当前位置:文档之家› 大连理工大学电磁场与微波实验预习报告

大连理工大学电磁场与微波实验预习报告

大连理工大学电磁场与微波实验预习报告
大连理工大学电磁场与微波实验预习报告

电磁波参数测量预习报告

姓名:学号:班级:实验台号:同组人:

一、实验目的和要求

1.在学习均匀平面电磁波的基础上,观察电磁波的传播特性。

2.熟悉并利用相干波原理,测量自由空间内电磁波的波长λ,确定相移常数β和波速v 。

二、主要仪器

1.DH926B 型微波分光仪

2.DH1121B 型3CM 固态信号源

3.BD-1/035A 型3CM 空腔式波长表

4.金属反射板两块

5.有机玻璃半透射板一块

三、实验内容和原理

1.实验内容

(1)了解利用相干波测量自由空间内电磁波波长的原理及方法。

(2)熟悉电磁波测量平台(微波分光仪)的特点及使用。

(3)手动模式,采用“交叉读数法”测量连续的3个波节点01d 、02d 、03d ,并分别计算得到两个半波长λ/2及β、v 。

(4)用3cm 空腔波长表测量行波频率f 。

2.实验原理

两束等幅、同频率的均匀平面电磁波,在自由空间内从相同(或相反)方向传播时,由于初始相位不同发生干涉现象,在传播路径上可形成驻波场分布。本实验正是利用相干波原理,通过测定驻波场节点的分布,求得自由空间内电磁波波长λ的值,再由 λπβ2=

β

βωλνf f π2=== 得到电磁波的主要参量:β和ν等。

相干波测量波长实验装置如图1所示。图中P r0、P r1、P r2、P r3分别表示辐射喇叭天线、固定金属反射板、可动金属反射板和接收喇叭天线。图中介质板是一块30×30(cm)2玻璃板。由发射喇叭天线辐射来的电磁波一部分经介质板反射到达P r1,再经P r1反射和介质板的折射到达接收喇叭;另一部分能量通过介质板折射到达P r2,再经P r2反射和介质板的折射到达接收喇叭。这样,两部分能量在接收喇叭处形成相干波。

图1

设介质分界面上以入射角θ1斜入射一个垂直极化波,入射波电场为:

1jk r i ot E E e -=

则在分界面上便产生反射波E r 和折射波E t 。我们用R ┴表示介质板的反射系数,用T ┴o 和T ┴ε分别表示由空气进入介质板和由介质板进入空气的折射系数,而固定的和可动的金属反射板的反射系数为-1。在一次近代的条件下,接收喇叭P r3收到的两相干波为:

11j r o i E R T T E e φε-⊥⊥⊥=-

22j r o i E R T T E e φε-⊥⊥⊥=-

两者的幅度相等。若忽略电磁波在介质中行程Z 的相位值,则式中:

Φ1=k(2Z o +Z r1)=kZ 1

Φ2=k(2Z r2+Z r1)=k(2Z o +2Δl+Z r1)=kZ 2

所以

ΔZ=Z 2-Z 1=2Δl

由于Z 1=2Z o +Z r1为固定值,Z 2=Z 1+2Δl 是可变的,所以当改变可动反射板P r2的位置(即改变Z 2值)就可使E r1和E r2同相叠加或者反相叠加。同相叠加时,P r3输出指示最大;反相叠加时,P r3输出指示为零。这样,我们通过改变P r2的位置,即改变Δl 值,使P r3输出指示最大值与零值交替出现,从而测出电磁波的波长λ,并得到相位常数k 。其数学表达式推导如下:

接收喇叭P r3的合成电场:

121212121212()/2()/2()/2()/2

12

()

[]2cos()2j j r r r o i j j j o i j o i E E E R T T E e e R T T E e e e R T T E e φφεφφφφφφεφφεφφ--⊥⊥⊥-+---⊥⊥⊥-+⊥⊥⊥=+=-+=-+-=-

相位差 ΔΦ=Φ1-Φ2=k(Z 2-Z 1)=2kΔl

为使测得的波长λ值较准确,通常取P r3指示为零的点作为节点,即:

cos

02?Φ= 则

(21),0,1,222n n π?Φ=+=…… 因

222k l l πλ?Φ=?=??

故得

2(21)2n l ππλ+=? 或 2(21)2l n λ?=+ 这里n=0,1,2……表示相干波合成电场E r =0时P r3所在的节点,记这时P r3的位置为l n ,我们可以通过相干波的节点来求得λ值。将波形图示于图2上。

图2

当n=0时,20022()2

r l Z Z λ?=-=,得到第一个波节点的位置l 0; 当n=1时,210322()2

r l Z Z λ?=-=,得到第二个波节点的位置l 1; 依次类推,可得

当n=N 时,2022()(21)2

r N l Z Z N λ?=-=+,得到第(N+1)个波节点的位置l N 。显然,当波节点总数为(N+1)时,P r2移动的总距离为(l N -l 0),它等于N 个半波长数。

即 2(l N -l 0)=Nλ 可得02()N l l N

λ-= 从2k π

λ=,f

k ωυλ==

就可得被测电磁波的参量λ、k 、υ值。由于得到的测试波长λ为平均值,从理论上讲,N 值越大,得到的λ精度越高。

实际测量中,一般取N=4,对应于5个波节点,则所测得波长为:

402()4

l l λ-= 它表示5个波节点间距离,对应4个半波长。试验中,由于实验装置中可移动金属板的移动装置限制,可能取不到5个波节点;而且由于发射和接收天线的距离较短(即为近区场),易产生各种发射和折射的干扰,因而在测量中不仅节点的均匀分布会受影响,而且节点的波谷值也会有起伏。(注意:由于只取波节点的位置且计算时取其长度的平均值,因此节点波谷值的起伏不影响测量结果。)

四、操作方法与实验步骤

1.按电磁波参量测试原理,将DH926B 型微波分光仪组合成测波长、相移常数的状态。

1)拆下所有介质板,使辐射天线Pr0和Pr3相对,轴线在同一平面上,调整信号衰减器使检波电流指示表示数在满意的70%左右。

2)用3cm 空腔波长表测量谐振点,查表求得电磁波行波频率f 。

3)按迈克尔逊干涉原理图调整装置,安装反射板Pr1,Pr2及半透射板Pr4。

2.数据测量,先旋转移动云台手柄将Pr2板移动至最右侧,然后向左侧移动Pr2板,同时观察电流表的变化,测出三个连续的电流最小点并记录。

1)移动云台带有一“读数机构”,由直尺及手摇柄上的分度盘构成百分尺,可精确的读取云盘所携带的金属反射板的相对位置。

2)测量过程中要匀速移动云台,转动时应小心,防止由于云台上的全反射板的抖动造成的测量误差,另外,为了消除机械回程误差,一定要做单向匀速移动。

3)为了保持测量精度,驻波特征点的获取必须采用“交叉读数取中值”方法。

4)认真做好实验原始数据记录,计算出所测得的两个半波长(λ/2),要求测得的两个半波长之间的误差不得大于0.5mm 。

5)根据测得的波节点的坐标,计算求得电磁波波长λ,并且确定电磁波相移常数β和波速v 。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

北邮电磁场与微波技术实验实验一

实验一网络分析仪测量振子天线输入阻抗 一,实验目的 1.掌握网络分析仪矫正方法; 2.学习网络分析仪测量振子天线输入阻抗的方法; 3.研究振子天线输入阻抗随振子电径变化的情况。 二,实验步骤 1.设置仪表为频域模式的回损连接模式后,矫正网络分析仪; 2.设置参数并加载被测天线,开始测量输入阻抗; 3.调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4.更换不同电径(Φ1,Φ3,Φ9)的天线,分析两个谐振点的阻抗变化情况。 三,实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 由于使用坡印廷矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一半。当h<<λ时,可认为 R≈40(πh)2 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一λ ?1] 倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为W=60[ln2h a 四,实验数据 试验参数:BF=600,ΔF=25,EF=2600,n=81 1.短路时矫正,阻抗点分布:

2.开路时矫正,阻抗点分布: 3.选择电径为Φ1=1mm的天线,阻抗点分布:

由图及数据表可知其谐振点频率约为1225MHz,第二谐振点频率约为2450MHz,即第二次谐振时频率约为第一次两倍。 4.选择电径为Φ3=3mm的天线,阻抗点分布:

北邮电磁场与微波实验天线部分实验报告二

北邮电磁场与微波实验天线部分实验报告二

信息与通信工程学院电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz:

四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 五、实验总结

电磁场与微波技术实验天线部分实验二

信息与通信工程学院 电磁场与微波实验天线部分报告 XXX班 XXXX 学号:XXXXX 实验二 网络分析仪测试八木天线方向图 一、实验目的: 1.掌握网络分析仪辅助测试方法 2.学习测量八木天线方向图方法 3.研究在不同频率下的八木天线方向图特性 二、实验步骤: (1)调整分析仪到轨迹(方向图)模式 (2)调整云台起点位置270° (3)寻找归一化点(最大值点) (4)旋转云台一周并读取图形参数 (5)坐标变换、变换频率(F=600MHz、900MHZ、1200MHZ),分析八木天线方向图三、实验原理 实验中用的是七单元八木天线,包括一个有源振子,一个反射器,五个引向器(在此图中再加2个引向器即可) 八木天线原理图

引向器略短于二分之一波长,主振子等于二分之一波长,反射器略长于二分之一波长,两振子间距四分之一波长。此时,引向器对感应信号呈“容性”,电流超前电压90°;引向器感应的电磁波会向主振子辐射,辐射信号经过四分之一波长的路程使其滞后于从空中直接到达主振子的信号90°,恰好抵消了前面引起的“超前”,两者相位相同,于是信号叠加,得到加强。反射器略长于二分之一波长,呈感性,电流滞后90°,再加上辐射到主振子过程中又滞后90°,与从反射器方向直接加到主振子上的信号正好相差了180°,起到了抵消作用,一个方向加强,一个方向削弱,便有了强方向性。发射状态作用过程亦然。 3.实验步骤 四、实验测量图 不同频率下的测量图如下: 600MHz: 最大增益方向:73度,幅度:1 3dB点:55度,幅度:0.715 3dB点:97度,幅度:0.703 主瓣宽度: 97-55=42度

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度围,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

五、实验数据 I(uA) θ° 0 10 20 30 40 50 60 70 80 90 理论值90 87. 3 79. 5 67. 5 52. 8 37. 2 22. 5 10. 5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11. 1 14. 3 25. 9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许围,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候,由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 A1

北邮电磁场与微波技术实验天线部分实验一

北邮电磁场与微波技术实验天线部分实验一最新

————————————————————————————————作者:————————————————————————————————日期:

信息与通信工程学院 电磁场与微波实验报告 实验题目:网络分析仪测量振子天线输入阻抗 班级:2011211106 姓名:吴淳 学号:2011210180 日期:2014年3月

实验一网络分析仪测量阵子天线 输入阻抗 一、实验目的 1. 掌握网络分析仪校正方法; 2. 学习网络分析仪测量振子天线输入阻抗的方法; 3. 研究振子天线输入阻抗随阵子电径变化的情况。 注:重点观察谐振点与天线电径的关系。 二、实验原理 当双振子天线的一端变为一个无穷大导电平面后,就形成了单振子天线。实际上当导电平面的径向距离大到0.2~0.3λ,就可以近似认为是无穷大导电平面。这时可以采用镜像法来分析。天线臂与其镜像构成一对称振子,则它在上半平面辐射场与自由空间对称振子的辐射场射相同。 图1 实验原理图

由于使用坡印亭矢量法积分求其辐射功率只需对球面上半部分积分,故其辐射功率为等臂长等电流分布的对称振子的一半,其辐射电阻也为对称振子的一 半。当h<<λ时,可认为R≈40 。由于天线到地面的单位长度电容比到对称振子另一个臂的单位长度电容大一倍,则天线的平均特征阻抗也为等臂长对称振子天线的一半,为=60[ln(2h/a)-1]。 三、实验步骤: 1. 设置仪表为频域模式的回损连接模式后,校正网络分析仪; 2. 设置参数并加载被测天线,开始测量输入阻抗; 3. 调整测试频率寻找天线的两个谐振点并记录相应阻抗数据; 4. 更换不同的电径(对应1mm, 3mm, 9mm)的天线,分析两个谐振点的阻抗 变化情况; 5. 设置参数如下: BF=600MHz,△F=25MHz,EF=2600MHz,n=81. 6. 记录数据:在smith圆图上的输入阻抗曲线上,曲线的左端输入阻抗虚部 为0的点为二分之一波长谐振点,曲线的右端输入阻抗虚部为0的点为四分之一波长谐振点。记录1mm,3mm,9mm天线的半波长和四分之一波长的谐振点。 四、实验数据: 1. 直径=1mm时: 第一谐振点处频率约为(取最接近点)F=1250MHz,电阻R=41.88ohm, SWR=1.193, RL=-20.0dB。 第二谐振点处频率约为(取最接近点)F=2450MHz,电阻R=626.8ohm, SWR=12.54,

电磁场和微波技术znjn

——电磁场与微波技术实验报告 班级:06 姓名:张妮竞男 学号:84 序号:31# 日期:2014年5月31日 邮箱: 实验二:分支线匹配器 一、实验目的 1、掌握支节匹配器的工作原理 2、掌握微带线的基本概念和元件模型 3、掌握微带分支线匹配器的设计与仿真 二、实验原理 1、支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 2、微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。

W为微带线导体带条的宽度;εr为介质的相对介电常数;T为导体带条厚度;H为介质层厚度,通常H远大于T。L为微带线的长度。微带线的严格场解是由混合TM-TE波组成,然而,在绝大多数实际应用中,介质基片非常薄(H<<λ),其场是准TEM波,因此可以用传输线理论分析微带线。 微带线的特性阻抗与其等效介电常数εr、基片厚度H和导体宽度W有关,计算公式较为复杂,故利用txline来计算。 微带线元件模型 3、元器件库里包括有: MLIN:标准微带线 MLEF:终端开路微带线 MLSC:终端短路微带线 MSUB:微带线衬底材料 MSTEP:宽度阶梯变换 MTEE:T型接头 MBENDA:折弯 微带线的不均匀性 上述模型中,终端开路微带线MLEF、宽度阶梯变换MSTEP、T型接头MTEE 和折弯MBENDA,是针对微带线的不军训性而专门引入的。一般的微带电路元件都包含着一些不均匀性,例如微带滤波器中的终端开路线;微带变阻器的不同特性阻抗微带段的连接处,即微带线宽度的尺寸跳变;微带分支线电桥、功分器等则包含一些分支T型接头;在一块微带电路板上,为使结构紧凑及适应走线方向的要求,时常必须使微带弯折。由此可见,不均匀性在微带电路中是必不可少的。由于微带电路是分布参数电路,其尺寸已可与工作波长相比拟,因此其不均匀性必然对电路产生影响。从等效电路来看,它相当于并联或串联一些电抗元件,或是使参考面发生一些变化。在设计微带电路时,必须考虑到不均匀性所引起的影响,将其等效参量计入电路参量,否则将引起大的误差。 三、实验内容 已知:输入阻抗Zin=75欧 负载阻抗Zl=(64+j35)欧 特性阻抗Z0=75欧 介质基片εr=2.55,H=1mm 假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化

电磁场与微波实验指导书实验一

电磁场与微波实验指导 书实验一 Revised as of 23 November 2020

实验一微波基础计算器与MWO软件熟悉 一、实验目的 1.掌握传输线(长线)基本理论; 2.熟练掌握Smith圆图的工作原理; 3.熟练使用微波技术基础计算器计算单枝节线匹配。 4.熟悉MWO软件界面和基本操作。 二、实验原理 微波技术基础计算器是以微波计算为基础的进行专业计算的工具。实现了微波技术基础理论中长线(传输线)理论、Smith圆图、网络理论等部分的计算。此计数器共包括:长线上任意点输入阻抗、反射系数、行波系数、驻波比的计算;smith圆图的绘制;任意长线和负载的单枝节匹配;双口网络S、Z、Y、A参数的相互转换。 1、长线理论 基础知识回顾:--微波传输线(长线)理论 (Q1: 传输线理论中基本物理量是什么) 电压波与电流波(入射与反射)关系: 理想(无耗)均匀传输线的传输特性归结为两个实数:传播常数和特性阻抗。传输线理论三套参量:输入阻抗in,反射系数,驻波参量(驻波系数和最小距离l min) 三套参量间的换算关系: 三套参量同时一个单位圆内表示

1)由横坐标表示反射系数实部,纵坐标表示反射系数虚部,构成反射系数复平面; 2)对于一个无耗均匀传输线,其反射系数的模是不变的,变化的是位相(位置)构成反射系数同心圆;以负载为参考面向源移动时,位相角减少,顺时针转动 3)驻波系数在反射系数复平面上也是同心圆, 4) 阻抗在反射系数复平上表示时要归一化;某一点的阻抗由经过该点的等电阻圆与等电抗弧线确定。 2、并联单枝节传输线匹配 1) 终端短路传输线相当于一个纯电抗 2) 在主传输线上并联一个短路面位置可调的支路传输线,相当并联一个可变电抗。 3) 由于并联枝节,进行匹配设计时用导纳方法表示更为方便。 三、 微波基础计算器的使用 有了这些基本概念之后,我们就可以学习微波计算器的使用方法。这个计算器实际上就是利用以上的公式,编成、作图完成的,国内外也还有很多类似的软件。微波计算器的主界面如图1所示。 图1 微波计算器主界面 选择图1中所示的“长线”工具。出现如图2所示的窗口。 开路 匹配

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告实验五极化实验

北邮电磁场与微波测量实验报告 实验五极化实验 学院:电子工程学院 班号:2011211204 组员: 执笔人: 学号:2011210986

一、实验目的 1.培养综合性设计电磁波实验方案的能力 2.验证电磁波的马吕斯定理 二、实验设备 S426型分光仪 三、实验原理 平面电磁波是横波,它的电场强度矢量E 和波长的传播方向垂直。如果E 在垂直于传播方向的平面内沿着一条固定的直线变化,这样的横电磁波叫线极化波。在光学中也叫偏振波。偏振波电磁场沿某一方向的能量有一定关系。这就是光学中的马吕斯定律: 2 0cos I I θ = 式中I 为偏振波的强度,θ为I 与I0间的夹角。 DH926B 型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,所以接收喇叭的转角可以从此处读到。 四、实验步骤 1.设计利用S426型分光仪验证电磁波马吕斯定律的方案; 根据实验原理,可得设计方案:将S426型分光仪两喇叭口面互相平行,并与地面垂直,其轴线在一条直线上,由于接收喇叭是和一段旋转短波导连在一起的;在该轴承环的90度范围内,每隔5度有一刻度,接收喇叭课程从此处读取θ(以10度为步长),继而进行验证。 2.根据设计的方案,布置仪器,验证电磁波的马吕斯定律。 实验仪器布置 通过调节,使A1取一较大值,方便实验进行。 然后,再利用前面推导出的θ,将仪器按下图布置。

A1 五、实验数据 I(uA ) 0 10 20 30 40 50 60 70 80 90 θ° 理论值90 87.3 79.5 67.5 52.8 37.2 22.5 10.5 2.7 0 实验值90 88 82 69 54 37 20 8 2 0.2 相对误差% 0 0.8 0.6 2.2 2.3 0.5 11.1 14.3 25.9 - 1、数据分析: 由数据可看出,实验值跟理论值是接近的,相对误差基本都很小,在误差允许 范围内,所以可以认为马吕斯定律得到了验证。 2、误差分析: 实验中可能存在仪器仪表误差,人为误差以及各组互相影响造成的误差等。但 是角度比较大的时候,相对误差都比较小,也比较精准。角度比较小的时候, 由于理论值较小,相对误差会大一点,但是从整体趋势来看,结果也是合理的。 所以不影响我们对马吕斯定律进行验证。 六、思考题 1、垂直极化波是否能够发生折射?为什么?给出推导过程。 答:不能。 垂直极化波入射在两种媒质的分界面上,反射系数和折射系数分别为:

考研专业介绍:电磁场与微波技术

非统考专业介绍:电磁场与微波技术 一、专业介绍 电磁场与微波技术隶属于电子科学与技术一级学科。 1、研究方向 目前,各大院校与电磁场与微波技术专业相关的研究方向都略有不同的侧重点。以西安电子科技大学为例,该专业研究方向有: 01电磁兼容、电磁逆问题、计算微波与计算电磁学 04计算电磁学、智能天线、射频识别 07宽带天线、电磁散射与隐身技术 08卫星通信、无线通信、智能天线、信号处理 09天线理论与工程及测量、新型天线 10电磁散射与微波成像 11天线CAD、工程与测量 13移动卫星通信天线 14天线理论与工程 16电磁散射与隐身技术 17电磁兼容、微波测量、信号完整性分析 20移动通信中的相控阵、共形相控阵天线技术 21计算微波与计算电磁学、微波通信、天线工程、电磁兼容 22电阻抗成像、电磁兼容、非线性电磁学 23天线工程与CAD、微波射频识别技术、微波电路与器件 24电磁场、微波技术与天线电磁兼容 25天线测量技术与伺服控制 26天线理论与工程技术 27天线近远场测试技术及应用、无线网络通讯技术 28天线工程及数值计算 29微波电路与微波工程 30近场辐射及散射测量理论与技术 31微波系统和器件设计、电磁场数值计算 32电磁新材料、计算电磁学、电磁兼容 33计算电磁学、电磁兼容、人工合成新材料 34计算电磁学 35电磁隐身技术、天线理论与工程 36宽带小型化天线及电磁场数值计算 37射频识别、多天线技术 38天线和微波器件的宽带设计、小型化设计 2、培养目标 本专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。 3、专业特色

电磁场与微波技术实验指导书(新)

电磁场与微波技术实验指导书 XXXXXXXXXXXXXXXXXXX XXXXX

注意事项 一、实验前应完成各项预习任务。 二、开启仪器前先熟悉实验仪器的使用方法。 三、实验过程中应仔细观察实验现象,认真做好实验结果记录。 四、培养踏实、严谨、实事求是的科学作风。自主完成实验和报告。 五、爱护公共财产,当发生仪器设备损坏时,必须认真检查原因并按规 定处理。 六、保持实验室内安静、整洁和良好的秩序,实验后应切断所用仪器的 电源 ,并将仪器整理好。协助保持实验室清洁卫生, 带出自己所产生的赃物。 七、不迟到,不早退,不无故缺席。按时交实验报告。 八、实验报告中应包括: 1、实验名称。 2、实验目的。 3、实验内容、步骤,实验数据记录和处理。 4、实验中实际使用的仪器型号、数量等。 5、实验结果与讨论,并得出结论,也可提出存在问题。 6、思考题。

实验仪器 JMX-JY-002电磁波综合实验仪 一、概述 电磁波综合实验仪,提供了一种融验证与设计为一体的电磁波实验的新方法和装置。它能使学生通过应用本发明方法和装置进行电磁场与电磁波实验,透彻地了解法拉第电磁感应定律、电偶极子、天线基本结构及其特性等重要知识点,使学生直观形象地认识时谐电磁场,深刻理解电磁感应的原理和作用,深刻理解电偶极子和电磁波辐射原理,掌握电磁场和电磁波测量技术的原理和方法,帮助学生建立电磁波的形象化思维方式,加深和加强学生对电磁波产生、发射、传输和接收过程及相关特性的认识,培养学生对电磁波分析和电磁波应用的创新能力。《JMX-JY-002电磁波综合实验仪》在001型基础上,添加了对天线不同极化角度的测量,学生通过测量,可绘制不同极化天线的方向图,使得学生对电磁波的感受更加深刻。 二、特点 1、理论与实践结合性强 2、直接面向《电磁场与波》的课程建设与改革需要,紧密配合教学大纲,使课堂环节与实验环节紧密结合。 3、针对重要知识点“电磁场与电磁波”课堂教学环节长期存在难于直观表达的困难,形象地体验抽象的知识。 4、实验内容的设置,融综合性、设计性与验证性与一体,帮助学生建立一套电磁波的形象化思维方式,加深和加强对电磁波产生、发射、传输、接收过程及相关特性的认识。 5、培养学生对电磁波分析和电磁波应用的创新能力。 三、系统配置及工作原理 (1)系统配置 1、JMX-JY-002电磁波教学综合实验仪主机控制系统:通过常规控制仪表与微波功率信号发生器、功率信号放大器构成电磁波教学综合实验仪主机控制系统,实现了对被控电磁场与波信号发射控制。 2、测试支架平台:包括支撑臂、测试滑动导轨、测量尺、天线连接杆件、感应器连接杆件、反射板连接杆件、微安表等组件。 3、测试套件:包括多极化天线(垂直极化、水平极化、左右螺旋极化)、射频连接电缆套件、感应器、感应器连接电缆、极化尺、标准测试天线板、反射板等构成测试套件。 (2)工作原理 实验仪主机控制系统的微波信号源产生微波信号,经由微波功率放大器放大后输出至OUTPUT端口,通过射频电缆将输出信号传送给发射天线向空间发射电磁波信号作为实验测试

电磁场与微波测量实验报告(三)

电磁场与微波测量实验报告(三) 学院: 班级: 组员一: 学号: 组员二: 学号:

实验一:微波测量系统的使用和信号源波长功率的测量 一,实验目的 (1)学习微波的基本知识; (2)了解微波在波导中传播的特点,掌握微波基本测量技术; (3)学习用微波作为观测手段来研究物理现象。 二,实验原理 本实验接触到的基本仪器室驻波测量线系统,用于驻波中电磁场分布情况的测量。该系统由以下几个部分组成: 检波指示器 1,波导测量线装置 2,晶体检波器 微波测量中,为指示波导(或同轴线)中电磁场强度的大小,是将它经过晶体二极管检波变成低频信号或直流电流,用直流电流表的电流来读数的。 3,波导管 本实验所使用的波导管型号为BJ-100。 4,隔离器 位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。 5,衰减器

把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量 的大小。衰减器起调节系统中微波功率从以及去耦合的作用。 6,谐振式频率计(波长表) 电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。 当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的 阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输 出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度, 通过查表可得知输入微波谐振频率。 7,匹配负载 波导中装有很好地吸收微波能量的电阻片或吸收材料,它几乎能全部吸收入射功率。 8,环形器 它是使微波能量按一定顺序传输的铁氧体器件。主要结构为波导Y 型接头,在接头中心放一铁氧体圆柱(或三角形铁氧体块),在接头外 面有“U”形永磁铁,它提供恒定磁场H0。 9,单螺调配器 插入矩形波导中的一个深度可以调节的螺钉,并沿着矩形波导宽壁中心的无辐射缝作纵向移动,通过调节探针的位置使负载与传输线达到 匹配状态。调匹配过程的实质,就是使调配器产生一个反射波,其幅度 和失配元件产生的反射波幅度相等而相位相反,从而抵消失配元件在系 统中引起的反射而达到匹配。 10,微波源 提供所需微波信号,频率围在8.6-9.6GHz可调,工作方式有等幅、方波、外调制等,实验时根据需要加以选择。 11,选频放大器 用于测量微弱低频信号,信号经升压、放大,选出1kHz附近的信号,经整流平滑后输出级输出直流电平,由对数放大器展宽供给指示电路检 测。 三,实验容和实验步骤

电磁场与微波技术专业(080904)研究生培养方案

电磁场与微波技术专业(080904)研究生培养方案 一、培养目标 1、硕士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 具备电磁场与微波技术方面扎实的理论基础和宽厚的知识面。掌握与本专业相关的实验技能,对与本学科相邻及相关学科的知识有一定的了解。具备灵活应用所学知识分析和解决实际问题的能力。有独立从事科学研究的能力。 掌握一到二门外国语,能用英语阅读专业书籍、文献并撰写科学论文。 2、博士研究生: 牢固树立爱校、爱国、爱中华民族的思想,具备坚持真理、献身科学的勇气和品质以及科学职业道德、敬业精神、团结合作精神。 在硕士研究生培养目标所达到的要求基础之上,不仅要掌握本专业理论和实验的专业知识,还要掌握与本学科相邻及相关学科的知识,在独立从事科研工作中,具备综合、分析能力,在开展所从事研究方面的前沿研究工作中,具备创新和发展的能力。熟悉所从事研究方向的科学技术发展新动向。 掌握一至二门外语,能用英语熟练阅读专业书籍、文献,并能撰写并在国际会议上宣读科学论文。 二、学科介绍 1、电磁场与微波技术学科的主要研究方向 (1) 极高频段电磁资源的开发与利用; (2) 人工电磁材料及在无线电技术中的应用; (3) 射频、微波及光电子器件与应用。 2、师资力量和科研水平 本学科师资力量较雄厚,有中国科学院院士、“长江学者奖励计划”特聘教授和讲座教授以及教育部“新世纪优秀人才”等一批优秀学者,成为本学科的学术带头人和学术骨干。目前有教授9人、博士生导师9人、副教授和高工4人。 在科学研究方面,以电子学、物理学的基本理论方法和现代实验技术作为手段,探索新型电子材料,研究其中有关物理过程和电磁现象的基本规律,据以开发新型的微波和太赫兹电子器件和系统,并在实际中推广应用。目前,本学科不仅开展了大量国际前沿性的研究工作,取得了突出的成果,享有很高的国际声誉,同时也开展应用和工程化研究,为我国国民经济和国防现代化做出了重要贡献。 3、近期承担科研项目和重大课题 本学科承担了大量国家973计划、国家863计划、国家自然科学基金等重大科技计划项目,以及省、部级科研项目和横向合作的研发项目,产生了较大的社会效益和经济效益。近期主要科研项目和重大课题有: 科技部973项目子课题:太赫兹辐射的高灵敏检测技术基础研究; 科技部973项目子课题:超导结型器件的物理、工艺及应用基础研究; 科技部973项目子课题:磁性复合材料以及光子共振介质中负折射特性研究;

北邮电磁场与微波实验报告

信息与通信工程学院电磁场与微波实验报告 实验题目:微波器件设计与仿真 班级: 姓名: 学号: 日期:2016.5.18

实验二分支线匹配器 一、实验目的 1.掌握支节匹配器的工作原理 2.掌握微带线的基本概念和元件模型 3.掌握微带分支线匹配器的设计与仿真 二、实验原理 1.支节匹配器 随着工作频率的提高及相应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。因此,在频率高达以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。 支节匹配器分单支节、双支节和三支节匹配。这类匹配器是在主传输线并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。此电纳或电抗元件常用一终端短路或开路段构成。 2. 微带线 从微波制造的观点看,这种调谐电路是方便的,因为不需要集总元件,而且并联调谐短截线特别容易制成微带线或带状线形式。微带线由于其结构小巧,可用印刷的方法做成平面电路,易于与其它无源和有源微波器件集成等特点,被广泛应用于实际微波电路中。 三、实验内容 已知:输入阻抗 Zin=75Ω 负载阻抗 Zl=(64+j75)Ω 特性阻抗 Z0=75Ω 介质基片面性εr=2.55 ,H=1mm 假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离 d1=λ/4,两分支线之间的距离为d2=λ/8。画出几种可能的电路图并且比较输入端反射系数幅值从 1.8GHz至2.2GHz的变化。 四、实验步骤

电磁场与微波技术实验

实验三对称天线和天线阵的方向图 实验目的:1、熟悉对称天线和天线阵的概念; 2、熟悉不同长度对称天线的空间辐射方向图; 3、理解天线阵的概念和空间辐射特性。 实验原理:天线阵就是将若干个单元天线按一定方式排列而成的天线系统。排列方式可以是直线阵、平面阵和立体阵。实际的天线阵多用相似元组成。所谓相似元,是指各阵元的类型、尺寸相同,架设方位相同。天线阵的辐射场是各单元天线辐射场的矢量和。只要调整好各单元天线辐射场之间的相位差,就可以得到所需要的、更强的方向性 方向图乘积定理 f(θ,φ)=f1(θ,φ)×fa(θ,φ) 上式表明,天线阵的方向函数可以由两项相乘而得。第一项f1(θ,φ)称为元因子(Primary Pattern),它与单元天线的结构及架设方位有关;第二项fa(θ,φ)称为阵因子(Array Pattern),取决于天线之间的电流比以及相对位置,与单元天线无关。方向函数(或方向图)等于单元天线的方向函数(或方向图)与阵因子(或方向图)的乘积,这就是方向图乘积定理。 已知对称振子以波腹电流归算的方向函数为 实验步骤:1、对称天线的二维极坐标空间辐射方向图 (1)建立对称天线二维极坐标空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中不同长度对称天线的空间辐射特性 E面方向函数: 2、天线阵—端射阵和边射阵 (1)建立端射阵和边射阵空间辐射方向函数的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中两种天线阵的空间辐射特性 实验报告要求:(1)抓仿真程序结果图 (2)理论分析与讨论 1、对称天线方向图 01)clc clear lambda=1;%自由空间的波长 L0=1; %改变L0值,得到不同长度对称阵子的方向图 L=L0*lambda; %分别令 L=λ/4,λ/2,3λ/4,λ,3λ/2,2λ k=2*pi/lambda;%自由空间的相移常数theta0=[0.0001:0.1:360]; theta=theta0*pi/180; 90 270 0 L=λ时对称阵子天线的方向图

北邮电磁场与微波实验天线部分实验报告二

. . . . 信息与通信工程学院 电磁场与微波实验报告

实验二网络分析仪测试八木天线方向图 一、实验目的 1.掌握网络分析仪辅助测试方法; 2.学习测量八木天线方向图方法; 3.研究在不同频率下的八木天线方向图特性。 注:重点观察不同频率下的方向图形状,如:主瓣、副瓣、后瓣、零点、前后比等; 二、实验步骤: (1) 调整分析仪到轨迹(方向图)模式; (2) 调整云台起点位置270°; (3) 寻找归一化点(最大值点); (4) 旋转云台一周并读取图形参数; (5) 坐标变换、变换频率(f600Mhz、900MHz、1200MHz),分析八木天线方向图特性; 三、实验测量图 不同频率下的测量图如下: 600MHz:

900MHz:

1200MHz: 四、结果分析 在实验中,分别对八木天线在600MHz、900MHz、1200MHz频率下的辐射圆图进行了测量,发现频率是900MHz的时候效果是最好的,圆图边沿的毛刺比较少,方向性比较好,主瓣的面积比较大。 当频率为600 MHz的时候,圆图四周的毛刺现象比较严重,当频率上升到1200MHz时,辐射圆图开始变得不规则,在某些角度时出现了很大的衰减,由对称转向了非对称,圆图边缘的毛刺现象就非常明显了,甚至在某些角度下衰减到了最小值。 从整体来看,八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候周围的人应该避免走动,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。 由实验结果分析可知:最大辐射方向基本在90°和270°这条直线上,图中旁瓣均较小,及大部分能量集中在主瓣。 八木天线由于测量的是无线信号,因此受周围环境的影响还是比较大的,因此在测量的时候应当尽量保持周边环境参数一定,以减小对天线电磁波的反射从而减小测量带来的误差使得圆图更接近真实情况。

电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名:

实验一:验证电磁波的反射和折射定律(1学时) 1、实验目的 验证电磁波在媒质中传播遵循反射定理及折射定律。 (1)研究电磁波在良好导体表面上的全反射。 (2)研究电磁波在良好介质表面上的反射和折射。 (3)研究电磁波全反射和全折射的条件。 2、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 3、实验结果: 入射角25°30°35°40°45°50°55°60° 折射角149 143 135 131 133 128 124 118 图1.1 电磁波在介质板上的折射 入射角25°30°35°40°45°50°55°60° 反射角32°34°36°44°47°52°37°61° 图1.2 电磁波在良导体板上的反射

实验二:电磁波的单缝衍射实验、双缝干涉实验。 1、实验目的 (1)研究当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面出现的衍射波强度不是均匀的,中央最强; (2)研究当一平面波垂直入射到一金属板的两条狭线上,则每一条狭缝就是次级波波源。由两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。 2、实验原理 单缝衍射实验原理见下图 5:当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。在缝后面将出现的衍射波强度不是均匀的,中央最强,同时也最宽,在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为 ,其中n波长,n狭缝宽度。两者取同一长度单位,然后,随着衍射角增大, 衍射波强度又逐渐增大,直至一级极大值,角度为: 图 5 单缝衍射实验原理图 如图 8:当一平面波垂直入射到一金属板的两条狭缝上时,则每一条狭缝就是次级波波源,由于两缝发出的次级波是相干波,因此在金属板的背后面空间中,将产生干涉现象。当然电磁波通过每个缝也有狭缝现象。因此实验将是衍射和干涉两者结合的结果。为了只研究主要是由于来自双缝的两束中央衍射波相互干涉的结果,令双缝的缝宽α接近入,例如: ,这时单缝的一级极小接近53°。因此取较大的b,则干涉强受 单缝衍射影响大。干涉加强的角度为:干涉减弱的角度 为:

电磁场与微波测量实验报告(一)

电磁场与微波测量实验报告(一) 学院:电子工程学院 班级:2015211205 组员一:李聪 学号:2015210926 组员二:陈孟 学号:2015210925

实验一:电磁波反射和折射实验 一,实验目的 1、熟悉S426型分光仪的使用方法。 2、掌握分光仪验证电磁波反射定律的方法。 3、掌握分光仪验证电磁波折射定律的方法。 二,实验设备与仪器 S426型分光仪 三,实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的 金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵 循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 验证均匀平面波在无耗媒质中的传播特性;均匀平面波垂直入射理想电 解质表面的传播特性。 四,实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 如下页图1所示,仪器连接时,两喇叭口面应互相正对,他们各自的轴线应在一条直线上。指示两喇叭的位置的指针分别指 于工作平台的90刻度处,将支座放在工作平台上,并利用平台 上的定位销和刻线对正支座(与支座上刻线对齐)拉起平台上四 个压紧螺钉旋转一个角度放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座线面的小圆盘上的某一对刻线一致。而把带支座的金属反射板放到小平台 上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相 应90刻度的一对刻线一致。这时小平台上的0刻度就与金属板 的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度的读数就是入射角,然后转动活动臂在电流表上找到最大指示处,此时 活动臂的指针所指的刻度就是反射角。如果此时表头指示太呆或 太小,应调整衰减器、固态振荡器或晶体检波器,使表头指示接 近满量程。 4、注意: 做此项实验,入射角最好取30至65度之间。因为入射角太大接受喇叭有可能直接接受入射波。注意系统的调整和周围环境 的影响。 图1:反射实验仪器的布置 五,实验数据与处理 1,金属板实验: 实验数据及处理如下表

电磁场与微波技术实验软件实验试题.

《电磁场与微波技术实验》软件实验试题2009-2010学年(2009.12)一、集总参数-低通1 低通滤波器===== 设计具体要求 ====== 1。我们需要一低通滤波器(1) 通带频率范围:0MHz~400MHz ,要求如下: 增益参数S 21:通带内0MHz~400MHz S 21 >--0.5dB 阻带内600MHZ以上 S 21 <-50dB 反射系数S 11:通带内0MHz~400MHz S 11 <-10dB 2、简述微带天线的优缺点(10) 二、集总参数-低通2 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz~300MHz 增益参数S21:通带内0MHz~300MHz S21>-0.5dB ;阻带内420MHZ以上 S21<-50dB 反射系数S11:通带内0MHz~300MHz S11<-10dB ; 2、为了节省成本,计划将该滤波器设计为7级结构。你能把它设计出来吗?根据你的优化仿真结果,探讨滤波器级数与其性能的关系。(10) 3、你了解ADS这个仿真设计软件吗?与MWO相比,它在设计环境上有什么明显特点?(10) 通带频率范围:0MHz~400MHz 增益参数S21:通带内0MHz~400MHz S21>-0.2dB 阻带内600MHZ以上 S21<-50dB 反射系数S11:通带内0MHz~400MHz S11<-10dB 要求优化参数 2、简述HFSS的特点及其主要应用的范围。(10) IVCURVEI来测量非线性器件——三极管GBJT3的特性曲线并加入调谐,

1。参考如图所示电路结构,设计高通滤波器(1)通带频率范围:450MHz以上 增益参数S 21:阻带内0MHz~300MHz S 21 〈--40dB 通带内450MHZ以上 S 21 〉-1dB 反射系数S 11:通带内450MHz S 11 <-15dB 要求优化参数Cost<0.5(最佳为Cost=0)(提示:有可能陷入局部极小)(30) 2、你会添加Marker吗?试在S21曲线上,添加一横坐标为650MHz的Marker。添加后需请老师签字。(10) 3、使用TXLine工具计算微带线εr=12.9,t/h=0.1,分别计算W/h=2,3以及4时的特性阻抗值。TXLine频率参数使用5GHz,并取t=0.01mm。(10) 设计一个九级集总参数高通滤波器,电路结构如图所示,要求截止频率为550MHz,通带内增益大于-1dB,阻带内0~350MHz增益小于-45dB。通带内反射系数要求小于-15dB。 2、如果要你设计的是低通滤波器,与前面相比,需要变化哪几个步骤?(10) 3、简述微带天线的优缺点(10) 通带频率范围:600MHz以上 增益参数S21:阻带内0MHz~420MHz S21<-40dB 通带内600MHZ以上 S21>-1dB 反射系数S11:通带内600MHZ以上 S11<-10dB 要求优化参数 2、简述滤波器功能,简要画出切比雪夫滤波器、巴特沃斯滤波器和椭圆函数滤波器的频率响应图(10) 3、简述光子晶体的分类及其特性。(10)

相关主题
文本预览
相关文档 最新文档