当前位置:文档之家› 高地应力隧道稳定性及岩爆、大变形灾害防治(李天斌,孟陆波,王兰生)思维导图

高地应力隧道稳定性及岩爆、大变形灾害防治(李天斌,孟陆波,王兰生)思维导图

软岩大变形研究现状

隧道围岩大变形阶段报告 1.概述 深埋隧道通过软岩和断层带时,在高的地应力和富水条件下通常产生大变形。这种隧道围岩变形量大,而且位移速度也很大,一般可以达到数十厘米到数米,如果不支护或支护不当,收敛的最终趋势是隧道将被完全封死,如果发生在永久衬砌构筑以前,往往表现为初期支护严重破裂、扭曲,挤出面侵入限界。这种大变形危害巨大,严重影响施工工期或者线路正常运营,而且整治费用高昂。 在国内外相继出现了大量的隧道围岩大变形工程实例,并且在治理这些问题中取得了很多经验。 日本的岩手隧道,长25.8km,采用新奥法施工。地质条件为凝灰岩及泥岩互层,单轴抗压强度为2~6MPa。施工中净空位移和拱顶沉降都是很大的,上断面的净空位移100~400mm,最大到411mm;下断面的净空位移最大为200mm,拱顶下沉为10~100mm。 日本惠那山隧道,长8.635km,围岩以花岗岩为主,其中断层破碎带较多,局部为粘土,岩体节理发育、破碎,岩石的抗压强度为1.7~3.0MPa,隧道埋深为400~450m,原始地应力为10~11MPa。施工时产生了大变形,在地质最差的地段,拱顶下沉达到930mm,边墙收敛达到1120mm,有600cm2面积的喷射混凝土侵入模筑混凝土净空。最后采用9.0m和13.5m 的长锚杆,并重新喷护20cm厚的钢纤维混凝土后,结构才得以基本稳定。 陶恩隧道长6400m,开挖断面面积90-105m2,位于显著变质的岩带内,如片岩、千枚岩等,主要岩层为绢云母、千枚岩夹绿泥石,抗压强度R=0.4-1.7MPa,洞内无地下水活动,隧道埋深为600-1000m,原始地应力为16.0-27.0 MPa,侧压力系数近似为1.0,围岩强度比为0.05-0.06。陶恩隧道采用台阶法施工,在设计时,由于对在挤压性围岩隧道施工缺乏经验,采用的初期支护参数较小,导致拱顶发生1.2m的位移。而后把锚杆改为6m,并初次采用纵向伸缩缝,缝宽20cm,间隔3m,支撑也是可缩的,并在隧道底部增加了隧底锚杆,喷射混凝土厚度保持25cm不变。上述补强措施对大变形起到了一定的控制作用,但已完成段,其洞壁已严重侵入二次衬砌净空,只能采取扩挖的办法处理,增加了施工的难度,同时又具有一定的危险性。此时的净空收敛大约是20-25cm。要再大时,要增打9m以上长度的锚杆。 奥地利阿尔贝格隧道隧道长13980m,开挖断面面积90-103m2,岩石主要为千枚岩、片麻岩,局部为含糜棱岩的片岩、绿泥岩,岩石强度为1.2~1.9 MPa,隧道的埋深平均为350m,最大埋深为740m,原始地应力为13.0 MPa,围岩强度比为0.1~0.2。隧道采用自上而下的分布开挖法,先开挖弧形导坑,施作初期支护,然后再开挖台阶(分左、右两次分别进行),最后检底。由于阿尔贝格隧道是在陶恩隧道之后施工的,该隧道设计时的初期支护就比较强,喷射混凝土厚20~25cm,锚杆长6.0m,同时安设了可缩刚架。但是由于岩层产状不利,锚杆的长度仍不够,施工中支护产生了很大变形,拱顶下沉量达到15~35cm,最大水平收敛达70cm,变形速度达11.5cm/d,后来采取将锚杆的长度增加到9.0~12.0m的办法,才是变形得到了控制,变形速度降为5.0cm/d,变形收敛时间为100~150d。 家竹箐隧道隧道全长4990m。隧道位于盘关向斜东翼,属单斜构造,岩层产状N20°~35°E/18°~30°NW。由于距向斜轴部较远,故皱褶、断层不发育,只在隧道中部煤系地层中发育有一正断层F1,其破碎带宽15~20 m。隧道横穿家竹箐煤田。隧道南段为玄武岩,北段为灰岩,北段为灰岩,中部3890 m为砂、泥岩及为钙质、泥质胶结的砂岩夹泥岩的煤系地层。隧道掘进进入分水岭之下的地层深部后,在接近最大埋深(404m)的煤系地层地段,由于高地应力的作用,锚喷支护相继发生严重变形。在一般地段,拱顶下沉为50-80cm,

隧道高地应力的特点分析以及处理建议

隧道高地应力的特点分析以及处理建议摘要:针对工程施工中的隧道高地应力的力学进行了探究和分析,并针对隧道高地应力的挤压变形之特性,对隧道施工的过程中高地应力引起的隧道变形进行了详细分析。介绍了大变形的机理,另外,对典型的地段也进行了清晰的研究,并确定出了大变形地段合理、安全、经济的支护参数。以宜巴高速公路的峡口隧道段为例,详细的介绍了应对隧道高地应力特点的有效的施工措施和技术对 策等,可确切保证隧道施工的安全性。峡口隧道高地应力的施工实践给隧道高地应力区域的施工保留了有意义和价值的技术经验,可供类似的隧道工程借鉴。 关键词:隧道高地应力力学分析大变形施工技术 abstract: based on engineering construction of the tunnel of high geostress mechanical study and analysis, and in the light of the tunnel of high geostress extrusion of the characteristics of tunnel construction process of the high ground stress caused by the deformation are analyzed in detail. introduces the mechanism of the large deformation, in addition, the typical area were also clear research, and determine the large deformation area the reasonable, safe and economic support parameters. with appropriate and highway tunnel segment of the throat for example, detailed introduces the characteristics of the high geostress tunnel to effective

施工技术指南

关于《高速公路标准化施工技术指南》 (隧道部分)审查意见 经对陕西省交通建设集团《高速公路标准化施工技术指南》(隧道部分2010版)的审查,认为该指南编写目标明确,结构基本合理,内容基本齐全,现就有关方面提出以下建议意见。 一、本《指南》隧道部分本次提出版本一个是山岭隧道部分,另一个是黄土隧道部分,从其内容结构内容上看前者偏向技术指南,后者偏向作业指导书,从上级交给的任务和集团指导神府高速公路管理处展开的《隧道施工作业指导书》评审会上编写的文本名称我施工作业指导书,但本次看到的文本名称均为技术指南。本人认为,技术指南是在规范的基础上,增加了具有独到之处的技术要求,包括原则、基本要求、材料、工序、工艺、成品保护及检验等;作业指导书结构差不多,应着重在材料、机械、工序、工艺等方面内容更细,还应有具体的施工组织人员及机械等资源配置,建议主持编写单位十分明确编写对象的名称,以便做到文、题恰如其分。 二、从已提出的两部分隧道施工作业指导书名称上看,一是山岭隧道、另一是黄土隧道,山岭对应的是平原、微丘,黄土对应石质,二者在工程性质口径上有些含混不清。建议将山岭隧道名称改为石质隧道,以便概念统一,便于编写与使用。 三、因为本隧道技术指南出于同一项工作,建议不按分册

安排,以《高速公路隧道工程施工技术指南》统一名称编写,建议将隧道(含石质、黄土隧道)的实施原则性要求内容统一编入总则篇,将属于隧道(含石质、黄土隧道)有关统一要求的内容编入基本要求篇,再将工法(CD法、CRD法、双侧壁导洞法、三台阶七步开挖法、弧形导坑预留核心土法等)、监控量测等后面按石质、黄土隧道分述所能共同用到的有关工法和工序要求等内容作为基本要求篇后的一个增加篇章,而后再将其他工序工艺按照既有的编写格式进行逐一分述,在该部分编写中如若遇到前面已有的内容,可直接指向前面内容名称(或编号),以体现编辑思路清晰文本简捷明了避免重复累赘。 四、建议在版本修改时,以山岭隧道施工技术指南为主线,将黄土隧道施工技术指南中在前者缺少的内容合理的添加进去,如后面定为指南,可将每一工程项目的劳动组织和机具设备条目去掉(机具设备可调整到工程项目其他条目中去),建议对具体项目施工质量检验,进一步具体数据化,更具操作性。 五、整个施工子项目编写得已经较全了,建议将隧道中心排水沟、电缆沟槽、路面、边沟以及隧道装修等也是比较重要的工程子细目补充编入,以达到文本的完善。 六、建议对集团前面已经编写了“高速公路施工精细化范本”,该范本亦将成为高速公路建设施工的规范化要求的一个重要组成部分,建议在编本指南(作业指导书)的有关章节中给

高地应力下硬岩岩爆与软岩大变形专项方案

高地应力下硬岩岩爆与软岩大变形专项方案

八台山隧道高地应力下硬岩岩爆与 软岩大变形专项方案 一、工程概况 1、概况 城口至万源快速公路通道工程采用二级公路标准,设计速度为60公里/小时;路基宽度为12米。 城口至万源快速公路通道CW10合同段位于四川万源堰塘乡布袋溪村,里程为K46+000~K48+640,全长2.640km。本合同段主要工程内容为八台山隧道主洞2480m/0.5座,避难通道2450m/0.5座,1-4*3m 钢筋砼盖板涵一座,路基土石方5115m3。 八台山隧道主洞起止里程K43+205~K48+480,全长5275m,避难通道起止里程YK43+206~YK48+450,全长5244m。属特长隧道。其中主洞K46+000~K46+480段、避难通道起止里程YK46+000~YK48+450,位于CW10合同段内,是本合同段的控制性工程。 2、地形地貌 八台山隧道进口位于重庆市城口县双河乡干坝子河村、出口位于四川万源堰塘乡布袋溪村。 隧道穿越的八台山,受地质构造控制,山脊由东向西横亘,山脊两侧为面积较小的山湾。形成山丘、山脊与沟谷相间形态,以山丘为中心形成向四周发育的“爪”状山沟;隧道轴线地面最高点位于洞身段K44+610的山脊顶部,标高为1797.74m,一般地面标高740.0~1596.2m,最低点位于隧道进口的溪沟底部,标高731.50m左右,相

对高差856.2m.隧道区地貌形态为构造剥蚀、溶蚀中山地貌单元区。 3、工程地质 八台山隧道地质复杂,裂隙倾角大,多为陡倾裂隙,节理面较平直,呈微张~张开状,宽1-50㎜不等,裂隙面附褐色铁质膜,局部为泥质充填。由洞口向洞身地质条件依次为: (1)出口段位于一斜坡上,地表覆盖有第四系崩坡积块石土,基岩为三叠系下统嘉陵江组的盐溶角砾岩。角砾状结构、岩溶发育。 (2)本隧道洞身段主要为III~V级围岩,构成III级围岩的地层岩性以灰岩为主,呈中厚层状。跨度5米,跨度5~10米,可稳定数月,可发生局部块状位移及小~中塌方;构成IV级围岩的地层岩性以大冶组、栖霞组灰岩为主,呈薄~中厚层状。一般无自稳能力,数日~数月内可发生松动变形及小塌方,进而发展为中~大塌方,有明显的塑性流动变形和挤压破坏;构成V级围岩的地层岩性以页岩、炭质页岩、泥质粉砂岩为主,呈薄~中厚层状。岩体受地质构造及风化作用影响较重,裂隙较发育,呈碎、裂状,松散结构,易坍塌,围岩无自稳能力,跨度5米或更小时,可稳定数日。 (3)不良地质: ①岩溶 八台山隧道主洞K46+560~K47+990段、避难通道K46+560~ K47+990段为富水地段且岩溶特别发育,极易发生突水、突泥情况。 ②煤层、煤线与瓦斯 隧道穿越二叠系上统吴家坪组含煤地层,该区域煤层厚0.3~

超深埋隧道高地应力岩爆地段施工技术

超深埋隧道高地应力岩爆地段施工技术 发表时间:2019-03-01T10:51:21.297Z 来源:《防护工程》2018年第35期作者:刘华礼[导读] 本文基于此探讨超深埋隧道高地应力岩爆地段施工技术。 中铁六局集团有限公司交通工程分公司北京 100000 摘要:随着地下资源的开发,交通隧道工程建设不断走向地下深部。已建地下工程中,锦屏二级水电站引水隧洞、新建二郎山隧道、国家油气能源地下储存库、拉林铁路桑珠岭隧道等诸多工程埋深超过千米,这些深埋地下工程围岩地应力均处于较高水平。金鸡岭隧道为高应力硬岩隧道段,该隧道为双线隧道,埋深深,施工时易产生变形、岩爆等施工风险。本文基于此探讨超深埋隧道高地应力岩爆地段施 工技术。 关键词:超深埋隧道;高地应力;岩爆;施工技术 1前言 在隧道建设过程中,隧道开挖稳定性会受到复杂地质的影响,例如高地下水压、岩溶、采空区、软岩大变形及岩爆等。在高地应力条件下,结构完整的脆性硬岩在开挖卸荷后,由于某些因素的诱发而发生动力失稳的现象,即岩爆。目前,如何控制岩爆是岩石力学与工程界共同面临的一个难题。为保证隧道开挖稳定性,加固围岩、弱化围岩、应力转移等防治理念被提出,进而形成了岩爆支护、区域防范和局部解危等岩爆控制措施。在地下洞室开挖后,围岩支护作为最直接有效的岩爆支护措施,引起了工程领域各界人士的关注,得到了越来越多的研究。 在实际岩爆隧道中,特别是工期较紧的隧道施工中,如何在防治岩爆的基础上达到快速施工的目的是交通隧道等地下工程施工所面临的长期性难题。 2岩爆隧道支护现状岩爆的发生取决于岩石的强度、完整性、所处的初始地应力条件和周围地下水情况。根据岩爆的特征和相关性质将岩爆分为3个等级弱岩爆,中等岩爆 ,强烈岩爆。3个等级中,弱岩爆对施工的影响极小,基本上不会对人员和机械造成威胁,实际施工时基本不用采取特殊措施进行处理;中等岩爆持续时间较长,对机械、施工人员的安全及心理造成严重影响,基于加固围岩的思想,目前常采用钢支撑和喷-锚-网(钢筋网)的整体支护方式对隧道中等岩爆区段进行支护,在施工过程中根据实际情况可能还要采用防护网等被动的临时支护措施;强烈岩爆极具危险性,在加强支护的同时还要采用多种辅助措施(如超前应力施工释放孔等)弱化围岩,降低岩爆发生的频率和能量。 3工程概况 金鸡岭隧道进口里程为DK196+353,出口里程为DK200+771.31,全长4418.31m,为双线隧道,隧道最大埋深291.3m。隧道工程量大,存在不良地质,施工技术复杂,金鸡岭隧道隧址区DK197+298~DK197+500为极高应力区,开挖时有岩爆发生;DK200+050~DK200+282段为高应力区,开挖过程中可能有岩爆发生,施工中根据岩爆等级采取相应措施,减小岩爆危害,施工难度大。 4超深埋隧道高地应力岩爆段施工技术针对高地应力硬岩易发生岩爆的特点,制定了“早预报、超前支护、短进尺、弱爆破、强支护、快封闭、勤量测,步步为营,稳步前进”的整治原则和总体方案,配合超前小导管等辅助方案。 4.1施工工艺流程 高地应力硬岩隧道施工工艺流程如图1所示。 图 1 施工工艺流程图超前应力钻孔打设超前应力钻孔,可以有效降低前方掌子面的高地应力,也可以采用注水的方式,降低周围岩体的表面张力,钻孔直径45mm~108mm,深度5m~20m。对轻度岩爆每循环掌子面打设1孔~3孔;中度岩爆每循环掌子面打设4孔~6孔;强烈岩爆每循环掌子面打设6孔~8孔,对掌子面拱顶及两侧起拱线位置要优先布孔,其余孔位可作为加密孔。必要时也可以打设部分径向应力释放孔,钻孔方向应垂直岩面,同时对于强烈岩爆地段可采取超前钻孔内部松动爆破的方法,或用小炮震裂完整岩石的方法,或孔内注水的方法,从而减少应力集中。 4.2超前支护措施 针对岩爆类型及大小,提前打应力释放孔或超前摩擦锚杆支护,以达到减弱岩爆的强度。必要时作超前30m~50m导洞,导洞直径不大于5m,可作为岩爆超前预报和释放地应力。 在岩爆地段,开挖后及时向掌子面及以后约15m范围内隧道周边进行喷射高压水,在某种程度上可以削弱围岩表面的强度,选取超前探孔向围岩岩体内均匀注高压水,从而提前减小围岩变形能力并将最大切向应力转移到围岩的内部,注高压水的劈裂作用也可以软化硬岩,从而降低硬岩的强度,并可以新产生裂缝或是使既有缝隙更加发展,继而释放围岩内部的弹性应变能量。也可以提前在掌子面有概率导致岩爆的位置有规律地钻少许空眼,不设置锚杆,而采取注水的方式,可以释放部分压力,可以避免硬岩达到极限强度而导致岩爆。 4.3开挖施工工艺

对软岩变形问题的一些肤浅认识

对这几天对软岩变形论文的收集做了些归纳、总结,希望能提供给你们些许方向。由于时间仓促,没有做系统的深入研究,对某些论文中的观点未作验证。 一、国内外工程实例 1、南昆线家竹箐隧道[1] 隧道于1996年建成,全长约4990m,发生大变形段落全长390m,拱顶最大下沉量为160cm,周边最大位移量为240cm,隧底最大隆起量100cm。围岩为煤系地层,以煤、泥岩、砂质泥岩、和钙质细砂岩为主,最大主应力19.62Mpa,最大水平主应力16.09Mpa,最大垂直主应力8.57Mpa。采用8m长锚杆加固围岩等措施整治。 2、兰新二线乌鞘岭隧道 隧道于2005年建成,全长20050m。隧道穿越F4~F7等4条区域性大断层组成的宽大挤压构造带,线路长度为7587m,其中岭脊段志留系板岩夹千枚岩和F7断层泥砾带等软弱围岩发生大变形。岭脊段最大水平收敛达1209mm,最大拱顶下沉367mm,平均累计变形F4、F5、志留系板岩夹千枚岩、F7几个区段分别为90mm~120mm、300mm~400mm、200mm~400mm、150mm~550mm。最大变形速率F4、F5、志留系板岩夹千枚岩、F7几个区段分别可达73mm/d、143mm/d、165mm/d、167mm/d。165mm/d;F7断带累计变形150~550mm、最大变形速率167mm/d。最大水平主应力约22Mpa。 3、奥地利的陶恩隧道[1] 隧道于1985年建成,全长6400m,最大位移速度20cm/d,最大变形量120cm,围岩为绿泥石、绢云母千枚岩,地应力16~27Mpa。采用6~9m长锚杆整治。 4、奥地利的阿尔贝格隧道 隧道于1979年建成,全长13980m,最大变形速度11.5 cm/d,最大变形量70cm,围岩为以千枚岩为主,地应力13Mpa。采用9~12m长锚杆整治。 5、日本的惠那山隧道 隧道于1985年建成,全长8635m,边墙最大变形56cm,拱顶最大下沉93cm,围岩为风化花岗岩组成的断层破碎带,地应力为10~11Mpa。采用9m和13.5m的长锚杆整治。 二、软岩大变形机理研究 1、关于大变形定义的讨论 隧道围岩大变形是软岩地质中常见的一种地质灾害。大变形是一种塑性破坏和塑性流动。20世纪初期以来,国内外许多学者从形成机制、预测方法、防治措施等诸多方面对大变形进行广泛地研究。然而,迄今为止,国内外学术界对大变形的定义、分级、形成机制、位移控制等问题尚未形成统一的认识。 目前工程界和学术界对软岩隧道大变形尚无统一的定义。徐则明从大变形的6个特征对大变形进行了概况描述,何满潮认为软岩的大变形是个塑性大变形,卞国忠从围岩变形量上(变形量>400mm)给大变形做了界定。 2、软岩大变形机理 软岩大变形的成因比较复杂,一般可归为两大类:一是开挖形成应力重分布超过围岩强度而发生塑性化;二是岩石中某些矿物和水反应而发生膨胀。从各个大变形的工程案例上,发生大变形的地段,岩体具有一些共同的特性,如:岩体受区域性构造影响较大,普遍节理很发育,完整性差;岩石的强度和模量较高,同时岩体的强度和模量较低;高地应力环境;隧道内有少量地下水。 ①高地应力对软岩变形的贡献 研究表明,当强度应力比(Rb/σmax)小于0.3~0.5时,即能产生比正常隧道开挖大一倍以

高地应力下硬岩岩爆与软岩大变形专项方案

八台山隧道高地应力下硬岩岩爆与 软岩大变形专项方案 一、工程概况 1、概况 城口至万源快速公路通道工程采用二级公路标准,设计速度为60公里/小时;路基宽度为12米。 城口至万源快速公路通道CW10合同段位于四川万源堰塘乡布袋溪村,里程为K46+000~K48+640,全长2.640km。本合同段主要工程内容为八台山隧道主洞2480m/0.5座,避难通道2450m/0.5座,1-4*3m 钢筋砼盖板涵一座,路基土石方5115m3。 八台山隧道主洞起止里程K43+205~K48+480,全长5275m,避难通道起止里程YK43+206~YK48+450,全长5244m。属特长隧道。其中主洞K46+000~K46+480段、避难通道起止里程YK46+000~YK48+450,位于CW10合同段内,是本合同段的控制性工程。 2、地形地貌 八台山隧道进口位于重庆市城口县双河乡干坝子河村、出口位于四川万源堰塘乡布袋溪村。 隧道穿越的八台山,受地质构造控制,山脊由东向西横亘,山脊两侧为面积较小的山湾。形成山丘、山脊与沟谷相间形态,以山丘为中心形成向四周发育的“爪”状山沟;隧道轴线地面最高点位于洞身段K44+610的山脊顶部,标高为1797.74m,一般地面标高740.0~1596.2m,最低点位于隧道进口的溪沟底部,标高731.50m左右,相

对高差856.2m.隧道区地貌形态为构造剥蚀、溶蚀中山地貌单元区。 3、工程地质 八台山隧道地质复杂,裂隙倾角大,多为陡倾裂隙,节理面较平直,呈微张~张开状,宽1-50㎜不等,裂隙面附褐色铁质膜,局部为泥质充填。由洞口向洞身地质条件依次为: (1)出口段位于一斜坡上,地表覆盖有第四系崩坡积块石土,基岩为三叠系下统嘉陵江组的盐溶角砾岩。角砾状结构、岩溶发育。 (2)本隧道洞身段主要为III~V级围岩,构成III级围岩的地层岩性以灰岩为主,呈中厚层状。跨度5米,跨度5~10米,可稳定数月,可发生局部块状位移及小~中塌方;构成IV级围岩的地层岩性以大冶组、栖霞组灰岩为主,呈薄~中厚层状。一般无自稳能力,数日~数月内可发生松动变形及小塌方,进而发展为中~大塌方,有明显的塑性流动变形和挤压破坏;构成V级围岩的地层岩性以页岩、炭质页岩、泥质粉砂岩为主,呈薄~中厚层状。岩体受地质构造及风化作用影响较重,裂隙较发育,呈碎、裂状,松散结构,易坍塌,围岩无自稳能力,跨度5米或更小时,可稳定数日。 (3)不良地质: ①岩溶 八台山隧道主洞K46+560~K47+990段、避难通道K46+560~ K47+990段为富水地段且岩溶特别发育,极易发生突水、突泥情况。 ②煤层、煤线与瓦斯 隧道穿越二叠系上统吴家坪组含煤地层,该区域煤层厚0.3~

齐岳山隧道高地应力地段施工技术研究

建造技术 J I A N Z H A O J I S H U 刘文军:齐岳山隧道高地应力地段施工技术研究 876 年第23卷第6期 收稿日期:2009 09 22;修改日期:2009 10 21 作者简介:刘文军(1979-),男,安徽广德人,硕士,中铁十五局集团有限公司工程师.齐岳山隧道高地应力地段施工技术研究 刘文军 (中铁十五局集团有限公司,河南洛阳 471013) 摘 要:针对宜万铁路齐岳山隧道高地应力地段的施工技术难题,在分析隧道高地应力表现特征及原位测试结果的基础上,详细阐述了该地段所采取的预先释放应变能,!钢架、锚、网、喷?综合支护及时紧跟的施工技术,成功应用了!先放后抗,先柔后刚?,有效控制了拱顶岩层松弛、脱落,确保了隧道的施工安全,为在类似地质环境条件下隧道工程施工积累了经验。关键词:隧道;高地应力;施工技术 中图分类号:U 459.1;U455 文献标识码:A 文章编号:1673 5781(2009)06 0876 03 随着我国隧道施工技术的迅速进步,隧道已经向长大、深埋方向发展,在深埋隧道开挖施工过程中,围岩应力产生重新分布,在高地应力作用下,岩体被拉裂、松弛后从拱顶及拱脚部位脱离母体而坠落,直接威胁着施工人员、设备的安全,影响施工进度,通过分析、研究高地应力特征,介绍施工技术,为解决类似难题积累经验[1 6]。 1 工程概况 宜(昌)万(州)铁路齐岳山特长隧道,位于湖北省利川县谋道镇境内,全长10.528km,地处鄂西构造溶蚀侵蚀中高山区,地质极为复杂,集溶洞、暗河、高压富水断层破碎带、瓦斯、煤层、高地应力和石膏岩地层等多种不良地质于一身,是全线8座I 级风险隧道之一,出口段穿越箭竹沟向斜,主要地层为三叠系须家河组、侏罗系珍珠冲组、自流井组、新田沟组、上沙溪庙组、下沙溪庙组等碎屑岩。主要岩性为泥岩、页岩、粉砂岩、砂岩及少量生物碎屑灰岩。隧道与山脊凹线呈大角度相交,山坡陡峻,坡面侵蚀严重,大小沟 谷发育。 2 隧道高地应力特征 隧道正洞掘进至371km +046m ~+096m 段、平导掘进至370km+878m~371km +125m 段时,开挖后1~18h,岩体内部发出!吭吭?的闷响声,随后围岩表面出现裂缝,岩体自母体剥落,剥落面较平整。一般发生在距离掌子面12m 范围内,以拱部为主,发展一定时间后,拱顶形成倒!V ?形凹坑或梯形凹坑,主要呈板状和片状,最大块达160cm #110cm #60cm 。在距掌子面近30m 已喷射混凝土处,亦能听到!吭吭?的岩体内部闷响声。 上述两段隧道埋深360~450m,围岩为侏罗系中上沙溪庙组紫红色泥岩,岩层产状近水平,薄-中厚层状,层间结合较好,节理裂隙不发育,无地下水出露。为掌握隧道高地应力特征,采用钻孔应力解除法(孔径变形法)在隧道平行导坑线路左侧边墙布置2组测点进行测试,测试结果如表1所列。 表1 隧道高地应力测试结果 测点号 测点位置 围岩 项目 1 2 3应力/M Pa 14.057.0 4.98S1 371km +090m 泥岩 方向/(?)N51.55E N39.15W N48.21E 倾角/(?)+27.31+1.36-62.64应力/M Pa 13.0210.28 5.24S2 370km +940m 泥岩 方向/(?)N66.57E N52.17W N18.06W 倾角/(?) +13.11 +64.16 -21.84 注:主应力方向为主应力投影方向;倾角中!+?为仰角,!-?为俯角。

最新铁路隧道工程施工规范

竭诚为您提供优质文档/双击可除最新铁路隧道工程施工规范 篇一:铁路隧道工程施工技术指南 铁路工程施工技术指南tz tz204—20xx 铁路隧道工程施工技术指南 20xx—10—33发布20xx—12—01实施 铁道部经济规划研究院发布 铁路工程施工技术指南 铁路隧道工程施工技术指南 tz204—20xx 主编单位:中铁一局集团有限公司 批准部门:铁道部经济规划研究院 施行日期:20xx年12月01日 中国铁道出版社 20xx年·北京 前言 本技术指南是根据铁道部《关于编制20xx年铁路工程建设标准计划的通知》(铁建设函[20xx]1026号)和铁道部

经济规划研究院《关于确定部分20xx年新开标准项目主编 单位的通知》的要求,在《铁路隧道施工规范》(tb10204-20xx)基础上修订而成的。 本技术指南共分18章,另有8个附录。其主要内容包括:总则,术语,施工准备,洞口工程,施工方法,辅助施工方法与措施,钻爆开挖,初期支护,二次衬砌,防排水,施工机械与设备,超前地质预报,监控量测,辅助坑道,通风防尘、风水电供应与通信系统,特殊岩土和不良地质地段隧道施工,环境保护及施工阶段的风险评估等。 本技术指南与《铁路隧道施工规范》(tb10204-20xx) 相比,章节和内容的增减情况主要有: 1.增加了超前地质预报、环境保护、辅助施工方法与措施四章。 2.增加了施工工艺流程图。 3.增加了近年来修建隧道较成熟的施工技术,如黄土隧道、高原冻土隧道、斜切式洞口、混凝土耐久性等的内容。 4.施工机械与设备章按作业工序分节,并增加了机械配置参考表及施工实例。 5.删除了有关整体式衬砌、喷锚衬砌和隧道塌方等内容。 希望各单位在执行本技术指南过程中,结合工程实践,总结经验,积累资料。如发现需要修改和补充之处,请及时将意见和有关资料寄交中铁一局集团有限公司(地址:西安

高地应力软岩大变形隧道施工技术

高地应力软岩大变形隧道施工技术 中铁十四局集团第四工程有限公司石贞峰 摘要:堡镇隧道为宜万铁路第二长隧、七大控制工程之一,也是全线施工难度最大的隧道之一。堡镇隧道围岩属于高地应力软岩,在施工中发生高地应力软岩大变形。结合 软岩的岩性分析情况,采用科研引导、稳扎稳打的方针,制定了详细的施工方案,在施工过程中探索、研究出了控制软岩大变形的施工技术。 关键词:堡镇隧道高地应力软岩大变形施工技术 1 工程概况 堡镇隧道左线全长11565m,右线全长11599m,线间距30m, 右线初期设计为平导,作为左线辅助施工通道,后期再将平导扩挖形成右线隧道。是宜万铁路第二长隧、七大控制工程之一,也是全线唯一的高地应力软岩长隧。十四局承担左线进口段5641m、右线进口段5622m的施工任务。 隧道穿越岩层主要为粉砂质页岩、泥质页岩,呈灰黑色,多软弱泥质夹层带,白色云母夹层,强度极低。大部分页岩呈薄层状,层厚3~10cm,分层清晰,产状扭曲,挤压现象明显,岩体破碎,强度很低,手捏呈粉末状,遇水膨胀;顺层发育,有光滑顺层面,层间多夹软泥质夹层,节理、层理发育、切割严重,围岩整体性很差,隧道左边拱存在顺层软弱面,右侧边墙有楔形掉块,爆破后滑坍、掉块严重。根据国标《工程岩体分级标准》,该区属高应力区,产生大的位移和变形。洞内初期支护局部开裂,顺层坍塌,节理发育,软岩变形等,凡专家预测的复杂地质均已出现。在施工中发生多次高地应力作用下较大变形中,仅8#横通道处拱顶沉降最大就达15cm,收敛32.5cm,超过预留变形量,并侵入二次衬砌。 2 施工方案 针对高地应力软岩大变形的特点,我们制定了“超前支护、初支加强、合理变形、先放后抗、先柔后刚、刚柔并济、及时封闭、底部加强、改善结构、地质预报”的整治原则和总体方案,配合平导超前等辅助方案较好的解决了此项难题。 2.1 总体方案介绍 (1)采用超前小导管支护,开挖后及时封闭围岩;加强初期支护的刚度,采用型钢拱架封闭成环;为达到稳固围岩的目的,系统锚杆采用中空注浆锚杆加固地层,锚杆长度应稍大于塑性区的厚度。 (2)加大预留变形量。为了防止喷层变形后侵入二次衬砌的净空,开挖时即加大预留变形量,另外采取了不均衡预留变形量技术。 (3)施工支护采用“先柔后刚,先放后抗、刚柔并济”原则,使初期支护能适应大变形的特点。 (4)及时封闭仰拱、特别是仰拱初支,是减小变形、提高围岩稳定性的措施之一;另外加大仰拱厚度,增大仰拱曲率,也有利于改善受力状况。 (5)改善隧道结构形状,加大边墙曲率,根据围岩实际和监控量测数据,采用受力结构最为合理的“鸭蛋”型断面;改善结构另一措施是提高二次衬砌的刚度,即加大二次衬砌厚

高地应力软岩大变形隧道施工技术 刘国平

高地应力软岩大变形隧道施工技术刘国平 发表时间:2018-02-26T10:12:45.293Z 来源:《建筑学研究前沿》2017年第28期作者:刘国平[导读] 不断加强高地应力软岩大变形隧道施工技术,从而最大限度降低软岩大变形对隧道施工产生的影响。中铁隧道局集团二处有限公司河北燕郊 065201 摘要:我国幅员辽阔、地形复杂多样。在进行铁路建设时,受到各种地形的影响,隧道施工也会受到影响,尤其是高地应力软岩的大变形,会导致初期支护的开裂,甚至发生塌方,更严重的会造成永久性支护破坏。本论文以高地应力软岩大变形为基本出发点,详细论述了高地应力软岩变形的主要特征,并在此基础上提出了隧道施工的控制措施,为业内人士提供了一定的参考。 关键词:高地应力;软岩;隧道施工; 近年,随着社会经济的发展,对于铁路、公路的需求也在不断提高,这就要求我国的铁路、隧道建设中,不断要提高其建设质量,还要增加建设数量。然而在隧道工程的进程中,会不可避免地受到地质条件的影响。其中,高地应力软岩大变形就是隧道工程施工中,最大的障碍,只有提升隧道施工技术,才能从根本上保证隧道工程的工程质量。 一、软岩概况 软岩,是一种在特定环境下形成的,具有显著塑性变形的复杂的岩石力学介质。通常,软岩可分为地质软岩与工程软岩两大类。 其中,地质软岩,包括泥岩、粉砂岩、泥质矿岩和页岩这四大类,主要是在大自然的作用下,而天然形成的复杂地质。这类地质软岩具有强度低、空隙大、胶结程度差、受构造面切割及风化影响显著等特点;而工程软岩,则强调了软岩所承受的工程力,主要是在工程力的作用下,而使得岩石发生了显著性的变化。 软岩,由于其特性不同,以及产生显著的塑性变形的机理不同,可将其分为膨胀性软岩、节理化软岩、复合型软岩和高应力软岩四大类。 其中,高应力软岩根据高应力的类型,又可细分为自重应力软岩和构造应力软岩;而根据高应力的水平,又可分为三个等级,即高应力软岩、超高应力软岩和极高应力软岩。(如表1) 表1:高应力软岩分级 级别应力水平/MPa 高应力软岩 25-50 超高应力软岩 50-75 极高应力软岩 >75 二、软岩变形以及破坏特性 (一)软岩变形特征 在隧道工程的作用下,软岩承受了一定的工程力,从而使得岩石发生变形,产生巨大的变化。在隧道施工工程中,软岩变形是评价软岩稳定性的一项重要指标,也是工程设计人员在进行隧道工程设计时,而遵循的基本准则之一。 通常,当隧道工程开始施工之后,其周围的软岩会发生一些重要的改变,大致要经历三个阶段:1、弹性应变阶段,2、弹性变形和塑性变形两个阶段共同的阶段,3、蠕变为主,蠕变、塑性变形共存阶段。 在隧道施工过程中,软岩所经历的三个变化阶段中,具有以下三种显著的特点:第一,变形量大 主要是指在隧道工程开始施工之后,就会产生显著的塑性应变,这是软岩在隧道施工中最主要的特征。据相关的检测数据表明,在隧道施工的作用下,软岩的洞壁可出现数百、乃至一千毫米的位移。在软岩塑性应变的作用下,在隧道施工中就会表现出初期支护严重破裂,如混凝土开裂脱落、钢架扭曲等。 第二,变形速度快 在隧道施工开始之后,原本坚硬的围岩会迅速发生变形,在发生一系列的变形之后,又会迅速走向稳定的状态,其变形速率非常小;而软若的围岩在隧道施工开始之后,其变形速率又会迅速增加,特别是在初期变形速率会增大。 第三,变形时间长 软岩不仅初期的变形速率快,而且持续的时间比较长,具有明显的入变形特征。 第四,围岩变形具有明显的阶段性 在隧道施工过程中,围岩的变形具有明显的阶段性。据某隧道工程施工检测的数据分析,在施工中,随着施工阶段的不同,围岩的变形也各有不同。当上台阶开挖时,拱顶出现下沉,且下沉量约占总下沉量的45%左右,而引起的水平收敛约为50%;当中台阶开挖时,拱顶下沉总量约为总下沉总量的35%;而引起的水平收敛约为40%。从数据中可以看出,在隧道施工过程中,围岩的变形有明显的阶段性。同时,可看出,在施工过程中,加强对隧道开挖的上、中台阶时,加强对其控制十分有必要。 (二)软岩破坏特征 在隧道施工过程中,随着爆破、中台阶和下台阶的落地、以及仰拱开挖时会导致岩体大变形,同时,在岩体大变形的情况下,也会对隧道工程带来严重的影响。 岩体大变形,就会导致隧道工程施工出现初期支护的开裂的现象。在这种情况下,如果初期支护变形侵限的问题处理不当,就会给围岩造成更大的影响,从而产生失稳、甚至坍塌的现象。 三、高地应力软岩大变形隧道施工技术 就目前而言,我国高地应力软岩隧道施工案例非常多,例如:中缅油气管道的博南山隧道、兰渝铁道的木寨岭隧道等。可以说,在所有的高地应力软岩的隧道施工过程中,面临的最大难题就是软岩大变形,以及随之而产生的初期支护开裂现象,甚至塌方。这就要求相关技术人员在施工过程中,必须不断提高高地应力软岩大变形的隧道施工技术。

隧道工程洞口开挖施工标准化技术指南

洞身开挖应根据隧道长度、断面大小、结构形式、工期要求、机械设备、地质 条件等,选择适宜的开挖方案(包括开挖顺序、爆破、施工照明、通风、排水、支护、出渣等)。为了最大限度地利用围岩自承能力,必须采用有利于减少超挖、减少围岩扰动的开挖方法进行洞身开挖。 一般规定 1、洞身开挖应根据地质条件、断面大小、机械设备等,选择适宜的开挖方案(包括开挖顺序、爆破、施工照明、通风、排水、支护、出渣等)。为了最大 限度地利用围岩自承能力,必须采用有利于减少超挖、减少围岩扰动的开挖方法进行洞身开挖。 2、隧道爆破应采用光面爆破,必要时采用预裂爆破技术;施工中应优化钻爆设计、提高钻眼效率和爆破效果,降低工料消耗。对不宜爆破、挖掘机又难以挖 动的软弱围岩以及黄土地段,鼓励采用铣挖机配合装载机进行隧道开挖施工。 3、应有良好的通风、照明、调度、高压风、 给排水、供电系统。 说明 良好的通风系统、良好的调度系统、良好的高压风系统、良好的给排水系统、良好的供电系和照明系统是隧道快速施工的关键保障。 4、双向开挖隧道的贯通宜选择在围岩较好的地段。双向开挖距离接近时,两 端施工应加强联系、统一指挥,并采取浅眼低药量,控制爆破震动;当两开 挖面间的距离为15-30m时,应改为单向开挖,一端必须停止开挖、将人员机 具撤走,并在安全距离处设立警告标志。对采用单向开挖的隧道,出洞前应 反向开挖不少于30m或不小于洞口超前管棚长度,严禁在隧道洞口处贯通。 隧道选择在洞口位置贯通,造成洞口沉降变形 5、双洞开挖时,应根据两洞的轴线间距、洞口里程距离、地质条件及其他自然条件,选择适当的开挖方法,确定好两洞开挖的时间差和距离差,并采取措施 防止后行洞开挖对先行洞周壁产生不良影响。 施工工序

峡口隧道高地应力软岩大变形施工控制技术

峡口隧道高地应力软岩大变形施工控制技术 马军山 (中铁二十局集团第三工程有限公司重庆 401121) 【摘要】湖北宜巴高速公路峡口隧道进口段穿越薄层碳质页岩地层,在隧道区范围内,侧压系数均大于1,隧道区的水平地应力以构造应力为主,同时表明地应力场以水平应力为主导;最大水平主应力与隧道轴线交角较大,对隧道围岩的稳定性不利;地应力量值对碳质页岩而言为极高应力。在隧道施工过程中,通过采取提高支护体系刚度、合理预留变形量,以及采用长锚杆、短进尺预留核心土和二次衬砌跟近、提高二衬混凝土强度等常规措施控制了围岩变形,保证隧道顺利施工。 【关键词】峡口隧道碳质页岩高地应力大变形控制措施 1 引言 随着我国铁路、高速公路建设的不断发展,隧道工程已经向长大、深埋方向发展,建设穿越高地应力且地质环境恶劣的软弱围岩区的长大隧道工程不可避免[1]。例如兰新复线乌鞘岭隧道、二郎山隧道、宜万铁路堡镇隧道、兰渝铁路毛羽山隧道等在施工过程中都存在高地应力软岩大变形。在高地应力区修建的地下工程,最大的难题就是软岩大变形的控制问题[2]。 目前,关于围岩大变形还没有一个明确的和清晰的定义,在理论上缺乏系统研究,在工程实践中,围岩大变形至今未列入设计规范。国内外许多专家对高地应力软岩隧道修建技术进行了大量研究,分别从支护措施、开挖方法等方面提出相应观点和解决办法。 在建湖北宜巴高速公路峡口隧道,隧道区的水平地应力以构造应力为主,同时表明地应力场以水平应力为主导;最大水平主应力与隧道轴线交角较大,对隧道围岩的稳定性不利;地应力量值碳质页岩而言为极高应力。隧道初期支护后出现严重的大变形情况。本文结合峡口隧道进口高地应力软岩大变形工程实例,研究薄层碳质页岩地层大变形的发展规律和力学机理,在施工过程中探求合理的治理措施,达到有效控制围岩变以及快速掘进的目标,从而保证工程的顺利施工;同时,进一步深化并丰富软岩隧道大变形研究,为该类隧道工程设计施工控制提供理论研究。 2 工程概况 在建的峡口隧道位于兴山县峡口镇境内,为路线穿越一近南北走向山岭而建设。隧道采用分幅式,其左幅起讫桩号ZK104+214~ZK110+670,总长6456.0m,右幅起讫桩号

高地应力软岩大变形隧道施工技术阐述

高地应力软岩大变形隧道施工技术阐述 发表时间:2019-06-18T10:19:19.603Z 来源:《中国建筑知识仓库》2019年01期作者:卫永强[导读] 摘要:岷县隧道线路施工过程中,在高地应力软岩地质的影响下,在进行初期支护的过程中,多处地区出现大的变形,并且破坏极为严重。所以,为了保证施工的顺利和安全,采取了先柔后刚、先放后抗、多重支护、提高二次衬砌刚度和超短台阶开挖等有效措施,不仅有效的控制了围岩大变形的情况,而且保证了项目运行的安全性和有效性。借此,本文就岷县隧道线路的工程概况及大变形问题进行了 解,并且采取必要的措施进行大变形的控制。引言 在近些年发展的过程中,我国道路建设实现了高速式的发展,并且对于道路建设标准越来越高,尤其是对于一些地形地貌相对复杂的地区,如隧道区域的长度、隧道深埋度、地质条件复杂度等等。所以,本文就穿越高地应力区且地质复杂的软弱围岩的岷县隧道线路软岩大变形问题及采取的有效施工技术进行研究和分析,希望能够为后续隧道施工提供理论方面的意见或建议。 一、工程概述 1.1隧道概况 岷县隧道线路近南北走向下穿岷山,整个隧道建设采用了分离式的设计,洞身最大埋深约286.9m,其中,左线是ZK234+610~ZK237+400,全长2790m;右线是K234+570~K237+418,全长2848m。在进口段区域,采用了削竹式洞门,在出口段区域,采用了端墙式洞门,隧道整体是全射流风机纵向通风,并且隧道内设置了完善的照明、消防和监控系统。在本次调研的标段中,主要是对岷县隧道线路的隧道出口段进行研究,该标段位于洮河北岸谷坡上,洞线与坡面基本垂直,围岩主要由强风化炭质板岩、中风化炭质板岩组成,遇水变形大,采用环形开挖留核心土进洞。其中,左洞是ZK236+600~ZK237+400(800m),其中明洞20m,右洞是K236+600~K237+418(818m),其中明洞6m。 1.2技术标准 岷县隧道线路为一级公路,隧道设计是以80km/h速度为准;隧道主洞建筑以净宽10.25m,净高5.0m为限界;紧急停车带建筑以净宽13.0m,净高5.0m为限界;隧道车行横洞建筑以净宽4.5m,净高5.0m为限界;隧道行人横洞建筑以净宽2.0m,净高2.5m为限界;公路I级的荷载能力;隧道二衬抗渗等级≥P8;右线纵坡为-0.7%,左线纵坡为-0.704%。 1.3设计情况 1.3.1洞门设计。隧道出口端,左右线均采用钢筋混凝土洞门,形式为端墙式洞门,出口端明暗交界设计里程为ZK237+380,明洞长度20m;YK237+412,明洞长度6m。 1.3.2边坡、仰坡设计。洞口边坡、仰坡开挖坡率分别为1:0.5、1:0.75。洞口边坡、仰坡防护采取锚网喷支护形式,其中锚杆采用Φ22砂浆锚杆,L=3.5m,间距120cm×120cm,梅花型布置;混凝土采用C25喷射混凝土,厚度10cm;钢筋网采用Φ8钢筋网,网格间距20×20cm。 1.3.3截排水系统设计。在距隧道洞口边坡、仰坡开挖线外不小于5m处施作洞口截水沟,以防止雨水对洞口边坡、仰坡坡面和洞口绿化的冲刷而造成洞口失稳。根据地形条件,截水沟流水方向向两侧,与自然沟形成排水系统。 1.3.4进洞辅助措施设计。左右线洞口均采用32m长管棚进行超前支护,钢管采用热轧无缝钢管及钢花管,直径89mm,壁厚6mm,环向间距35cm,每环43根。二、岷县隧道线路施工中存在的问题岷县隧道线路中,隧道出口段的斜坡坡度是40度,斜坡为强风化炭质板岩、中风化炭质板岩。强风化炭质板岩的板理判断,主要是因为裂隙发育,岩体易破碎,并且局部存在坍塌掉块的现象,就施工条件而言,斜坡的整体稳定性是极为差的。另外,在隧道出口段的西侧区域,冲积现象较为显著,对于多雨地区的岷县而言,旱季干涸,雨季时,不仅有大量的降水,而且降水流出的过程中,带有泥石流流出。所以,隧道施工期间,不仅要做好截排水,而且还要做好出口西侧坡脚的防护措施。 三、岷县隧道线路控制变形施工技术针对岷县隧道线路高地应力软岩大变形的情况,在前期准备工作中了解到,该地域多为强风化炭质板岩、中风化炭质板岩的地质条件,在隧道施工环节中,需要遵循先柔后刚、先放后抗、多重支护、提高二次衬砌刚度和超短台阶开挖等先柔后刚、先放后抗、多重支护、提高二次衬砌刚度和超短台阶开挖等原则,并且就不同的区域采取不同的施工办法。 3.1改善隧道形状,直墙变曲墙岷县隧道线路施工环节中,根据设计需要开挖断面为直边墙,在高地应力的影响下,大多数变形主要是以水平收敛变形结构为主,并且具备了变形快、变形量大的特性。另外,在软岩变形区域出现的喷混凝土开裂情况,初期主要是混凝土表面出现环形,或者是纵向的裂缝,并且支护出现内鼓,拱架开裂、扭曲等,严重影响到了施工的安全性和顺畅性。所以,就结构受力情况而言,采取斜井开挖断面的方式,在一定程度上,不仅可以保障受力的均匀性,而且还能尽可能降低应力集中导致的一系列负面影响。因此,钢架支护采用圆曲形的同时,增加仰拱的支撑力,进而形成闭合环的形式,进而保障支护的稳定性。 3.2先柔后刚、先放后抗“先柔后刚”实际上指的就是支护结构为柔性支护,主要是由钢筋网喷混凝土、钢架、锚杆等组成。二次衬砌是刚性的浇筑混凝土,主要承担残余的地层荷载力。“先放后抗”实际上指的就是在初期支护作业完成之后,在一定程度上,允许一定的变形,保证变形在变形预留量之内,可以进行第二次的混凝土浇筑,即混凝土衬砌。 3.3多次支护控制变形在前期多次的斜井施工过程中,在充分考虑到考变形快这个特征的前提下,岷县隧道线路的初期支护可以采取双层钢架网喷混凝土加强得方式,首先,在第一层支护中,采用刚性较大的工字钢架,在一定程度上,可以及时有效地抵抗岩层变形情况。其次,第二层支护的作用就是限制变形情况扩大。 3.4底部加强,抑制隆起

相关主题
文本预览
相关文档 最新文档