当前位置:文档之家› 新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级数学下册勾股定理知识点和典型例习题1
新人教版八年级数学下册勾股定理知识点和典型例习题1

新人教版八年级下册勾股定理全章知识点和典型例习题

一、基础知识点:

1.勾股定理

内容:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=

勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直

角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周

朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了

直角三角形的三边关系为:两直角边的平方和等于斜边的平方

2.勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法

用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:

方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2ab b a c ?+-=,化简可证.

方法二:

四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三

角形的面积与小正方形面积的和为221422

S ab c ab c =?+=+ 大正方形面积为222()2S a b a a b b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+?+梯形,2112S 222

ADE ABE S S ab c ??=+=?+梯形,化简得证

3.勾股定理的适用范围

勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐

角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察

的对象是直角三角形

4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?,则

22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量

关系③可运用勾股定理解决一些实际问题

5.勾股定理的逆定理

如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为

斜边

①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转

化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长

边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若

c b a H G F

E D

C B A b a c b a c c a b c a b

a b c

c b a E D C B A

222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,

c 为三边的三角形是锐角三角形;

②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三

边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为

斜边

③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和

时,这个三角形是直角三角形

6.勾股数

①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为

正整数时,称a ,b ,c 为一组勾股数

②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等

③用含字母的代数式表示n 组勾股数:

221,2,1n n n -+(2,n ≥n 为正整数);

2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)

7.勾股定理的应用

勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的

证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边

和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造

直角三角形,以便正确使用勾股定理进行求解.

8..勾股定理逆定理的应用

勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角

三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思

考的用两边的平方和与第三边的平方比较而得到错误的结论.

9.勾股定理及其逆定理的应用 勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不

可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,

又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:

A B C 30°

D C B A A

D B C

10、互逆命题的概念

如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆

命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

二、经典例题精讲

题型一:直接考查勾股定理

例1.在ABC ?中,90C ∠=?.

⑴已知6AC =,8BC =.求AB 的长

⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 解:⑴2210AB AC BC =+=

C

B D

A

⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑

物的高度是多少米?

解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.

已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!

根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2

=144,所以AC=12.

例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B

C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到

D 点,并求水池的深度AC.

解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD 中,

∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的类型。

标准解题步骤如下(仅供参考):

解:如图2,根据勾股定理,AC 2+CD 2=AD 2

设水深AC= x 米,那么AD=AB=AC+CB=x +0.5

x 2+1.52=( x +0.5)

2 解之得x =2.

故水深为2米.

题型三:勾股定理和逆定理并用——

例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,

且AB FB 4

1=那么△DEF 是直角三角形吗?为什么? 解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由AB FB 41=

可以设AB =4a ,那么BE=CE=2 a ,AF=3 a ,BF= a ,那么在Rt △AFD 、Rt △BEF 和 Rt △CDE 中,分

别利用勾股定理求出DF,EF 和DE 的长,反过来再利用勾股定理逆定理去判断△DEF

是否是直角三角形。

详细解题步骤如下:

解:设正方形ABCD的边长为4a,则BE=CE=2a,AF=3a,BF=a

在Rt△CDE中,DE2=CD2+CE2=(4a)2+(2a)2=20 a2

同理EF2=5a2, DF2=25a2

在△DEF中,EF2+ DE2=5a2+ 20a2=25a2=DF2

∴△DEF是直角三角形,且∠DEF=90°.

注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。

题型四:利用勾股定理求线段长度——

例题4 如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.

解析:解题之前先弄清楚折叠中的不变量。合理设元是关键。

详细解题过程如下:

解:根据题意得Rt△ADE≌Rt△AEF

∴∠AFE=90°, AF=10cm, EF=DE

设CE=x cm,

则DE=EF=CD-CE=8-x

在Rt△ABF中由勾股定理得:

AB2+BF2=AF2,即82+BF2=102,

∴BF=6cm

∴CF=BC-BF=10-6=4(cm)

在Rt△ECF中由勾股定理可得:

EF2=CE2+CF2,即(8-x) 2=x2+42

∴64-16x+x2=2+16

∴x=3(cm),即CE=3 cm

注:本题接下来还可以折痕的长度和求重叠部分的面积。

题型五:利用勾股定理逆定理判断垂直——

例题5 如图5,王师傅想要检测桌子的表面AD边是否垂直与AB边和C

D边,他测得AD=80cm,AB=60cm,BD=100cm,AD边与AB边垂直吗?怎样去

验证AD边与CD边是否垂直?

解析:由于实物一般比较大,长度不容易用直尺来方便测量。我们通常截取部分长度来

验证。如图4,矩形ABCD 表示桌面形状,在AB 上截取AM=12cm,在AD 上截取AN=9cm(想想

为什么要设为这两个长度?),连结MN ,测量MN 的长度。

①如果MN=15,则AM 2+AN 2=MN 2

,所以AD 边与AB 边垂直;

②如果MN=a ≠15,则92+122=81+144=225, a 2≠225,即92+122≠ a 2,所以∠A 不是直角。

利用勾股定理解决实际问题——

例题6 有一个传感器控制的灯,安装在门上方,离地高4.5米

的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.

5米的学生,要走到离门多远的地方灯刚好打开?

解析:首先要弄清楚人走过去,是头先距离灯5米还是脚先距

离灯5米,可想而知应该是头先距离灯5米。转化为数学模型,如

图6 所示,A 点表示控制灯,BM 表示人的高度,BC ∥MN,BC ⊥AN 当

头(B 点)距离A 有5米时,求BC 的长度。已知AN=4.5米,所以AC=3米,由勾股定理,可

计算BC=4米.即使要走到离门4米的时候灯刚好打开。

题型六:旋转问题:

例1、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△AC P ′重合,若AP=3,求PP ′的长。

变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.

分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,

根据它们的数量关系,由勾股定理可知这是一个直角三角形.

变式2、如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°,

试探究222BE CF EF 、、间的关系,并说明理由.

题型七:关于翻折问题

例1、如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折

叠,点B 恰好落在CD 边上的点G 处,求BE 的长.

变式:如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’

的位置,BC=4,求BC ’的长.

题型八:关于勾股定理在实际中的应用:

例1、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?

题型九:关于最短性问题

例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A

处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,

为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从

背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问

壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用

计算器计算)变式:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方

形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?

三、课后训练:

一、填空题

1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.

图(1)

2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。

3.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm

4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_____________________米。

5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、

2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B

点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________.

二、选择题 1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )

A 、25

B 、14

C 、7

D 、7或25

2.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )

A 、121

B 、120

C 、132

D 、不能确定

3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( )

A 、60∶13

B 、5∶12

C 、12∶13

D 、60∶169

4.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )

A 、24cm 2

B 、36cm 2

C 、48cm 2

D 、60cm 2

5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( )

A 、56

B 、48

C 、40

D 、32 C

O

A B

D E

F 第3题图 D B C A 第4题图 2032A

B

6.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米

售价a 元,则购买这种草皮至少需要( )

A 、450a 元

B 、225a 元

C 、150a 元

D 、300a 元

7.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )

A 、6cm 2

B 、8cm 2

C 、10cm 2

D 、12cm 2 8.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为 A .42 B .32 C .42或32 D .37或33

9. 如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( )

(A )直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对

三、计算

1、如图,A 、B 是笔直公路l 同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m ,两村庄之间的距

离为d(已知d 2=400000m 2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。问最小是多少?

2、如图1-3-11,有一块塑料矩形模板ABCD ,长为10cm ,宽为4cm ,将你手中足够大的直角三角板 PHF 的直角顶点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板顶点P :

①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由. ②再次移动三角板位置,使三角板顶点P 在AD 上移动,直角边PH 始终通过点B ,另一直角边PF 与DC 的延长线交于点Q ,与BC 交于点E ,能否使CE=2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.

四、思维训练:

1、如图所示是从长为40cm 、宽为30cm 的矩形钢板的左上角截取一块长为20cm ,宽为10cm 的矩形后,剩下的一块下脚料。工人师傅要将它做适当的切割,重新拼接后焊成一个面积与原下脚料的面积相等,接缝尽可能短的正方形工件,请根据上述要求,设计出将这块下脚料适当分割成三块或三块以上的两种不同的拼接方案(在图2,3中分别画出切割时所沿的虚线,以及拼接后所得到的正方形,保留拼接的痕迹)。

30cm

30cm

40cm 10cm 150° 20m 30m 第6题图 A B E F D C 第7题图

A B C

A B

l

2、葛藤是一种刁钻的植物,它自己腰杆不硬,为了争夺雨露阳光,常常饶着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线,总是沿着短路线—盘旋前进的。难道植物也懂得数学吗?

如果阅读以上信息,你能设计一种方法解决下列问题吗?

如果树的周长为3 cm ,绕一圈升高4cm ,则它爬行路程是多少厘米?

如果树的周长为8 cm ,绕一圈爬行10cm ,则爬行一圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?

3、在,△ABC 中,

∠A CB =90°,CD ⊥AB 于D,求证:222111

CD AC BC =+。 B A D

C

人教版八年级下学期数学知识点总结

八年级下册数学知识点总结 第十六章 二次根式 16.1二次根式 1.二次根式:一般地,我们把形如a (a 0≥)的式子叫二次根式。 2.两个重要公式: (1) )0a (a )a (2≥=; (2) ???<-≥==)0a (a )0a (a a a 2 3.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=?. 5.二次根式比较大小的方法: (1)利用近似值比大小;(414.12=、732.13=、236.25=) (2)把二次根式的系数移入二次根号内,然后比大小; (3)先分别平方,然后比较大小。 16.2二次根式的乘除 6.二次根式的除法法则: (1))0b ,0a (b a b a >≥=或)0b ,0a (b a b a >≥÷=÷; (2)分母有理化:消掉分母中的根号的过程叫做分母有理化。 7.最简二次根式: (1)被开方数不含分母 ; (2)被开方数中不含能开的尽的因数或因式。 8.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式. 16.3二次根式的加减 9.一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将同类二次根式进行合并。 第十七章 勾股定理 17.1 勾股定理 如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=,这就叫勾股定理。

17.2勾股定理的逆定理 如果三角形的三边长a,b,c满足222 +=,那么这个三角形是直角三角形。 a b c 互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 第十八章平行四边形 18.1平行四边形 1.平行四边形定义:两组对边分别平行的四边形叫平行四边形。 2.平行四边形的性质: (1)平行四边形的对边平行且相等 (2)平行四边形的对角相等、邻角互补 (3)平行四边形的对角线互相平分 3.平行四边形的判定: (1)两组对边分别相等的四边形叫平行四边形 (2)一组对边平行且相等的四边形叫平行四边形 (3)两组对角分别相等的四边形叫平行四边形 (4)对角线互相平分的四边形叫平行四边形 4.三角形中位线定理三角形的中位线平行于三角形的第三边,且等于第三边的一半 5.直角三角形上的中线等于斜边的一半 18.2特殊的平行四边形 1.矩形的定义:有一个角是直角的平行四边形叫矩形 2.矩形的性质: (1)矩形的四个角都是直角 (2)矩形的对角线相等 3.矩形的判定: (1)对角线相等的平行四边形是矩形 (2)有三个角是直角的四边形是矩形 4.菱形的定义:有一组邻边相等的平行四边形叫菱形

八年级数学下册知识点总结(全)

八年级数学下知识点总结 函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x就是自变量,y就是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值与函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法:用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数与一次函数 1、正比例函数与一次函数的概念 一般地,如果(k,b就是常数,k0),那么y叫做x的一次函数。特别地,当一次函数中的b为0时,(k为常数,k0)这时,y叫做x的正比例函数。 2、一次函数的图像 所有一次函数的图像都就是一条直线。 3、一次函数、正比例函数图像的主要特征: 一次函数的图像就是经过点(0,b)的直线;正比例函数的图像就是经过原点 (0,0)的直线。(如下图) 4、正比例函数的性质 一般地,正比例函数有下列性质: (1)当k>0时,图像经过第一、三象限,y随x的增大而增大; (2)当k<0时,图像经过第二、四象限,y随x的增大而减小。 5、一次函数的性质 一般地,一次函数有下列性质: (1)当k>0时,y随x的增大而增大 (2)当k<0时,y随x的增大而减小 6、正比例函数与一次函数解析式的确定

勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1.勾股定理 内容: 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠=?, 则 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 4.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若 ,时,以a ,b ,c 为三边的三角形是钝角三角形;若 ,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

最新人教版八年级下册数学知识点总结归纳

新人教版八年级下册数学知识点总结归纳期末总复习 一、 第十六章 二次根式 【知识回顾】 : 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含 开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不 含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数 相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(1)(a )2=a (a ≥0); (2) ==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中 有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号 外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的 形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后 移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二 a (a >0) a -(a <0) 0 (a =0);

都适用于二次根式的运算 二、第十七章 勾股定理 归纳总结 1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边 长为c ,那么c b a 222=+ 应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90C ∠=?, 则 c = ,b = ,a =) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边。 2、勾股定理逆定理:如果三角形三边长a,b,c 满足c b a 222=+那么 这个三角形是直角三角形。 应用: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一 种重要方法。 (定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一 的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三 边的三角形是直角三角形,但是b 为斜边) 3、勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即 222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10; 5,12,13;7,24,25等 4.直角三角形的性质 (1)直角三角形的两个锐角互余。可表示如下:∠C=90°?∠A+∠B=90° (2)在直角三角形中,30°角所对的直角边等于斜边的一半。 ∠A=30° ?BC=2 1AB ∠C=90°

初二数学下册知识点总结(最新最全)

初二数学(下)应知应会的知识点 二次根式 1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0. 2.重要公式:(1))0a (a )a (2≥=,(2)? ??<-≥==)0a (a )0a (a a a 2 ; 注意使用)0a ()a (a 2≥=. 3.积的算术平方根:)0b ,0a (b a ab ≥≥?=,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求. 4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=?. 5.二次根式比较大小的方法: (1)利用近似值比大小; (2)把二次根式的系数移入二次根号内,然后比大小; (3)分别平方,然后比大小. 6.商的算术平方根:)0b ,0a (b a b a >≥=,商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 7.二次根式的除法法则: (1) )0b ,0a (b a b a >≥= ; (2))0b ,0a (b a b a >≥÷=÷; (3)分母有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的 有理化因式,使分母变为整式. 8.常用分母有理化因式: a a 与,b a b a +-与, b n a m b n a m -+与,它 们也叫互为有理化因式. 9.最简二次根式: (1)满足下列两个条件的二次根式,叫做最简二次根式,① 被开方数的因数是整数,因式是整式, ② 被开方数中不含能开的尽的因数或因式; (2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母; (3)化简二次根式时,往往需要把被开方数先分解因数或分解因式; (4)二次根式计算的最后结果必须化为最简二次根式.

初中八年级数学知识点总结

八年级数学(上)知识点 人教版八年级上册主要包括三角形、全等三角形、轴对称、整式的乘除与分解因式和分式五个章节的内容。 第十一章三角形 一.知识框架 二.知识概念 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 7.多边形的内角:多边形相邻两边组成的角叫做它的内角。 8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 11.公式与性质 三角形的内角和:三角形的内角和为180° 三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:n边形的内角和等于(n-2)·180° 多边形的外角和:多边形的内角和为360°。 多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

初二数学下学期知识点总结

初二下数学期末知识点回顾 分式 知识要点 1.分式的有关概念 设A 、B 表示两个整式.如果B 中含有字母,式子 B A 就叫做分式.注意分母B 的值不能为零,否则分式没有意义 分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简 2、分式的基本性质 ,M B M A B A ??= M B M A B A ÷÷=(M 为不等于零的整式) 3.分式的运算 (分式的运算法则与分数的运算法则类似). bd bc ad d c b a ±=± (异分母相加,先通分); ;;bc ad c d b a d c b a b d ac d c b a =? =÷=? .)(n n n b a b a = 4.零指数)0(10 ≠=a a 5.负整数指数 ).,0(1 为正整数p a a a p p ≠= - 注意正整数幂的运算性质 n n n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=?-+)(,)(),0(, 可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是O 或负整数. 6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去. 7、列分式方程解应用题的一般步骤: (1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。 1. (-5)0 =_____; 2. 3-2 =________;3. 当x_________时,分式 1x+1 有 意义;

初二数学知识点总结

初二数学知识点总结 函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,及其表达式、增减性、图像3 从函数的观点看方程、方程组和不等式如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。形如y=kx+b(k,b 是常数,k≠0)的函数,叫做一次函数。正比例函数是一种特殊的一次函数。当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。 一、、常量、变量在一个变化过程中,数值发生变化的量叫做变量,数值始终不变的量叫做常量。 二、函数的概念函数的定义:一般的,在一个变化过程中如有两个变量x与y,并且对于x的每一个确定值,y都有唯一确定的值与其对应,那么就说x是自变量,y是x的函数、 三、函数中自变量取值范围的求法(1)用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用奇次根式表示的函数,自变量的取值范围是全体实数。 用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量

的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。 四、函数图象的定义一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。 五、用描点法画函数的图象的一般步骤 1、列表:表中给出一些自变量的值及其对应的函数值。注意:列表时自变量由小到大,相差一样,有时需对称。 2、描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。 3、连线:按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来。六、函数有三种表示形式(1)列表法(2)图像法(3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数,其中k叫做比例系数。 一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数。、当b =0 时,y=kx+b 即为 y=kx,所以正比例函数是一次函数的特例、。八、正比例函数的图象与性质图象:正比例函数y= kx (k 是常数,k≠0) 的图象是经过原点的一条直线,称之为直线y= kx 。 性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四

勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是() A. CD、EF、GH B. AB、EF、GH C. AB、CD、GH D. AB、CD、EF

勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 ; 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗”

占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角 形。” ' “勾股定理一定是要用的,而且不动笔墨恐怕是不行的。”绣亚补充说。几位男孩子走进教室,画图、计算,不一会就得出了答案。同学们,你算 出来了吗 思路分析: 1)题意分析:本题考查勾股定理的应用 2)解题思路:本题关键是认真审题抓住问题的本质进行分析才能得出正确 的解答

初二数学下册知识点总结-超经典!

初二数学下册知识点总结-超经典!

初二数学下知识点总结 函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法:用图像表示函数关系的方法叫

做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果b =(k,b是常数,k≠0),那么 kx y+ y叫做x的一次函数。特别地,当一次函数b = y+ kx 中的b为0时,kx y=(k为常数,k≠0)这时,y 叫做x的正比例函数。 2、一次函数的图像 所有一次函数的图像都是一条直线。 3、一次函数、正比例函数图像的主要特征: 一次函数b =的图像是经过点(0,b)的直线; kx y+ 正比例函数kx y=的图像是经过原点(0,0)的直线。(如下图) 4. 正比例函数的性质 一般地,正比例函数kx y=有下列性质:

新人教版八年级数学下册知识点归纳总结

八年级数学(下册)知识点总结 第十六章 二次根式 1.二次根式概念:式子a (a ≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(a )2=a (a ≥0); (2)==a a 2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式. (3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式. ab =a ·b (a≥0,b≥0); b b a a = (b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. △ 比较数值的方法 (1)、根式变形法 当0,0a b >>时,①如果a b >,则a b >;②如果a b <,则a b <。 (2)、平方法 当0,0a b >>时,①如果2 2 a b >,则a b >;②如果2 2 a b <,则a b <。 (3)、分母有理化法 通过分母有理化,利用分子的大小来比较。 例3、比较 231-与1 21 -的大小。 (4)、分子有理化法 通过分子有理化,利用分母的大小来比较。 例4、比较1514-与1413-的大小。 a (a >0) a -(a <0) 0 (a =0);

勾股定理典型题型

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少 米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,. 已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到 D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如 图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾 股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=AD 2 设水深AC= x 米,那么AD=AB=AC+CB=x +0.5 x 2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

新北师大版八年级数学下册知识点总结

北师大版八年级数学下册各章知识要点总结 第一章三角形的证明 一、全等三角形判定、性质: 1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形) 2.全等三角形的对应边相等、对应角相等。 二、等腰三角形的性质 定理:等腰三角形有两边相等;(定义) 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。(三线合一) 推论2:等边三角形的各角都相等,并且每一个角都等于60°。 等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 三、等腰三角形的判定 1. 有关的定理及其推论 定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。 推论2:有一个角等于60°的等腰三角形是等边三角形。 2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。这种证明方法称为反证法 四、直角三角形 1、直角三角形的性质 直角三角形的两锐角互余 直角三角形两条直角边的平方和等于斜边的平方; 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半; 在直角三角形中,斜边上的中线等于斜边的一半。 2、直角三角形判定 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形; 3、互逆命题、互逆定理 在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题. 如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 五、线段的垂直平分线、角平分线 1、线段的垂直平分线。 性质:线段垂直平分线上的点到这条线段两个端点的距离相等; 三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。(外心) 判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 2、角平分线。 性质:角平分线上的点到这个角的两边的距离相等。 三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。(内心) 判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 第二章一元一次不等式和一元一次不等式组 1.定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。 2.基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变.如果a>b,那么

八年级上册数学知识点归纳

八年级上册数学知识点归纳、总结人教版、 1 全等三角形的对应边、对应角相等- 2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等- 3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等- 4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等- 5 边边边公理(SSS) 有三边对应相等的两个三角形全等- 6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等- 7 定理1 在角的平分线上的点到这个角的两边的距离相等- 8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上- 9 角的平分线是到角的两边距离相等的所有点的集合- 10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)- 21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边- 22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合- 23 推论3 等边三角形的各角都相等,并且每一个角都等于60°- 24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)- 25 推论1 三个角都相等的三角形是等边三角形- 26 推论2 有一个角等于60°的等腰三角形是等边三角形- 27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半- 28 直角三角形斜边上的中线等于斜边上的一半- 29 定理线段垂直平分线上的点和这条线段两个端点的距离相等- 30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上- 31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合-

勾股定理经典例题(含答案)A

勾股定理经典例题(含答案)A

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 举一反三【变式1】如图,已知:,,于P. 求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从 营地A点出发,沿北偏东60°方向走了到 达B点,然后再沿北偏西30°方向走了500m到达目的地C 点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?

(二)用勾股定理求最短问题 4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线. 举一反三 【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.

类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 举一反三【变式】在数轴上表示的点。 类型五:逆命题与勾股定理逆定理 6、写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 2.原命题:对顶角相等 3.原命题:线段垂直平分线上的点,到这条线段两端距离相等. 4.原命题:角平分线上的点,到这个角的两边距离相等.7、如果ΔABC的三边分别为a、b、c,且满足

2020新人教版八年级数学下册知识点总结归纳

八年级数学(下册)知识点总结 二次根式 【知识回顾】 1.二次根式:式子a(a≥0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。 3.同类二次根式: 二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。 4.二次根式的性质: (1)(a)2=a(a≥0);(2) = =a a2 5.二次根式的运算: (1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面. (2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);=b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算. 【典型例题】 1、概念与性质 例1下列各式1-, 其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围 (1)x x - - + 3 1 5 ;(2) 2 2) - (x a(a>0) a -(a<0) 0 (a=0);

例3、 在根式1) 222;2) ;3);4)275 x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4) 例 4、已知: 的值。求代数式22,211881-+- +++-+-=x y y x x y y x x x y 例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( ) A. a>b B. a0,b>0时,①如果a>b ,则b a >;②如果a0,b>0时,①如果a 2 >b 2 ,则a>b ;②如果a 2

新人教版八年级数学知识点总结归纳上下册

新人教版八年级上册数学 知识点总结归纳 1第十一章三角形 第十二章全等三角形 第十三章轴对称 第十四章整式乘法和因式分解 第十五章分式

第十一章三角形 1、三角形的概念 由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形

的高线(简称三角形的高)。 3、三角形的稳定性 三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。 4、三角形的特性与表示 三角形有下面三个特性: (1)三角形有三条线段 (2)三条线段不在同一直线上三角形是封闭图形 (3)首尾顺次相接 三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三?? 角形ABC”。 5、三角形的分类 三角形按边的关系分类如下: 不等边三角形 三角形底和腰不相等的等腰三角形 等腰三角形 等边三角形 三角形按角的关系分类如下: 直角三角形(有一个角为直角的三角形)

三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形) 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。 6、三角形的三边关系定理及推论 (1)三角形三边关系定理:三角形的两边之和大于第三边。 推论:三角形的两边之差小于第三边。 (2)三角形三边关系定理及推论的作用: ①判断三条已知线段能否组成三角形 ②当已知两边时,可确定第三边的范围。 ③证明线段不等关系。 7、三角形的内角和定理及推论 三角形的内角和定理:三角形三个内角和等于180°。 推论: ①直角三角形的两个锐角互余。 ②三角形的一个外角等于和它不相邻的来两个内角的和。 ③三角形的一个外角大于任何一个和它不相邻的内角。 注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。 8、三角形的面积21 =×底×高 多边形知识要点梳理 定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。

勾股定理经典例题(含答案)

勾股定理经典例题 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2 、如图,已知:在中,, ,. 求:BC的长. 1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要() A、450a元 B、225a 元 C、150a元 D、300a元 举一反三【变式1】如图,已知: ,,于P. 求证:. 150° 20m 30m

【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 举一反三 【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门? (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,

浙教版八年级数学下册知识点汇总精编版

浙教版八年级数学下册 知识点汇总精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

八年级(下册) 1. 二次根式 1.1. 二次根式 像3,4a 2++b 这样表示算术平方根的代数式叫做二次根式,二次根号内字母的取值范围必须满足被开方数大于或等于零。 1.2. 二次根式的性质 像57,这样,在根号内不含字母,不含开得尽方的因数或因式,这样的二次根式称为最简二次根式。 1.3. 二次根式的运算 2. 一元二次方程 2.1. 一元二次方程 像方程x 2+3x=4的两边都是整式,只含有一个未知数,并且未知数的最高次数是2次,这样的方程叫 做一元二次方程。能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或根)。 任何一个关于x 的一元二次方程都可以化为ax 2 +bx+c=0的形式。 ax 2+bx+c=0(a,b,c 为已知数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为二次 项、一次项和常数项,a,b 分别称为二次项系数和一次项系数。 2.2. 一元二次方程的解法 利用因式分解解一元二次方程的方法叫做因式分解法,这种方法把解一个一元二次方程转化为解两 个一元一次方程。 形如x 2 =a(a ≥0)的方程,根据平方根的定义,可得x 1=a ,x 2=-a ,这种解一元二次方程的方法叫 做开平方法。 把一元二次方程的左边配成一个完全平方式,右边为一个非负数,然后用开方法求解,这种解一元 二次方程的方法叫做配方法。 一元二次方程ax 2+bx+c=0(a ≠0)的根的情况由代数式b 2-4ac 的值来决定,因此b 2-4ac 叫做一元二次 方程的根的判别式,它的值与一元二次方程的根的关系是: 2.3. 一元二次方程的应用 2.4. 一元二次方程根与系数的关系(选学) 一元两次方程的根与系数有如下关系:(韦达定理) 如果x 1,x 2是ax 2+bx+c=0(a,b,c 为已知数,a ≠0)的两个根,那a c x x a b x =?-=+2121;x 3. 数据分析初步 3.1. 平均数 有n 个数x 1、x 2、x 3 ...... x n ,我们把 ()n x x x x ++++.......n 1321叫做这n 个数的算术平均数,简称平均数,记做x (读作“x 拔”) 像n n n a a a a x a x a x +++?++?+?=............x 212211这种形式的平均数叫做加权平均数,其中分母a 1、a 2......a n 表示 各相同数据的个数,称为权。权越大,对平均数的影响就越大,加权平均数的分母恰好为各权的和。

文本预览
相关文档 最新文档