点振动的振幅将随传播距离的增大而按指数规律减小,这种现象称为声波的衰减。造成声衰减的主要因素为:声吸收(acoustic absorption)、声反射(acoustic reflection)、声散射(acoustic scattering)和声束的扩散。

声衰减系数(α)的单位为dB/cm,在人体中,超声的弛豫吸收引起声衰减系数α与频率近似地成正比,即α=βf,式中β也为声衰减系数,但其单位为dB/cm·MHz。(式中f为所用的超声频率)

超声成像中因声衰减而需用种种办法作图像处理,使近程回声不致过强,远程回声不致过弱,虽然用了种种图像处理办法,仍不免出现因声衰减而引起的伪差。

二.多普勒频谱(spectrum)

多普勒频谱是利用多普勒效应(Doppler effect,)提取多普勒频移(Doppler shift)信号,并用快速富立叶变换(fast Fourier transform,FFT)技术进行处理,最后以频谱形式显示。

多普勒频移可用下列公式得出:

2VCosθ

fd = ±——————fo

C

式中fd = 频移;V = 血流速度;C = 声速(1540m/s);fo = 探头频率,Cosθ= 声束与血流方向的夹角余弦值。

测得了多普勒频移就可用上述公式,求得血流速度:

fd C

V = ±——————

2fo Cosθ

图1-1-5为颈动脉的多普勒频谱,频谱的横轴代表时间,纵轴代表频移的大小(用KHz表示),中间水平轴线代表零频移线,称为基线(base line)。通常在基线上面的频移为正,表示血流方向迎着换能器而来;基线下面的频移为负,表示血流方向远离换能器而去。

频谱幅值即频移大小,表示血流速度,其值在自动测量或手工测量时,可在屏幕上读出。

频谱灰度(即亮度)表示某一时刻取样容积内,速度相同的红细胞数目的

多少,速度相同的红细胞多,则散射回声强,灰度亮;速度相同的红细胞少,散射回声弱,灰度暗。

频谱宽度即频移在垂直方向上的宽度,表示某一时刻取样血流中红细胞速度分布范围的大小,速度分布范围大,频谱宽,速度分布范围小,频谱窄。人体正常血流是层流,速度梯度小,频谱窄;病变情况下血流呈湍流,速度梯度大,频谱宽。频谱宽度是识别血流动力学改变的重要标志。

从超声多普勒实时频谱上,可以得到许多有用的血流动力学资料。如:①收缩期峰速(Vs);②舒张末期流速(Vd);③平均流速(Vm);④阻力指数(RI);⑤搏动指数(PI);⑥加速度(AC)和⑦加速度时间(AT)。

多普勒频谱的获得有脉冲波和连续波二种。脉冲多普勒的换能器兼顾超声的发射和接收,换能器在发射一束超声后,绝大部分时间处于接收状态,并利用门电路控制,有选择地接收被检测区血流信号,其优点是有深度的定位能力,但它的缺点是受尼奎斯特极限(Nyquist limit)的影响,在测量高流速血流时,产生频谱的混迭(aliasing)现象(图1-1-6)。连续波多普勒的换能器由二片相邻的晶片组成,一片发射超声,另一片接收超声,其优点为可测量高速血流而不发生频谱的混迭,但无深度定位功能,故只在测量高速血流时用。

三.彩色血流成像(color flow imaging)或称彩色超声血流图(简称彩超)有三种:

(一) 彩色多普勒血流成像(color Doppler flow imaging, CDFI)(图

1-1-7)是利用Doppler原理,提取Doppler频移(Doppler shift),作自相关处理,并用彩色编码成像(频域法 frequency domain)。常规把迎着换能器方向(即入射声束方向)而来的血流显示为红色,远离换能器(入射声束)而去的血流为蓝色。血流速度快(即Doppler频移值大),彩色显示亮而色淡;血流速度慢(即Doppler频移值小),彩色显示暗而色深。

把上述彩

色血流叠加在

二维声像图上

能确定血流的

方位、与周围

组织器官的关系,从而作出疾病的诊断或帮助多普勒取样,以显示频谱作进一步对血流动力学的分析。彩色多普勒血流显示的不足之处,主要是:①显示的信号受探测角度的影响较大;②当显示的频移超过Nyquist极限时,图像色彩发生混迭,出现五彩镶嵌的血流信号。

(二) 彩色多普勒能量图(color Doppler energy, CDE)(图1-1-8)又称彩色能量血管造影图(color power angio, CPA)

彩色多普勒能量图利用血流中红细胞散射的能量成像(能量法),即提取多普勒回波信号的能量(即强度),用积分法计算,然后也用彩色编码成像。彩色多普勒能量图有以下几种优点:①不受探测角度的影响;②灵敏度提高3 ~ 5倍,能显示低流量、低流速的血流;③血流可以显示平均速度为零的肿瘤灌注区;④显示的信号动态范围广;⑤不受尼奎斯特极限频率(Nyquist limit frequency)的影响,不出现混迭(Aliasing)现象。

彩色多普勒能量图的不足是怕组织移动,本法显示信号的动态范围广,故对组织的微小移动也会出现闪烁伪像,对近心、近膈部位的诊断,闪烁伪像干扰尤为明显。

(三) 彩色血流速度成像此法不用多普勒原理,而是由计算机根据反射回声中红细胞群在某一时间内的位移(时域法, time domain),用互相关原理计算出血流的方向和速度,再把信号伪彩色编码,成为彩色血流图。此法可消除血管壁搏动回声的干扰,且不出现混迭。

四.三维超声成像

三维超声成像为20世纪90年代面世的新方法,近年来随着计算机技术的发展,三维超声成像不断改进,已有实时三维成像面世,但目前

三维超声成像的实用价值尚待开发。

三维超声成像是在二维超声的基础上,用机械的或电子的方法,甚或手动的方法采集立体的回声数据,用计算机加以重建显示。其显示方

式有:

(一) 表面三维显示在液体—非液体界面作计算机识别,钩边、数据采集,最后显示其表面景观,如胎儿的脸面(图1-1-9)等。

(二) 透视三维显示对体内灰阶差别明显的界面(如胎儿骨骼),由计算机界面识别,经数据采集、重建作三维显示。透视三维可选取高回声结构作为成像目标,也可选取低回声区域作为成像。

(三) 血管树三维显示用彩色血流图法显示脏器内的血管树并加以数据采集,经计算机处理,显示为三维血管树。

(四) 多平面重投影从三维数据中沿任何倾斜角度提取切面二维图,或显示三个轴向的任何平面切面图和与之相应的一幅立体图。

第二节超声诊断仪

一.超声诊断仪的组成

超声诊断仪基本的结构由三个部分组成:

(一)探头(probe)探头由换能器(transducer)、外壳、电缆和插头组

成,换能器是探头的关键部件。通常由压电陶瓷构成,担负电?声

转换的作用,也即发射超声和接收超声的作用(图1-2-1)。

(二) 电路和显示器由发射电路、接收电路、扫描电路和显示器(显像管)组成。

(三) 记录器采用照相机、多幅照相机、视频图像记录仪(video printer)、录像机、彩色打印机或磁光盘记录,也可存储在工作站,以便在科内、院内或远程联网。

二.超声诊断仪的种类

(一) A型(A-mode)这是一种幅度调制(amplitude modulation)超声诊断仪,把接收到的回声以波的振幅显示,振幅的高低代表回声的强弱,以波型形式出现,称为回声图(echogram)(图1-2-2),现已被B型超声取代,仅在眼科生物测量方面尚在应用,其优点是测量距离的精度高。

(二) B型(B-mode)这是辉度调制型(brightness modulation)

超声诊断仪,把接收到的回声,以光点显示,光点的灰度等级代

表回声的强弱。通过扫描电路,最后显示为断层图像,称为声像图(ultrasonograph或sonograph)(图1-2-3)。

B型超声诊断仪由于探头和扫描电路的不同,显示的声像图有矩形、梯形和扇形。矩形声像图和梯形声像图用线阵探头(linear array probe)实现,适用于浅表器官的诊断;扇形声像图用的探头有多种,机械扇扫探头(machanical sector probe)、相控阵探头(phased array probe)和凸阵探头(convex array probe)均显示扇形声像图。前二种探头可由小的声窗窥见较宽的深部视野,适用于心脏诊断;后一种探头浅表与深部显示均宽广,适用于腹部诊断,有一种曲率半径小的凸阵探头,也可用小的声窗,窥见深部较宽的视野。

(三) M型

(M-mode) M型超声诊断仪是B型的一种变化,介于A型和B型之间,得到的是一维信息。在辉度调制的基础上,加上一个慢扫描电路,使辉度调制的一维回声信号,得到时间上的展开,形成曲线(图1-2-4)。用以观察心脏瓣膜活动等,现在M型超声已成为B型超声诊断仪中的一个功能部分不作为单独的仪器出售。

(四) D型(Doppler mode)在二维图像上某点取样,获得多普勒频谱加以分析,获得血流动力学的信息,对心血管的诊断极为有用(图1-2-5),所用探头与B型合用,只有连续波多普勒,需

要用专用的探头。超声诊断仪兼有B

型功能和D型功能者称双功超声诊断

仪。

(五) 彩色多普勒超声诊断仪

具有彩色血流图功能,并覆盖在二维声像图上,可显示脏器和器官内血管的分布、走向,并借此能方便地采样,获得多普勒频谱,测得血流的多项重要的血流动力学参数,供诊断之用(图1-2-6)。

彩色多普勒超声诊断仪一般均兼有B型、M型、D型和彩色血流图功能。

(六) 三维超声诊断仪

三维超声是建立在二维基础上,在彩色多普勒超声诊断仪的基础上,配上数据采集装置(专用探头或静态磁场发射器及磁场定位器),再加上三维重建软件,该仪器即有三维显示功能。

(七) C型

C型超声仪也是辉度调制(brightness modulation)型的一种,与B型不同的是其显示层面与探测面呈同等深度。三维超声可以获得这一切面图。

第三节声像图的阅读

一.声像图是断面图(也称切面图)

现用超声诊断仪的声像图是人体沿超声扫查方向的断面图。纵向扫查获得纵断面声像图,横向扫查获得横断面声像图,各种斜向扫查获得相应的斜断面图。对病灶的定位,一般是用经过病灶的二幅互相垂直的断面声像图来完成,也可用邻近血管、韧带作为标记, 定出病灶的方位。例如膀胱肿瘤可用一幅纵断面图和一幅横断面图定出肿瘤所处的方位;又如一幅沿肋间断面图和一幅肋下斜断面图定出肝肿瘤的位置,肝肿瘤的位置也可用肝内血管、韧带等结构定出。

二.声像图的方位

声像图有一定的方位

(一) 体位标志和探头位置

阅读一幅声像图,先要了解是哪一部位的何种断面图。一般声像图照片均有体位标志和超声扫查线(或探头)位置的示意图(图1-3-1),以此知道是哪一个脏器和哪一种断面图。

(二)腹部脏器声像图方位

1.腹面纵断面图图左为头端,图右为足端,图上为腹,图下为背(图1-3-2)。

2.腹面横断面图图左为人体右侧,图右为人体左侧,图上为腹,图下为背(图1-3-3)。

3.肝肋缘下斜断面图肝左叶在图右,肝右叶在图左,图上为腹,图下为背(图1-3-4)。

4.右肋间断面图胆囊、胆总管、门静脉主干在图右,肝右叶在图左,

图上为腹,图下为背(图1-3-5)。

5.左肋间断面图脾在图右,脾门在脾的左方,图上为腹,图下为背(图1-3-6)。

6.背面纵断面图图左为头端,图右为足端,图上为背,图下为腹(图1-3-7)。

7.背面横断面图图左为人体左侧,图右为人体右侧,图上为背,图下为腹(图1-3-8)。

8.右肾区冠状断面图图左为肾上极,图右为肾下极,图上为肾凸缘,图下为肾凹缘(图1-3-9)。

9.左肾区冠状断面图图左为肾上极,图右为肾下极,图上为肾凸缘,图下为肾凹缘(图1-3-10)。

(三) 胎儿声像图方位

胎儿整体声像图的方位根据母体定上下、左右、前后。

(四)其它器官声像图方位

眼、甲状腺、乳房、阴囊等声像图的方位,同腹部器官。经直肠前列腺声像图的方位是:前列腺横断面图,图左为前列腺右侧。图右为前列腺左侧,图上为腹侧(前),图下为背侧(后)(图1-3-11)。

前列腺纵断面图,前列腺底部在图左,前列腺尖端在图右,图上为腹侧(前),图下为背侧(后)(图1-3-12)。

三. 声像图的标尺

一般声像图中的肿块、结石或其他至关重要的结构,均用游标测出其大小,注于图旁容易明了。在没有测量游标指明时,可根据声像图周边附有的标尺,用二脚规测得其大小。须要注意的是,图中X轴与Y轴的标尺有时会有差别,所以测量时,X轴方向的线度要用X轴的标尺,Y轴方向的线度要用Y轴的标尺。

第四节伪像的识别和利用

伪像(artifact)又称伪差,在超声成像中常会出现多种伪像,诊断者和声像图阅读者不仅要识别伪像,避免误诊,而且要利用伪像,帮助诊断。

超全超声诊断学课件

超声诊断学 第一章绪论 超声诊断学(Ultrasonic Diagnosis):包括超声显像、普通X线诊断学、X线电子计算机体层成像(CT)、核素 成像、磁共振成像(MRI)等,是以电子学与医学工程学的最新成就和解 剖学、病理学等形态学为基础,并与临床医学密切结合的一门比较成熟的 医学影像学科,(既可非侵入性地获得活性器官和组织的精细大体断层解剖 图像和观察大体病理形态学改变,亦可使用介入性超声或腔内超声探头深 入体内获得超声图像,从而使一些疾病得到早期诊断。 超声诊断学的主要内容:1、脏器病变的形态学诊断和器官的超声大体解剖学研究; 2、功能性检测; 3、介入性超声(Interventional ultrasound)的研究; 4、器官声学造影检查; 超声诊断学的特点: 1、超声波对人体软组织有良好的分辩能力,有利于识别生物组织的微小病变。 2、超声图像显示活体组织可不用染色处理,即可获得所需图像,有利于检测活体组织。 3、超声信息的显示有许多方法,根据不同需要选择使用,可获得多方面的信息,达到广泛应用。 超声诊断学的优点: 1、无放射性损伤,为无创性检查技术; 2、取得的信息量丰富,具有灰阶的切面图像,层次清楚,接近解剖真实结构; 3、对活动界面能作动态的实时显示,便于观察; 4、能发挥管腔造影功能,无需任何造影剂即可显示管腔结构; 5、对小病灶有良好的显示能力; 6、能取得各种方位的切面图像,并能根据图像显示结构和特点,准确定位病灶和测量其大小; 7、能准确判定各种先天性心血管畸形的病变性质和部位; 8、可检测心脏收缩与舒张功能、血流量、胆囊收缩和胃排空功能; 9、能及时取得结果,并可反复多次进行动态随访观察,对危重病人可床边检查; 10、检查费用低廉,容易普及。(优势:无创,精确,方便) 超声诊断发展简史:探索试验阶段:1942年(连续穿透式) 临床实用阶段:50年代(脉冲反射式)A型、B型、M型、D型 开拓性前进阶段:60年代 飞跃发展阶段:70年代产生两个飞跃,灰阶成像和实时成像 现代超声的里程碑—软组织灰阶成像(第一次革命) 80年代数字扫描变换(DSC)、数字图像处理(DSP)等;彩色多普勒血流显像(CDFI) 研究成功。反映功能的基础。(第二次革命) 90年代心脏和内脏器官的三维超声成像、彩色多普勒能量图(CDE)、多普勒组织成 像(DTI技术)、血管内超声、实时超声造影技术、介入性超声和超声组织定征等均有显 著的新进展。 气泡造影剂的分布状态及灌注全过程(第三次革命) 超声诊断总的发展趋势是:在显示空间上从单维空间探测发展到二维超声显示—三维空间的立体超声图像。实时(real—time):使静态―――动态图像,其扫描速度超过24帧。 第二章超声诊断的基础和原理 1超声:为物体的机械振动波,属于声波的一种,其振动频率超过人耳听觉上限阈值[20000 赫(Hz)或20千赫(kHz)]者。<20Hz :次声波 20--20000Hz:可闻波 >20000Hz:超声波(ultrasound) 诊断用超声频率范围为2MHZ—10MHz,1MHz=106Hz 2、声波(defintion):物体的机械性振动在具有质点和弹性的媒介中传播,且引起人耳感觉的波动。 3、振源:声带,鼓面。介质:空气,人体组织接收:鼓膜,换能器 4、超声诊断:应用较高频率超声作为信息载体,从人体内部获得某几种声学参数的信息后,形成图形(声 像图,血流图)、曲线(A型振幅曲线,M型心动曲线,流速频谱曲线)或其他数据,用于 分析临床疾病。在声像图等引导下,可作各种穿刺、取活检、造影或作治疗(介入性超声),

超声诊断学复习重点(精华版)

超声诊断学复习要点 心脏超声检查常用切面及各切面的内容 ①左室长轴观:探头放于胸骨左缘3、4肋间,探测方位与右胸锁关节至左乳头 连线相平行。检查时应注意探测平面与心脏长轴平行。右室、左室、左房、室间隔、主动脉、主动脉瓣及二尖瓣的结构 ②心底短轴观:探头置于胸骨左缘二三肋间心底大血管的正前方,扫描平面与 左室长轴相垂直,和左肩与右肋弓的连线基本平行。主动脉根部及其瓣叶、右室流出道、左房、右房、主动脉、肺动脉 ③二尖瓣水平短轴观:探头置于胸骨左缘第3、4肋间,方向与上图相似。此图 可显示左、右心室腔,室间隔与二尖瓣口等结构。如将探头稍向下倾斜,可获得腱索、乳头肌水平图像。 ④心尖四腔观:探头置于心尖搏动处,指向右侧胸锁关节。在图像上室间隔起 于扇尖,向远端伸延,见房间隔及心房穹窿。十字交叉位于中心处,向两侧伸出二尖瓣前叶和三尖瓣隔叶,二尖瓣口及三尖瓣口均可显示。 ⑤剑突下四腔观:清晰显示房间隔⑥主动脉弓长轴观:显示主动脉弓及其分支和右肺动脉等。 二尖瓣狭窄分度:正常瓣口面积约4cm2,舒张期跨二尖瓣口平均压差为0.667kPa(5mmHg)。①轻度跨瓣压差为1.336kPa(10 mmHg)左右。瓣口面积1.5—2cm2;②中度1.336~ 2.67kPa(10—20 mmHg),面积1.0—1.5 cm2;③重度跨瓣压差大于2.67kPa(20mmHg),瓣口面积小于1cm2。 二狭切面超声心动图 (1)左室长轴观及四腔观:可见二尖瓣前后叶增厚,因瓣膜粘连,瓣尖部活动幅度减低,瓣口变小,二尖瓣前叶于舒张期呈气球样向左室突出,呈所谓圆顶状(dome)运动,常见于隔膜型狭窄。病变严重时,瓣体也可增厚、纤维化、钙化,活动减小或消失,腱索增粗,相当于漏斗型狭窄。二尖瓣后叶活动度明显减小,后叶与前叶同向运动。左房因血液淤积,故可增大。晚期可见右室、右房扩大(2)二尖瓣水平短轴观:可见二尖瓣前后交界明显粘连,瓣膜增厚。二尖瓣开放幅度减小,开口变小。舒张期失去正常鱼嘴形,边缘不规整。在此观中可直接描记出二尖瓣口面积。

超声诊断学教程第二章超声心动图学

超声心动图学 第一节正常超声心动图 概述 超声心动图()是利用超声原理诊断心血管疾病的一种技术,自1954年瑞典学者首先把超声心动图用于临床以来,随着超声诊断技术的不断进步,已经成为无创诊断心血管疾病的重要手段,越来越引起临床的重视。它包括M型、二维、频谱和彩色多普勒等项技术。 1.M型超声心动图( ) M型超声心动图是根据心脏组织结构密度,在距体表相应的深度产生不同强弱的反射光点的一种技术,其纵轴为光点运动的幅度,横轴为时间,主要用于心脏和血管内径的测量,观察瓣膜及室壁的运动情况,共分为: (1) 心底波群:心前区胸骨左缘第三肋间探测可见,所代表的结构自前向后分别为胸壁、右室流出道、主动脉根部及左房。主动脉瓣(波形)为六边形盒子形状。 (2) 二尖瓣波群:胸骨左缘第3~4肋间探测时,可见具有特征的二尖瓣前、后叶波形。舒张期二尖瓣前叶波形为类似字母“M”的双峰曲线(E、A峰),二尖瓣后叶波形类似字母“W”,为前叶曲线的倒影;收缩期二尖瓣前后叶闭拢成一直线(段)。

(3) 心室波群:在第4肋间探及从前向后所代表的解剖结构分别为胸壁、右室前壁、右室腔、室间隔、左室腔和腱索、左室后壁。 2.二维超声心动图(切面超声心动图)( ) 将超声探头置于胸壁上,顺序扫描心脏结构,从而获取心脏各个部位的切面回声,可观察不同断面上的解剖轮廓、结构形态、空间方位、连续关系、房室大小及室壁和瓣膜的运动。除了经胸壁超声心动图,还有经食管、经心脏表面、血管内超声。 常用切面有: (1) 胸骨旁左室长轴切面:探头置于胸骨左缘第3肋间,指向右胸锁关节,可清晰显示右室、左室、左房、室间隔、主动脉、主动脉瓣、二尖瓣。

超声诊断学

《医学影像学》 超声部分-总论(讲稿) 授课对象:本科临床医学 授课时间: 授课教师: 一、教学目的与要求 (一)熟悉 1、超声诊断的一些基本概念 2、超声成像的优点和局限性 3、超声成像诊断主要临床应用 4、超声诊断方法 二、教学重点、难点 难点:1、超声成像基本原理。建议:制作超声成像动态示意图,图文并茂,动静图像结合,便于理解掌握。 2、超声诊断的优点和局限性。建议:使用图文并茂,动静态图像结合, 教学课件,举例说明。 疑点: 三、教具或教学手段 教材:吴恩惠冯敢生《医学影像学》第七版,全国高校教材供基础、临床、预防、口腔医学类专业用 1、通过课件,图文并茂,举例说明; 2、特殊部分,动态图像,印象深刻; 3、提问互动,精力集中,提高效果; 四、教学内容 1、超声诊断学的定义 1.1超声 是指物体振动频率每秒在20000次(Hz)以上,超过人耳听觉阈值上限的声波,简称超声。 1.2超声诊断学的定义 超声诊断学是利用超声波的物理特性和人体器官组织声学特性相互作用后产生的信息,并将其接收、放大和信息处理后形成图形(声像图)、曲线(M型

心动图、频谱曲线)、波形图(A型)或其他数据,结合解剖、病理、生理知识和受检者的病史、临床表现、其他实验室或影像学等检查,综合分析,借此进行疾病判断的一种影像学诊断方法。 1.3范围 临床一般分为4类 ①低频超声超声频率在1~2.75MHz; ②中频超声超声频率在3~10MHz;(常规用) ③高频超声超声频率在12~20MHz; ④甚高频超声超声频率在20MHz以上; 一般中等身材腹部脏器检查选用3~4MHz;浅表脏器检查选用7.5~10MHz;小儿腹部可选用5MHz;冠状动脉内超声检查选用20MHz。 1、超声成像基本原理 2.1人体组织的声学参数:密度、声阻抗、界面 密度(ρ):各种组织、脏器的密度为重要声学参数中声阻抗的基本组成之一。人体内不同组织、脏器的密度不同,以骨骼——颅骨的密度最高,1.658g/cm3;体液——血液、血浆、脑脊液、羊水、软组织、脑组织、肌肉、肝脏密度低些,1.013~1.074g/cm3;脂肪的密度更低些,0.955g/cm3;而含气脏器中的空气的密度最低,0.00118g/cm3。 声阻抗(Z):可以理解为声波在组织(介质)中传播时所受到的阻力,为密度与声速的乘积,声像图中各种回声显像均主要由于声阻抗差别所造成,它是超声成像的基础。 人体内不同脏器组织的声阻抗不同: 高密度的颅骨声阻抗较高,约为软组织的3.6倍; 软组织的声阻抗次之,且各种软组织间声阻抗差很小; 空气密度低,声速慢,声阻抗最小,仅为软组织的1/3800。 界面 两种声阻抗不同物体接触在一起,即界面。接触面大小名界面尺寸。 界面尺寸<超声声束直径时,名小界面。如脏器组织内部细微结构 界面尺寸>超声声束直径时,名大界面。如肝被膜和肝实质之间、血液和血管壁之间等大体器官表面 2.2 超声重要物理参数:频率、声速、波长 超声属机械波,具有频率、声速、波长三个重要参数。 频率(f):指在单位时间中超声所振动的周数;由声源发生超声所决定。

超声诊断学复习重点

超声诊断学 第一章~第四章总论 1、超声诊断学的临床应用:形态学检测、功能性检测、介入性超声。 2、超声诊断的优势:对软组织分辨良好,特别是含液器官(血管、胆道等)。 3、超声诊断的类型:A型、B型、M型、D型、彩色多普勒血流成像等。 4、超声的定义:是一种传播频率在20kHz以上、超过人耳可听到声波频率范围的机械波,临床最常用的频率是2.5~10MHz。 5、对不足2个月的早期妊娠妇女,尽量不用超声进行常规检查。 6、多普勒血流声像图显示:红色表示血流朝向探头,蓝色表示血流背向探头,多彩色小点交织表示湍流,亮度表示血流平均速度。 第五章腹部超声探测方法 1、探头频率的选择: 频率越高,波长越短,穿透力越弱,用于浅表器官; 频率越低,波长越长,穿透力越强,用于深部脏器。 2、在探头和组织之间涂以医用超声耦合剂,可以减少探头与组织间的空气间隙,减少声阻抗差。 3、受检者准备: (1)上腹部检查:空腹8-12h(通常在晨起禁食早餐时检查),显示胰腺等脏器可饮水使胃充盈作透声窗。(2)盆腔检查:需膀胱适量充盈。 第六章肝超声诊断 一、正常声像图表现 1、正常肝声像图:内部回声细密、均匀,门静脉管壁呈稍强回声,肝静脉管壁不显示明显回声。 2、多普勒血流图:门静脉、肝动脉血流朝向肝,呈红色;肝静脉血流背向肝,呈蓝色。 二、肝疾病的超声诊断 (一)脂肪肝 1、广泛性脂肪肝:肝均匀增大,表面圆钝,肝实质回声增强(“明亮肝”);局限性脂肪肝:花斑样或不规则片状高回声(脂肪浸润区)。 2、血流信号较正常少。 (二)肝炎后肝硬化 1、肝左右叶大小比例失调,右叶萎缩,左叶增大,肝实质回声增粗增强。 2、肝表面不光整或凹凸不平,表面外围可见腹水。 3、胆囊壁充血水肿出现“双边影”。 4、门静脉内径增大,并有门静脉海绵样变性。 (三)肝囊性病变 1、肝囊肿:一个或多个无回声区,透声性好,后壁回声增强,后方回声增强明显。 2、肝浓重:边界不清,壁厚,内壁不规则,呈虫噬样,超声造影现实蜂窝样表现。 3、肝包虫病:囊肿无回声,典型表现是“大囊套小囊”。 (四)原发性肝癌

-超声诊断学教程

超声诊断学教程 第一章总论 超声医学(ultrasonic medicine)是利用超声波的物理特性与人体器官、组织的声学特性相互作用后得到诊断或治疗效果的一门学科。向人体发射超声,并利用其在人体器官、组织中传播过程中,由于声的透射、反射、折射、衍射、衰减、吸收而产生各种信息,将其接收、放大和信息处理形成波型、曲线、图像或频谱,籍此进行疾病诊断的方法学,称为超声诊断学(ultrasonic diagnostics);利用超声波的能量(热学机制、机械机制、空化机制等),作用于人体器官、组织的病变部位,以达到治疗疾病和促进机体康复的目的方法学,称为超声治疗学(ultrasonic therapeutics)。 超声治疗(ultrasonic therapy)的应用早于超声诊断,1922年德国就有了首例超声治疗机的发明专利,超声诊断到1942年才有德国Dussik应用于脑肿瘤诊断的报告。但超声诊断发展较快,20世纪50年代国内外采用A型超声仪,以及继之问世的B型超声仪开展了广泛的临床应用,至20世纪70年代中下期灰阶实时(grey scale real time)超声的出现,获得了解剖结构层次清晰的人体组织器官的断层声像图,并能动态显示心脏、大血管等许多器官的动态图像,是超声诊断技术的一次重大突破,与此同时一种利用多普勒(Doppler)原理的超声多普勒检测技术迅速发展,从多普勒频谱曲线能计测多项血流动力学参数。20世纪80年代初期彩色多普勒血流显示(Color Doppler flow imaging, CDFI)的出现,并把彩色血流信号叠加于二维声像图上,不仅能直观地显示心脏和血管内的血流方向和速度,并使多普勒频谱的取样成为快速便捷,80 ~ 90年代以来超声造影、二次谐波和三维超声的相继问世,更使超声诊断锦上添花。 第一节超声成像基本原理简介

超声诊断学试题集与答案

超声诊断学试题集与

2、发生多普勒效应必须具备的基本条件 A、有声源与接收体E、没有回声或回声太弱C、声源与接收体产生相对运动 D、有强的反射源与散射源 E、声源与接收体两者处于静止状态 3、从多普勒频谱图上能了解到血流的参数是: A、血流性质B、时相C、方向D、速度 4、声学造影剂须符合下列哪些项的要求: A、微泡小,能安全稳定通过肺循环 B、可进入心肌或全身血池 C、无毒副作用 D、能停留相对较长时间 5、用于检查血流速度参数的多普勒技术是 A、二次谐波成像E、多普勒血流成像C、连续波多普勒D、脉冲波多普勒E、多普勒组织成像 6、连续波多普勒的技术特点是 A、出现信号混迭E、间歇发射超声C、选择接收不同深度的回声D、不间断发射超声E、检测高速血流 7、增大脉冲波多普勒检查测深度的错误方法是 A、提高发射超声脉冲重复频率 B、增大超声入射角 C、提高超声频率 D、降低 发射超声脉冲重复频率E、降低超声频率 8、彩色多普勒的用途是 A、检出血流 B、判断血流方向 C、鉴别管道性质 D、测量血管体积 E、测量峰值流速 9、右心超声造影的主要用途是 A、大血管间左向右分流 B、心腔与大血管间的左向右分 C、右心瓣口的反流 D、 流 识别心腔解剖结构E、心腔右向左分流 10、用彩色多普勒怎么样区别动脉与静脉血流 A、动脉血流信号呈闪动显现 B、收缩期动脉血流信号强度最 C、静脉血流信号可 高 持续出现D、舒张期动脉可无血流信号E、呼吸可影响静脉血流速度 三、名词解释 1、多普勒效应 2、超声波 3、侧向分辨力 4、轴向分辨力 5、B型诊断法

四、简答题 1、什么是超声波,它与一般声波有什么不同? 2、什么是超声换能器? 3、何谓超声仪的灵敏度? 4、获得最佳超声信息的基本条件有哪些? 5、超声检查的主要用途有哪些? 超声诊断基础试题参考答案 参考答案 一、单项选择题 1B 2C 3D 4A 5C 6C 7ABC 8B 9C 10C 二、多选题答案 1BCE、2ACE、3ABCD、4ABCD、5CD、6DE、7BCD、8ABC、9CDE、10ABCDE 三名词解释 1、多普勒效应 答:当声源与声接收器之间有相对运动时,接收器所接收到的声波的频率就会发生改变,这种物理现象为多普勒效应。 2、超声波 答:超声是声波的一种。但其每秒的振动次数(频率)甚高,超出了人耳听觉的上限 (20000Hz),人们将这种听不见的声波叫做超声波。 3、侧向分辨力 答:侧向分辨力是指垂直于超声束轴线平面上与线阵探头轴方向一致的轴线上,能分辨相邻两点(两个病灶)间的最小距离。 4、轴向分辨力 答:轴向分辨力是指在超声束轴线上,能分辨两点(两个病灶)间的最小纵深距离。 5、B型诊断法 答:B型诊断法即辉度调制型。本法以不同辉度的光点表示反射讯号的强弱,反射强则亮,

超声诊断学大题汇总教程文件

超声诊断学大题汇总

乳腺纤维腺瘤: 二维超声:1、肿块呈圆形、椭圆形或分叶状 2、边界光滑,有完整包膜3、内部回声均匀,与周围脂肪组织相比呈等回声,与乳腺实质相比为低回声,后方无衰减 4、肿块可有侧方声影 5、与周围组织无粘连,加压时,可被轻度压缩 多普勒超声:较小的纤维腺瘤周围可见彩色血流信号;较大的腺瘤周边及内部均可见彩色血流信号。血流信号的走形、形态规则。脉冲多普勒可测及低速动脉血流。 乳腺癌: 二维超声:1、肿块内部回声与乳腺腺体组织相比,多呈低回声,后方衰减。 2、肿块形态不规则 3、微小钙化 4、边界不清与毛刺状边缘 5、肿块纵横比大于1 6、间接征象:包括Cooper韧带连续性中断、皮肤水肿增厚和腋窝淋巴结肿大形态失常多普勒超声:可见形态不规则,分布杂乱的血流信号 胎儿脑积水:胎儿脑积水为脑室系统或脑池内循环的脑脊液排出发生障碍使颅腔内有异常增多的液体聚集。声像图为脑室不同程度扩张。 1、重度脑积水:A、胎儿双顶径大于孕周 B、脑室内径明显增宽,第三脑室扩张,脑中线可在脑脊液中飘动,脑实质、颅骨壁变薄,颅骨缝裂开 2、轻度脑积水:妊娠20周后脑室率大于0.5或侧脑室后角宽大于10mm (脑室率为脑中线至侧脑室的距离与中线至颅骨内缘的距离之比,正常小于0.3),胎儿双顶径符合孕周,脑中线不偏移。 甲亢: 二维超声:1、甲状腺呈弥漫性、均匀性增大,左右两侧对称,增大达正常腺体的2~3倍。峡部前后径增大明显,可达1.0cm(正常≤0.4cm).增

大明显时,颈总动脉及颈内静脉被挤压向外侧移位。 2、内部回声正常或稍强,呈密集点状分布,当本病治疗后,可有点状或条状中、强回声。彩色多普勒超声:甲状腺内小血管增多、扩张,血流速度加快现象(V达70~90cm/s或更高),甲状腺内血流呈五彩缤纷,称之为“火海征”,此征具有特征性,但并非本病专有。 甲状腺癌: 二维超声:癌瘤的边界不整,界限不清,边缘呈锯齿状;但癌瘤较小时,边界可以光滑、整齐。癌瘤内部常是低回声且不均质。癌瘤内可出现点状、细小、微粒状的强回声钙化点,具有特异性,但敏感性差。癌瘤较大时,可出现坏死或囊性变,局部无回声区,液化不全时,呈囊实性改变。彩色多普勒:肿瘤内有新生血管出现,呈湍流频谱,血流丰富,有动静脉瘘现象。癌瘤侵犯周围小血管时,可见血管内癌栓。癌瘤侵及颈部淋巴结,可发现淋巴结肿大,为转移灶。癌瘤侵犯喉返神经,有声音嘶哑及声带麻痹。 肠套叠: 超声:肠套叠的横断面图像显示为特征性的“同心圆”征,由套叠的鞘部和套入折叠部三层肠管组成。较大的外环呈一层较厚、均匀的低回声环带,为鞘部肠管;中环和内环为套入部肠管,水肿增厚,中环和内环之间可见肠系膜反射的强回声。低回声带中心部可见一高低相间的混合回声或呈弥漫性较高回声的结构,主要是套入部肠管形成反折的浆膜及内层黏膜相互重叠挤压所致。中心部为肠腔内容物及气体强回声团。套叠部的纵断断面呈“套筒征”或“假肾征”。 睾丸扭转超声表现:1、睾丸正常或轻度肿大,多呈横位。若为复转,可持续5天左右,以后渐小。 2、急性扭转(<6小时)睾丸内部回声无明

超声诊断学部分试题集与答案

一、单项选择题 1.超声波是指频率超过( )以上的一种机械波。 A,10000Hz B,20000Hz C,30000Hz D,40000Hz 2.超声的三个基本物理量之间的相关关系可表达为如下哪种公式: A,λ=cf B,f=cλC,λ=c/f D,f=cλ 3.现在临床使用的超声诊断主要利用超声的什么物理原理? A,散射B,折射C,绕射D,反射 4.下列关于超声的分辨力叙述正确的是: A,超声的分辨力主要与超声的频率有关。 B,纵向分辨力是指与超声垂直的平面上两个障碍物能被分辨的最小间距。 C,超声的分辨力越高,超声在人体中的传播距离越远。 D,为提高超声的横向分辨力,不可以通过声学聚焦的方法实现。 5.下列不属于彩色多普勒技术的是: 多普勒血流成像B,能量多普勒C,频谱多普勒D,多普勒速度能量图 6.超声换能器的作用是: A,将动能转化为势能B,将势能转化为动能 C,将机械能转化为电能D,将化学能转化为电能. 7.人体组织中的反射回声强度可以分为哪几个等级? A,高回声B,等回声C,无回声D,弱回声 8.下列哪种不属于超声伪像? A 混响伪像B,密度伪像C,镜面伪像D,折射伪像 9.下列不属于超声成像设备主要组成的是: A 主机B,超声换能器C,视频图象记录仪D,视频图象显示仪 10.下列不是彩色多普勒成像的显示方式的是: A,速度型B,能量型C,加速度型D,运动型 二、多项选择题 1、层流频谱特征 A、速度梯度大B、频谱与基线间有空窗C、速度梯度小.频谱窄D、包络毛刺.多普勒声粗糙刺耳E、包络光滑.多普勒声平滑有乐感 2、发生多普勒效应必须具备的基本条件 A、有声源与接收体B、没有回声或回声太弱C、声源与接收体产生相对运动 D、有强的反射源与散射源E、声源与接收体两者处于静止状态 3、从多普勒频谱图上能了解到血流的参数是: A、血流性质 B、时相 C、方向 D、速度 4、声学造影剂须符合下列哪些项的要求: A、微泡小,能安全稳定通过肺循环 B、可进入心肌或全身血池 C、无毒副作用 D、能停留相对较长时间 5、用于检查血流速度参数的多普勒技术是 A、二次谐波成像B、多普勒血流成像C、连续波多普勒D、脉冲波多普勒E、 多普勒组织成像 6、连续波多普勒的技术特点是 A、出现信号混迭B、间歇发射超声C、选择接收不同深度的回声D、不间断发 射超声E、检测高速血流 7、增大脉冲波多普勒检查测深度的错误方法是 A、提高发射超声脉冲重复频率B、增大超声入射角C、提高超声频率D、降低 发射超声脉冲重复频率E、降低超声频率 8、彩色多普勒的用途是

超全的超声诊断学课件审批稿

超全的超声诊断学课件 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

超声诊断学 第一章绪论 超声诊断学(Ultrasonic Diagnosis):包括超声显像、普通X线诊断学、X线电子计算机体层成像 (CT)、核素成像、磁共振成像(MRI)等,是以电子学与医 学工程学的最新成就和解剖学、病理学等形态学为基础,并与 临床医学密切结合的一门比较成熟的医学影像学科,(既可非 侵入性地获得活性器官和组织的精细大体断层解剖图像和观察 大体病理形态学改变,亦可使用介入性超声或腔内超声探头深 入体内获得超声图像,从而使一些疾病得到早期诊断。 超声诊断学的主要内容: 1、脏器病变的形态学诊断和器官的超声大体解剖学研究; 2、功能性检测; 3、介入性超声(Interventional ultrasound)的研究; 4、器官声学造影检查; 超声诊断学的特点: 1、超声波对人体软组织有良好的分辩能力,有利于识别生物组织的微小病变。 2、超声图像显示活体组织可不用染色处理,即可获得所需图像,有利于检测活体组织。 3、超声信息的显示有许多方法,根据不同需要选择使用,可获得多方面的信息,达到广泛应用。超声诊断学的优点: 1、无放射性损伤,为无创性检查技术; 2、取得的信息量丰富,具有灰阶的切面图像,层次清楚,接近解剖真实结构; 3、对活动界面能作动态的实时显示,便于观察; 4、能发挥管腔造影功能,无需任何造影剂即可显示管腔结构; 5、对小病灶有良好的显示能力; 6、能取得各种方位的切面图像,并能根据图像显示结构和特点,准确定位病灶和测量其大小; 7、能准确判定各种先天性心血管畸形的病变性质和部位; 8、可检测心脏收缩与舒张功能、血流量、胆囊收缩和胃排空功能; 9、能及时取得结果,并可反复多次进行动态随访观察,对危重病人可床边检查; 10、检查费用低廉,容易普及。(优势:无创,精确,方便) 超声诊断发展简史:探索试验阶段:1942年(连续穿透式) 临床实用阶段:50年代(脉冲反射式)A型、B型、M型、D型 开拓性前进阶段:60年代 飞跃发展阶段:70年代产生两个飞跃,灰阶成像和实时成像 现代超声的里程碑—软组织灰阶成像(第一次革命) 80年代数字扫描变换(DSC)、数字图像处理(DSP)等;彩色多普勒血 流显像(CDFI)研究成功。反映功能的基础。(第二次革命) 90年代心脏和内脏器官的三维超声成像、彩色多普勒能量图(CDE)、多 普勒组织成像(DTI技术)、血管内超声、实时超声造影技术、介入性超声 和超声组织定征等均有显着的新进展。 气泡造影剂的分布状态及灌注全过程(第三次革命) 超声诊断总的发展趋势是:在显示空间上从单维空间探测发展到二维超声显示—三维空间的立体 超声图像。 实时(real—time):使静态―――动态图像,其扫描速度超过24帧。 第二章超声诊断的基础和原理

阅读笔记系列——超声诊断学

《超声诊断学》笔记 第一章总论 1、B型超声成像的基本原理: (1)当声束在人体组织内传播过程中遇到各个界面时,产生一系列散射和反射回声,由于散射和反射强度的不同,而在示波屏上表现为不同程度的辉度(灰度),从而形成不同组织器官的反射或回声信息; (2)根据这些不同的回声信息,可以反映不同组织器官的解剖结构及各器官之间的位置关系;同时对人体内的组织或器官,若发生病理改变时,其回声信息发生改变,由此可对疾病作出诊断。 2、超声诊断的优势: (1)超声波属于机械波,无放射性损伤,检查的安全性高。 (2)超声检查能够动态、多方位检查,获得功能和形态学信息,有利于病变的检出和诊断。(3)超声检查便捷、费用低,可短期内反复多次检查。 (4)超声设备轻便,可用于术中检查。 3、多普勒效应的含义:声源与接收物体相对运动时,接收频率随运动方向变化的现象。 4、彩色多普勒超声成像的含义和临床意义: (1)含义:CDFI是一种运用多普勒效应,获取血管或心脏内的血流方向、血流性质、血流速度等运动信息后,对其进行彩色编码,并叠加在二维图像上,从而形成具有解剖结构和血流信息的二维图像。 (2)临床意义:①提供血流的空间信息,并增强了血流的直观感。②不仅能清楚显示器官或病变的二维灰阶图像,而且能显示血流情况,有助于病变的诊断和鉴别。(朝向探头的血流用红色表示,背向探头者用蓝色表示;血流速度快者,色彩鲜亮,慢者则暗淡) 5、超声声像图的形成过程: ①光点产生→②光点辉度(灰阶)的产生—灰阶超声→③光点的排列—实时超声。 6、超声声像图的观察要点: (1)外形:脏器的外形是否肿大或缩小,有无形态失常,如局部边缘的膨出或明显隆凸;(2)边界和边缘回声;(3)内部结构特征;(4)后壁即后方回声;(5)周围回声强度;(6)周邻关系;(7)量化分析;(8)功能性检测。 第二章小器官超声 第一节眼 1、视网膜母细胞瘤的超声声像图表现 (1)典型声像图表现:在玻璃体内部发现形态各异的实性肿块,边界清楚,多位于眼球后壁,内部回声不均匀,钙化多见,部分伴有声影。 (2)CDFI:肿块内可见与视网膜中央动脉相延续的血流信号,呈树枝状分布,频谱与视网膜中央动脉相似。 2、脉络膜黑色素瘤的超声声像图表现 (1)二维声像图:肿瘤多位于后极部,表面光滑,边界清晰,形态多样,内部回声不均匀,大多表现为肿瘤前部强回声,其后回声逐渐减低至靠近球壁的基底部呈无回声,即“挖空征”。(2)CDFI:肿瘤表面和内部均可探及丰富血流信号,,频谱分析肿瘤表面血流频谱与视网膜中央动脉相似,而肿瘤内部血流频谱与睫状后动脉相似。

“三基”训练 超声诊断学问答题

“三基”训练——超声诊断学~基础理论和基本知识问答(一) 1.什么是波长? 波长是指两个相邻波峰或波谷之间的距离。即波在振动一次的时间内所传播的距离称为一个波长。 2.何谓超声声强和第二次声源? (1)超声声强又称强度,它是指垂直于单位面积的声能量,单位为W/cm2或mW/cm2。(2)超声在传播途中遇到各种大小不同界面产生反射或散射,即再一次向周围发出超声时,则该物体称为第二次声源。 3.试说明逆压电效应。 给晶体施加交变电压后可造成机械变形并产生超声,此现象称为逆压电效应。 4.何谓声阻抗? 声阻抗系指超声波通过介质遇到的阻力。一般它随介质和声波频率等不同而异,但在平面上的纵波的声阻抗与频率无关,而是等于组织的密度乘以声波在组织中的传播速度。公式:Z=ρ×C(Z为声阻抗,ρ为物质密度,C为声速) 5.试述超声探头的作用。 超声探头又称换能器,它具有发射超声和接受返回超声的能力,也就是能够将电能转变成机械能(声能),又把声能转变成电能。 6.试述超声束在聚焦区能量的变化。 在超声聚焦区的声束直径较小,胜强是指单位声束截面积上的能量。声束截面积减少,强度增加。 7.试说明超声在软组织中传播的平均速度。 在标准大气压和室温(17~25℃)控制下测定人体不同软组织,具有不同的声速,如肝1549m/s、血1570m/s、肌肉1581m/s…故仪器上对软组织取其平均值1540m/s。 8.超声传播产生衰减的原因是什么? 是由于声速的扩散、散射以及反射造成,也可因组织吸收造成衰减。 9.增加脉冲重复频率(周期)的作用是什么? .增加脉冲重复频率(周期)并不能改善分辨力,但可以增加最大显示深度,故有利于深部位的检查。 10.试说明超声轴向分辨力和横向分辨力的含义。 (1)轴向分辨力是指超声能区分平行于声束的两个物体的能力,也称纵向分辨力。它取决于波长,通常频率越高,波长越短,轴向分辨力越高。 (2)横向分辨力指区分垂直于声束的两个物体的能力,也称方位分辨力。它取决于声束直径的大小,声束直径随离开探头的距离而变化。如声束直径大横向分辨力差。 “三基”训练——超声诊断学~基础理论和基本知识问答(二) 11.何谓超声脉冲宽度、动态范围和宽带? 脉冲宽度指超声周期与某个脉冲的循环周期数之积。 动态范围指超声系统可控制的最大能量与最小能量之比。 超声宽带是指一个超声脉冲所包含的频率范围。 12.超声出现镜面反射的含义是什么? 当物体界面大于波长时,称为镜面反射体。当超声束落在镜面反射体上时其反射角等于入射角,因此在形成声像图时反射就成为一个关键因素,当探头垂直于界面时,可得到最强反射回声。 13.试解释彗星伪像、边缘伪像和混响伪像。

超声诊断学教程-第六章子宫及其附件疾病超声诊断

超声诊断学教程-第六章子宫及其附件疾病超声诊断

第六章子宫及其附件疾病超声诊断 第一节正常盆腔 1.正常子宫(uterus) 据宫腔线与颈管线之间形成的角度分前位(角度<180度)、中位(角度180度)、后位(角度>180度)。边界清楚,内部回声均匀,宫腔线居中,内膜随月经周期发生变化,月经第4-6天,内膜为一薄线状回声,排卵前后,内膜呈三线二区回声,内膜增厚;黄体中后期,内膜更厚,回声增强,三线消失,呈高回声 状结 2.卵巢(overy) 卵巢位于子宫两侧,髂内血管内侧。周边皮质有卵 泡而回声偏低,中间髓质回声较强,髓质内有血流信 号。每个月经周期一般有一个优势卵泡发育、排卵,黄 体形成 3.输卵管 位于卵巢上方,超声一般不能显示,当盆腔内有较多积液时,超声有可能显示正常 的输卵管。当输卵管积水、积脓、内有占位时,超声 可以显示。

第二节异位妊娠 受精卵在子宫体腔以外着床,称为异位妊娠。是常见的急腹症之一。 1 .输卵管妊娠(tubal pregnancy) 包括:输卵管壶腹部妊娠、输卵管峡部妊娠、输卵管伞部妊娠、输卵管间质部妊娠。发病率按排列顺序递减,前三者超声图象相似,后者不同。 (1)输卵管壶腹部、峡部、伞部妊娠 孕早期输卵管未破裂、流产时,宫腔内未见胚囊,在一侧卵巢旁见到完好的胎囊或胚芽和胎心搏动。 (2)输卵管间质部妊娠 输卵管间质部肌肉较厚破裂时间推迟,甚至可达孕16-18周,一旦破裂出血 甚猛,危及生命。 图象:子宫增大,一侧宫角突起,内见胚囊,胚囊上部围绕肌层缺少或不全, 宫腔内无胚囊。注意与子宫角妊娠鉴别,宫角妊娠胚囊位于宫腔的角部,随着孕期可逐渐向宫腔内生长至晚孕。可在B超监护下行刮宫术。 (3)子宫颈妊娠(cervical pregnancy)

超声诊断学教程重点

超声诊断学教程 第一章总论超声医学(ultrasonic medicine)是利用超声波的物理特性与人体器官、组织的声学特性相互作用后得到诊断或治疗效果的一门学科。向人体发射超声,并利用其在人体器官、组织中传播过程中,由于声的透射、反射、折射、衍射、衰减、吸收而产生各种信息,将其接收、放大和信息处理形成波型、曲线、图像或频谱,籍此进行疾病诊断的方法学,称为超声诊断学(ultrasonic diagnostics);利用超声波的能量(热学机制、机械机制、空化机制等),作用于人体器官、组织的病变部位,以达到治疗疾病和促进机体康复的目的方法学,称为超声治疗学(ultrasonic therapeutics)。 超声治疗(ultrasonic therapy)的应用早于超声诊断,1922年德国就有了首例超声治疗机的发明专利,超声诊断到1942年才有德国Dussik应用于脑肿瘤诊断的报告。但超声诊断发展较快,20世纪50年代国内外采用A型超声仪,以及继之问世的B型超声仪开展了广泛的临床应用,至20世纪70年代中下期灰阶实时(grey scale real time)超声的出现,获得了解剖结构层次清晰的人体组织器官的断层声像图,并能动态显示心脏、大血管等许多器官的动态图像,是超声诊断技术的一次重大突破,与此同时一种利用多普勒(Doppler)原理的超声多普勒检测技术迅速发展,从多普勒频谱曲线能计测多项血流动力学参数。20世纪80年代初期彩色多普勒血流显示(color Doppler flow imaging, CDFI)的出现,并把彩色血流信号叠加于二维声像图上,不仅能直观地显示心脏和血管内的血流方向和速度,并使多普勒频谱的取样成为快速便捷,80 ~90年代以来超声造影、二次谐波和三维超声的相继问世,更使超声诊断锦上添花。 第一节超声成像基本原理简介.一. 二维声像图(two dimensional ultrasonograph, 2D USG)

超声诊断学教程 第六章子宫及其附件疾病超声诊断

第六章子宫及其附件疾病超声诊断 第一节正常盆腔 1.正常子宫(uterus) 据宫腔线与颈管线之间形成的角度分前位(角度<180度)、中位(角度180度)、后位(角度>180度)。边界清楚,内部回声均匀,宫腔线居中,内膜随月经周期发生变化,月经第4-6天,内膜为一薄线状回声,排卵前后,内膜呈三线二区回声,内膜增厚;黄体中后期,内膜更厚,回声增强,三线消失,呈高回声状结 构。 2.卵巢(overy) 卵巢位于子宫两侧,髂内血管内侧。周边皮质 有卵泡而回声偏低,中间髓质回声较强,髓质内有 血流信号。每个月经周期一般有一个优势卵泡发育、 排卵,黄体形成。 3.输卵管 位于卵巢上方,超声一般不能显示,当盆腔内 有较多积液时,超声有可能显示正常的输卵管。当 输卵管积水、积脓、内有占位时,超声可以显示。

第二节异位妊娠 受精卵在子宫体腔以外着床,称为异位妊娠。是常见的急腹症之一。 1.输卵管妊娠(tubal pregnancy) 包括:输卵管壶腹部妊娠、输卵管峡部妊娠、输卵管伞部妊娠、输卵管间质部妊娠。 发病率按排列顺序递减,前三者超声图象相似,后者不同。 (1)输卵管壶腹部、峡部、伞部妊娠 孕早期输卵管未破裂、流产时,宫腔内未见胚囊,在一侧卵巢旁见到完好的胎囊或胚芽和胎心搏动。 (2)输卵管间质部妊娠 输卵管间质部肌肉较厚破裂时间推迟,甚至可达孕16-18周,一旦破裂出血甚猛,危及生命。 图象:子宫增大,一侧宫角突起,内见胚囊,胚囊上部围绕肌层缺少或不全,宫腔内无胚囊。注意与子宫角妊娠鉴别,宫角妊娠胚囊位于宫腔的角部,随着孕期可逐渐向宫腔内生长至晚孕。可在B超监护下行刮宫术。 (3)子宫颈妊娠(cervical pregnancy)

《超声诊断学》试题库

《超声诊断学》试题库一、名词解释1、超声多普勒效应2、声阻抗3、声晕4、平行管道征 5、基本分辨力 6、双筒猎枪征 7、火海征 8、超声波 9、 谐波成像 10、声影 11、部分容积效应 12、振铃效应 13、后壁增强效应 14、侧 壁失落效应 15、声源 16、折射 17、界面 18、图像分辨力 19、多普勒超声分辨 力 20、衰减 21、彩色多普勒分辨力 22、均质体 23、混响效应 24、慧星尾 征 25、阻力指数(RI) 26、搏动指数(PI) 27、CVIQ技术28、脉冲重复频率29、尼奎斯特频率极限 30、伪彩 31、数字扫描转换器(DSC) 32、返流 33、 分流 34、射流 36、每搏量 37、心输出量 38、心排血指数 39、射血分数40、室壁增厚率 41、左室短轴缩短率 42、城墙波 43、SAM现象 44、主动脉骑跨 率 45、WES征 46、超声莫非氏征 47、鼠尾征 48、脂液分层征 49、挖空现象50、锁骨下动脉窃血综合征 51、羊水指数 51、胚囊 52、灰阶梯度递减区 53、室壁 瘤 54、室壁运动指数 55、负性造影区 56、返流分数 57、圆顶状运动 58、层 流 59、湍流 60、涡流 61、频谱离散度 61、多彩相嵌图像 62、膜部间隔瘤63、明亮肝 64、驼峰征 65、地图样肝脏 66、胆囊双边影 67、声强 68、反射69、全反射一、选择题 1、下列哪种组织传播超声的速度最快? A、血液 B、胆汁 C、骨骼 D、肺 E、肝脏 2、声像图上区别门静脉和肝静脉的最好方法是: A、门静脉管壁 较厚 B、肝静脉管径较粗 C、门静脉分支较多 D、追踪它们的发源处 E、肝静脉可有 搏动 3、超声测量正常胆囊壁厚度的上限值为: A、1mm B、2mm C、3mm D、4mm E、5mm 4、子宫内节育器后方的彗星尾征产生的原理为: A、部分容积效应 B、振铃效 应 C、后方增强效应 D、旁瓣效应 E、侧壁失落效应 5、关于频谱多普勒技术,下面 哪种说法是错误的? A、测量血流速度 B、确定血流方向 C、判断血流性质 D、了 解组织器官结构E、获得速度时间积分、压差等血流参数6、正常肾脏声像图表现,下列哪 项不正确? A、肾锥体呈放射状排列在肾窦周围 B、肾窦呈强回声 C、弓状动脉位于肾 皮质与肾髄质之间 D、肾脏横断面在肾门部呈马蹄形 E、肾锥体回声高于肾皮质回声 7、关于肾积水,下列哪项不正确?A、任何情况下,肾窦部出现宽10mm以上无回声区均 可诊断为轻度肾积水 B、肾实质不同程度萎缩为重度肾积水的特征 C、中度肾积水肾外形 无明显改变 D、梗阻所致轻度肾积水肾动脉阻力明显增高 E、重度肾积水时多个囊腔连通 8、急性脾破裂时,下列哪项超声表现是错误的: A、脾包膜下见液性无回声区或低回声区 B、可见腹腔游离积液 B、脾实质受压 D、脾实质萎缩 E、脾实质移位 9、一名四岁 儿童出现血尿,右侧腹扪及一实质性包块,超声检查见右上腹一6×4×4cm实质性非均质性包块,与右肾关系密切,提示最可能为: A、肾透明细胞癌 B、肾错构瘤 C、多囊肾 D、肾母细胞 瘤 E、淋巴瘤 10、超声波在人体组织传播过程中的衰减与下列哪项无关? A、运动目标使 超声波产生频移 B、声能转换成热能被吸收 C、声束在传播中逐渐扩散 D、超声波被不 同声阻抗介面反射 E、超声波被介质散射 11、下列哪组血管是胰腺的定位标志? A、十二 指肠动脉、脾静脉、肠系膜下动脉 B、下腔静脉、腹主动脉、胃左动脉 C、肠系膜上动脉、 脾动脉、十二指肠动脉 D、腹主动脉、肠系膜上动脉、脾静脉 E、门静脉、肝动脉、肾动脉12、超声诊断主动脉瓣狭窄下列哪一项是错误的? A、主动脉瓣口面积小于2.0 c㎡ B、CDFI显示有血流从主动脉进入左室流出道 C、主动脉瓣口血流速度明显增高 D、左室肥厚E、左室收缩压增高 13、下列哪项对心输出量的定义和计算方法是正确性的? A、每次心动 周期的心排出量 B、射血期心排出量 C、每搏量乘以心率 D、左心室容量 E、每搏 量乘以心率再除以体表面积14、下列哪项不是测量左心泵功能的指标?A、射血分数B、左室内径缩短率 C、二尖瓣前叶EF斜率 D、平均周径缩短率 E、室壁增厚率 15、 人体组织回声强度的比较,下列哪项不正确? A、骨骼>软骨 B、肝脾实质>肾实质C、胰腺>肝脾实质 D、肝脾包膜>肝脾实质 E、肝脾实质>膈肌 16、下列哪项不是原发性

超声诊断重点总结

超声诊断学重点 第一章~第四章总论 1、超声诊断学的临床应用:形态学检测、功能性检测、介入性超声。 2、超声诊断的优势:对软组织分辨良好,特别是含液器官(血管、胆道等)。 3、超声诊断的类型:A型、B型、M型、D型、彩色多普勒血流成像等。 4、超声的定义:是一种传播频率在20kHz以上、超过人耳可听到声波频率范围的机械波,临床最常用的频率是2.5~10MHz。 5、对不足2个月的早期妊娠妇女,尽量不用超声进行常规检查。 6、多普勒血流声像图显示:红色表示血流朝向探头,蓝色表示血流背向探头,多彩色小点交织表示湍流,亮度表示血流平均速度。 第五章腹部超声探测方法 1、探头频率的选择: 频率越高,波长越短,穿透力越弱,用于浅表器官; 频率越低,波长越长,穿透力越强,用于深部脏器。 2、在探头和组织之间涂以医用超声耦合剂,可以减少探头与组织间的空气间隙,减少声阻抗差。 3、受检者准备: (1)上腹部检查:空腹8-12h(通常在晨起禁食早餐时检查),显示胰腺等脏器可饮水使胃充盈作透声窗。 (2)盆腔检查:需膀胱适量充盈。 第六章肝超声诊断 一、正常声像图表现 1、正常肝声像图:内部回声细密、均匀,门静脉管壁呈稍强回声,肝静脉管壁不显示明显回声。 2、多普勒血流图:门静脉、肝动脉血流朝向肝,呈红色;肝静脉血流背向肝,呈蓝色。 二、肝疾病的超声诊断 (一)脂肪肝 1、广泛性脂肪肝:肝均匀增大,表面圆钝,肝实质回声增强(“明亮肝”);局限性脂肪肝:花斑样或不规则片状高回声(脂肪浸润区)。 2、血流信号较正常少。 (二)肝炎后肝硬化 1、肝左右叶大小比例失调,右叶萎缩,左叶增大,肝实质回声增粗增强。 2、肝表面不光整或凹凸不平,表面外围可见腹水。 3、胆囊壁充血水肿出现“双边影”。 4、门静脉内径增大,并有门静脉海绵样变性。 (三)肝囊性病变 1、肝囊肿:一个或多个无回声区,透声性好,后壁回声增强,后方回声增强明显。 2、肝浓重:边界不清,壁厚,内壁不规则,呈虫噬样,超声造影现实蜂窝样表现。 3、肝包虫病:囊肿无回声,典型表现是“大囊套小囊”。 (四)原发性肝癌 1、低回声结节,侧壁回声失落,结节周围有低回声声晕,有门静脉癌栓。 2、血供丰富,内部显示线状,分支状彩色血流。

相关主题
文本预览
相关文档 最新文档