当前位置:文档之家› 弹性力学问题的能量方法概说

弹性力学问题的能量方法概说

弹性力学问题的能量方法概说
弹性力学问题的能量方法概说

第四章 弹性力学问题的能量方法概说

4.1 基本问题与基本方程回顾

1. 应力与应变张量及其坐标变换 (见平面弹性力学一节)

2. 一般线弹性材料的物理关系

在弹性体受力发生变形的过程中,外力要作功.与此同时,弹性体内部贮存能量称为弹性应变能。在等温条件下,弹性应变能在数值上等于外力功,弹性体中的弹性应变能用U 表示,单位体积内的弹性应变能用U 。表示,即弹性应变能密度函数。根据弹性力学知识, 在应力作用下,应变从 变到 ,在单位体积内的应变

能则为: xy

xy xz

xz yz

yz z z z y x x d d d d d d dU

γ

τγ

τγ

τεσεσεσ+++++=0

(1)

在应变从零缓慢地增加到终值的整个加载过程中,对上式积分便得到: (){}{}i

T

i xy

xy xz

xz yz

yz z z y y x

x U εσγ

τγ

τγτεσεσεσ

2

12

10=+++++=

(2)

在均质弹性体中,材科性质不随坐标位置而改变,这时弹性应变能是应变分量

的函数,且仅于应变的终值有关(全微分)。所以必有:

xy

xy

xz

xz

yz

yz

z x

y x

x x

d U d U d U d U d U d U dU γ

γ

γ

γ

γ

γ

εεεεεε??+

??+

??+

??+

??+

??=

0000000

又按照力学作功的概念,有: z z

y y

x x

U U U εσ

εσ

εσ

??=

??=

??=

000,,

xy

xy zx

zx yz

yz

U U U ετγ

τγ

τ

??=

??=

??=000,

,

代入广义虎克定律,并将上式写成矩阵形式:

()x y z

yz zx xy εεεγγγ()xy zx

yz

x

x

x

γγγεεε

()xy xy zx zx yz yz x x x x x x d d d d d d γγγγγγεεεεεε+++++

+

对上式第一式关于εy 求导;对上式第二式关于εx 求导可得:

210

120

;C U C U y

x x

y =???

?

??????=???

?

??????εεεε 由于能量关于应变的二次型,所以,关于求导顺序无关,因此得:

2112C C =

同理可得: ji

ij C C =

用张量表示为: l k j i j i l k k l i j i j k l C C C C === (共21个独立参数)

用矩阵表示为:

③ 关于应变能二次型的表达式:

将广义虎克定律代入式(2),用矩阵可表示为: {}[]{}εεC U

T 2

10

=

3. 应变协调关系

()i

j j

i ij ij

u

u

U ,,+=

=??2

10εσ

4. 更广泛意义上的物理关系(能量积分形式,见虚功原理的恒等表达式)

5. 弹性力学问题的微分方程

)

()(,上在内在p i j ij i j ij T n f Γ=-Ω=+0

0σσ

4.2 虚功原理 1. 概念

① 借助物理中的能量守恒原理,建立两类对偶量在各自满足基本条件情况下的可能

(积分)关系;

② 也可以获得对力学的一种计算方法; ③ 其它变分原理证明中用到的工具;

可能位移及应变:满足连续性条件及边界条件;

???

???

???

?

?????????

?=665655

464544

36353433

26

25242322161514131211

C C C C C C C C C C C C C C C C C C C C C C ijkl

对称

可能应力:满足平衡方程(与某种外力维持平衡的应力,含力的边界条件)。 2. 表达式 Ω-

???Ω

d u f T +B d B

T

u P ??=

Ω???

Ω

d εσT

2

1

含义:外力在可能位移上的做功等于内力在可能应变上做的功。 3. 恒等式 (将平衡方程代入左端,几何连续条件代入右端) -()Ω][d T

u Ε????Ωσ+??B

[])(σνE B d T

u =

Ω????Ω

d u ΕσT

T )(2

1

含义:可将对偶量,σu 之间看成没有任何关系,但应该满足上述方程;这样,上

式就可看成是物理关系的另一种表征。

4.3 最小势能原理

(是一种有条件变分原理,除满足连续性条件外,对偶变量间还需满足一定的物理关系) 1. 系统势能问题 2. 最小势能原理的表达 3. 证明过程 4. 变分的结果 4.4 最小余能原理

(类似于最小势能原理,属有条件变分原理,满足平衡条件以及力的边界条件,但变分函 数不同于势能原理) 1. 余势能构造 2. 最小余能原理表述 3. 证明 4. 变分结果

4.5 两类变量广义变分原理

上述两类变分原理所涉及的泛函都取最小值,这是它们共同的优点,为突出这个优点,有时把它们通称为最小值原理。但在这两个原理中,自变函数都必须满足一定的条件,用起来有时会感到不方便。

广义变分原理中,有关的自变函数可以独立自主地变动,事前不受任何约束,这是它们的共同优点。但同时也带来一个共同的缺点,这就是所涉及的泛函都是驻立值,而不是极值。

1. 目的:将最小势、余能原理中的条件极值问题转换为无条件极值问题;

2. 方法:Lagrange 乘子;在力学上,还要获得Lagrange 乘子的力学含义,这要依据力学问题的分析才能确定。

3. Hellinger -Reissner 变分原理:是一个两变量(u i ,σij )的小变形弹性体力学的有条件变分原理。可以通过Lagrange 乘子将最小余能原理中的两个变分约束解除掉而建立起来的。 约束条件:

应力约束条件(平衡方程及边界条件):

)

()(,上在内在p i j ij i j ij P n f Γ=-Ω=+0

0σσ

其变分导出的Euler 方程和位移边界连续性条件及位移边界条件。 余应变能能对应力导数表示的变形协调条件:

()i j j

i ij

u u

B ,,+=??2

已知的位移边界条件: i i u u = (在u Γ上)

新泛函的构造;引入两类待定的拉氏乘子i λ和i η,并认为原余能泛函解除了对应力的约束条件,再应用乘子和上述约束条件构成新的泛函。

()()()????Ω

Ω

ΓΓΓ-+

Γ-

Ω++Ω=

u

p

i j ij

i i j ij

i j

ij i

d p n d u n d f d B σ

ησ

σ

λσ,*

进行变分(把i i ij ηλσ,,)看作独立变量,得: ()?ΩΩ??

?

????

???+++??=∏

d f B j ij i i j

i i ij

ij ,,*

δσλσδλδσ

σδ

()()(){}??ΓΓ=Γ+-+

Γ-

p

j ij i i i j ij

u

j ij

i d n p n d n u 0σδηδησ

σ

δ

利用Green 公式:

()()????Ω

Ω

ΓΓΩ-

Γ+

Γ=

Ωd d n d n d j i ij

u

p

j ij

i j ij

i j

ij i ,,λδσ

σ

δλσ

δλδσ

λ

代入上式,得: ()()?ΩΩ??

?

???????++?????

???+-??=∏

d f B

i i j

ij ij

i j j i ij δλσ

δσ

λλσδ,,,*

21

()()()()(){}??ΓΓΓ++-+

Γ--

u

p

j ij i i i i j ij

j ij i i

d n p n d n u σδληδησ

σδλ

由于i ij δλδσ,在Ω内,()j ij n σδ在Γu 上,()j ij i n σδδη,在Γp 上,都是独立的,于是,得:

()()()()

()

()

上在上在上在内在内在p

i i p

i j ij u i i i j ij i j j

i ij

p n u f B Γ

=+Γ=-Γ=-Ω=+Ω=+-??0

0000

2

1λησλσλλ

σ,,,

4. 结论: ()()上在,

内在p

i

i i

i u u Γ

-=Ω=ηλ,

获得了Lagrange 乘子的力学含义。 5. 两类变量广义余能的Hellinger-Reissner 原理: ()()()????Ω

Ω

ΓΓΓ--

Γ-

Ω++Ω=

∏u

p

i j ij

i i j ij

i j

ij i

HR d p n u d u n d f u d B σ

σ

σ

σ,

即为一个两广义变量的无条件变分原理,变量为:i ij u ,σ。它的变分驻值给出了

域内应变协调条件,在边界上(包括力边界和位移边界),给出了4个自然边界条件。 ● 对空间弹性力学问题,无论什么变分原理,积分号下只存在一阶导数项,因此它的

变分原理原理要求自变函数连续即可,即0

,C ∈σu 。相对微分方程问题的函数连续性要求简单。

● 广义变分原理对函数的连续性要求更宽松,可以是广义函数。

第五章 弹性力学平面问题

5.1 平面变形 (应变) 问题 1. 假设:

① 0=z f (体积力);0=z p (侧表面力); ② x p 、y p 与z 轴无关;

③ 侧表面上的位移边值条件与坐标z 无关。 2. 平面变形: (在端面平衡力系(含支反力)作用下)

u = u (x , y ), v = v (x , y ) 且 w = 0

?0===z yz

xz

εγ

γ

x

u x ??=

ε,y

v y ??=

ε,x

v y

u xy

??+

??=

γ

(与z 无关)

2

3. 物理关系 (线弹性): 空间各向同性

??

?

???

?

?

?

?

??xz yz

xy z y z τττσσσ=

)21)(1()1(v v v -+-E ?

?

?

?

?????

??????? ?

?------------)1(2210

00)1(22100000

0)1(221000

0001110

001110

00111v v v v v v v v v v v v v v

v v v v ?????????

? ??zx

yz xy z y x γγγεεε

弹性张量: l k j i

i j k l E g g g g D ???= 对称性: j i l k i j l k j i k l i j k l E E E E === 应力张量:

=σj i ij zz

zy

zx

yz yy

yx

xz xy xx

g g ?=???

?

? ??=????? ??σστττσ

τττσσ

τττσ

τττσ33

32

31

2322

21131211 应变张量:

=ε j i ij zz zy

zx yz yy yz

xz xy

xx v v v v v v v v v v v v g g ?=?

??????? ??=???????? ??εεεεεεε3332

31

232221

1312

1121212

1

2121

21212

12

121

21

21 张量的V oiget 记号:

11 22 33 12 23 31 1 2 3 4 5 6 故有:

=σ ?

?

?

?

??

?

??

?

????

???

? ??31

2312

3311

33

32

31

232221

13121122

τττσσσστττττσσσ =ε?????????

?

??????????? ??

31

23

1233221133

32

3123

22

21

131********

121

212

1v

v v v v v v v v εεεεεε

因为 εD σ:=;其分量形式:kl ijkl ij D εσ= 故可写成一般工程常见的形式。 应力张量的坐标变换: j i j i x x x x g g g g ?????=?β

ααββααβσσ 故分量变换式:β

ααβ

σσx x x x j i ij ????=

同理:

j i j i x x x x g g g g ?????=?β

ααβ

βααβεε ?β

ααβ

εεx x x x j i ij ????=

平面变形的物理关系:()0===yz

xz z γ

γ

ε

????

?

???

???????

?

?-----+-=

????

? ??xy

y x xy y x v v v v

v v v v v v E ε

ετσσ)1(2210

00110

11

)21)(1()1( Note :0≠z

σ

,再代回原空间物理关系,即可获得;但一般分析时不再给予关心;

2D 与3D 的物理关系形式不变,2D 仅是原关系式的缩减。 4.平衡微分方程:

???

??

??=+??+??=+??+??00x xy x

y xy y f y x f x

y τστσ

5.2 平面应力问题

很薄板受边界载荷作用(载荷沿厚度方向均为常数),位移支撑条件也作用于边界上。 故内力有简化关系:0===z

yz

xz σ

τ

τ

位移:u = u (x ,y );v = v (x , y );0=w

物理关系:)(1)

(1y x

y y x

x v E

v E

σσ

εσσ

ε+-=

-=

Note : 0≠z ε, 但工程不关心,故平面本构关系中不包含z 向应变。

2D 与3D 的物理关系系数不变。

xy

xy G

v τ1

=

?

???????????????

?????

?--=??

?

?

?

?????xy y x xy y x E γεεννν

ντσσ210

0010

112

平面变形与平面应力的本构关系变量相同,仅系数不同,可通过形式参数来统一表达平面问题的这两类关系,故通称为平面问题,以后不再区分。

5.3 变分原理

1. 势能变分原理 (单位厚度) ds v u dxdy v f u f U

s ns c n n y x )()(τσΩ

σ

+-

--=

∏???

[]xy

xy y y x x

U γ

τεσεσ

++=

2

1

∏δ =0 (将应力需先转换为位移的函数,再求对独立位移u 和v 的变分)

理论变分结果:平衡方程(Euler 方程)及应力边界上的自然边界条件。 2. 余能变分原理 d s

v u

d x d y U ns s n

c n

u

)(τσ

Ω

+-=

????

0=?δ

理论变分结果:几何连续性条件,位移边值条件。 5.4 平面问题的常用有限单元 1. 常应变元

① 节点参数u , v 共6个:

t

e v u v u v u ],,,,,[332211=δ

② 线性插值 (面积坐标)

???

?

????????????????????=?????

???????????????????????=??????33221132

1

32133221132

13

2

10

0000

00

v u v u v u N N N N N N v u v u v u v u ξξξξξξ ③ 导数关系:(几何矩阵)

i

j

k

ξ2

ξ1 ξ3

1

2

3

???

??

?????

??????????????????

??????????

?

?????????????????????????=??????????332211332211

321321

000000v u v u v u x

N y

N x

N y

N x

N y N y N y N y

N x N x N x N

v xy y x εε ??

?

????=?

?

????

?????

?????????????32

13213

2132121b b b a a a y y

y x x

x ξξξξξξ {}[]{}δεB =

{}{}e a b a b a b b b b a a a δε???

?

?

???

???=33

2

2

1

1

321321000

00021 (常应变) 1

23312231213132321x x b x x b x x b y y a y y a y y a -=-=-=-=-=-=,

,

,,

3

3

221

11

1

1y x y x y x =? 这也是为什么要逆时针标号的原因。 ④ 应变能

⑤ 外力势

{}

)()()(=-∏==++

+-=∏???W F ds v u dxdy v f u f W e e T

e

s ns n c n y e

x δδδτσσ

Ω

⑤ 刚度方程 {}{}?=e e e F K δ {}{}F K =∑δ

常应变元的优点是公式简单,但缺点是收敛性差。为了改进收敛性,可提高插入函数的

次数。

2. 高精度三角元

① 二次单元 (12个位移参数,三个角点,3个边中点)

{}[]{}{}[][][]{}{}{}e e T e e T

e

T

e K dxdy B D B dxdy

D δδδδεε2

1

21

2

12==

=

∏????ΩΩ

4

{}[]T

e v u v u v u v u v u v u 665544332211,,,,,,,,,,,=δ

{}δ??

????=??????22

2

2

00

1

0000001y xy

x

y

x

y

xy x

y x v u

注意形状曲面

????

?

?

??????????????y v y u x v x u =?

?????????

???

??

??

???????????

??---???

?????65432

1654

3

2

1

12313223132

1321

0441

40040401404400

01421v v v v v v u u u u u u b b b a a a ξξξξξξξξξ 由此可以计算应变分量,再进一步计算单元的刚度矩阵,最后得到单元的刚度方程;

再组装结构刚度矩阵及等效载荷列阵,最后获得结构刚度方程。

Homework :

计算三次元(图中共有10个节点)的几何矩阵

3. 四边形单元

()()()[]

??

????

????

?????

?????---=6543

21654321213132332211444121212v v v v v v u u u u u u v u ξξξξξξξξξξξξ,,,,,],[1 2

3

4

5 6 x

节点位移和节点力系统:

{}[]p p m m j j

i

i e

v u v u v u

v u =δ

{}[]yp

xp

ym

xm yj xj yi xi e

P P P P P P P P

P =

形状函数:

[]????????

??????????????????????????????????????????=x

N y

N x

N y

N x

N y

N x

N y

N

y N y N y N y

N x N x N x N x N

B 44332211

43214321

0000

0000

[]??

?

?

?

??

?

??+--++-+------++---+-+---=)()

()

()

(0)(0)(0

)

(000)

(41y b x

a y

b x

a y

b x a y b x a x

a x a x a x a y

b y b y b y b ab B

显见得[]B 不再是常数阵,说明应变在平面内线性变化。 2.矩阵平面应力刚阵形成

公式: [][][][]?=s

T e ds B D B K

由于不再是常数阵,只能手工积分每一元素,得到刚阵显式。

)

)(()(()())((b

y a x N b y

a x N

b y

a x N

b y a x N p m j i +-=++=-+=--=1141114111411141

弹性力学试题及标准答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1 MT -2 。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa , =2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa , =2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa , =2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

弹性力学试题参考答案与弹性力学复习题

弹性力学复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和

混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:x 、y 、z 、xy 、yz 、、zx 。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之 间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学平面问题分为那几类试作简要说明 答:按照边界条件的不同,弹性力学平面问题可分为两类: (1)平面应力问题 : 很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问题。例如深梁在横向力作用下的受力分析问题。在该种问题中只存在 yx xy y x ττσσ=、、三个应力分量。 (2)平面应变问题 : 很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,而且体力

弹性力学答案清晰修改

2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。 证明: (1)将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程 ???????=+??+??=+??+??00y x xy y y x y yx x x f f τ στσ (a ) 0)1())((22 22=??+??+-=+??+??)(y f x f y x y x y x μσσ (b ) 显然(a )、(b )是满足的 (2)对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式 ?? ?? ?=+=+)()() ()(s f l m s f m l y s xy y x s yx x τστσ (c ) 则有),cos(),cos(x n q x n x -=σ ),cos(),cos(y n q y n y -=σ 所以q x -=σ,q y -=σ。 对于单连体,上述条件就是确定应力的全部条件。 (3)对于多连体,应校核位移单值条件是否满足。 该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形

变分量q E x )1(-= με,q E y ) 1(-=με,0=xy γ (d ) 然后,将(d )的变形分量代入几何方程,得 q E x u ) 1(-=??μ,q E y v )1(-=??μ,0=??+??y u x v (e ) 前而式的积分得到 )()1(1y f qx E u +-= μ,)() 1(2x f qy E v +-=μ (f ) 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式(f )代入(e )的第三式得 dx x df dy y df ) ()(21=- 等式左边只是y 的函数,而等式右边只是x 的函数。因此,只可能两边都等于同一个常数ω,于是有 ω-=dy y df )(1,ω=dx x df ) (2,积分以后得01)(u y y f +-=ω,02)(v x x f +=ω 代入(f )得位移分量 ?? ???++-=+--=v x qy E v u y qx E u ωμωμ)1()1(0 其中ω,,00v u 为表示刚体位移量的常数,须由约束条件求得。 从式(g )可见,位移是坐标的单值连续函数,满足位移单值条件,因而,应力分量是正确 的解答。 2-17设有矩形截面的悬臂粱,在自由端受有集中荷载F ,体力可以不计。试根据材料力学公式,写出弯应力x σ和切应力xy τ的表达式,并取挤压应力0=y σ,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答。 解〔1〕矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程为Fx x M -=)(,横 截面对z 轴(中性轴)的惯性矩为12 3 h I z =,根据材料力学公式,弯应力

(完整word版)弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处

所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程: (1) 平面问题的平衡微分方程; 00yx x x xy y y f x y f x y τστσ??++=????++=??(记) (2) 平面问题的平衡微分方程(极坐标); 10210f f ρρ?ρ? ρ?ρ?ρ? ??σ?τσσ?ρρ??ρ ?σ?ττρ???ρρ -+++=+++= 1、平衡方程仅反映物体部的平衡,当应力分量满足平衡方程,则物体部是平衡的。 2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。 二、 几何方程; (1) 平面问题的几何方程; x y xy u x v y v u x y εεγ?= ??=???=+ ??(记) (2) 平面问题的几何方程(极坐标);

最新弹性力学答案

【1-4】应力和面力的符号规定有什么区别?试画出正坐标面和负坐标面上的正的应力和正的面力的方向。【解答】应力的符号规定是:当作用面的外法线方向指向坐标轴方向时(即正面时),这个面上的应力(不论是正应力还是切应力)以沿坐标轴的正方向为正,沿坐标轴的负方向为负。当作用面的外法线指向坐标轴的负方向时(即负面时),该面上的应力以沿坐标轴的负方向为正,沿坐标轴的正方向为负。 面力的符号规定是:当面力的指向沿坐标轴的正方向时为正,沿坐标轴的负方向为负。 由下图可以看出,正面上应力分量与面力分量同号,负面上应力分量与面力分量符号相反。 正的应力 正的面力 【2-1】试分析说明,在不受任何面力作用的空间体表面附近的薄层中(图2-14)其应力状态接近于平面应力的情况。 【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该薄层的上下表面都无面力,且在薄层内所有各点都有0===z xz yz σττ,只存在平面应力分量,,x y xy σστ,且它们不沿z 方向变化,仅为x ,y 的函数。可以认为此问题是平面应力问题。 【2-2】试分析说明,在板面上处处受法向约束且不受切向面力作用的等厚度薄片中(2-15),当板边上只受x ,y 向的面力或约束,且不沿厚度变化时,其应变状态接近于平面应变的情况。 【解答】板上处处受法向约束时0z ε=,且不受切向面力作用,则 0xz yz γγ==(相应0zx zy ττ==)板边上只受x ,y 向的面力或约束,所以仅存在,,x y xy εεγ,且不沿厚度变化,仅为x ,y 的函数,故其应变状态接近于平面 应变的情况。 O z y

【2-3】在图2-3的微分体中,若将对形心的力矩平很条件C M 0=∑改为对角点的力矩平衡条 件,试问将导出什么形式的方程? 【解答】将对形心的力矩平衡条件 C M 0=∑, 改为分别对四个角点A 、B 、D 、E 的平衡条件,为计算方便,在z 方向的尺寸取为单位1。 0A M =∑ 1()1()11222()1()1110 222 xy x y x xy y y yx y yx x x dx dy dy dx dx dy dx dy dx dy x x dx dy dx dy dx dy dx dy f dxdy f dxdy y y τσσστσστστ????++??-+??-?? ????-+??++??+??-??=?? (a) 0B M =∑ ()1()1()122 111110 2222 yx y x x yx y xy x y x y dy dx dx dy dy dx dy dy dx x y y dy dx dy dx dy dx dy dx f dxdy f dxdy τσσστστσσ???+ ??++??++?????-??-??-??+??+??= (b) 0D M =∑ ()111122 1()1110 2222 y y xy x yx x x x x y dx dy dy dx dy dx dy dx dy y dx dy dy dx dx dx dy f dxdy f dxdy x σστστσσσ?+ ?? -??+??+????-??-+??-??+??=? (c) 0E M =∑ ()1111222 ()1()1110 222y y x yx y xy x x xy x y dx dy dx dy dx dy dx dy dx y dy dy dx dx dy dx dy dx f dxdy f dxdy x x σσστστσστ?-+ ?? +??+??+??- ???+??-+??-??+??=?? (d) 略去(a)、(b)、(c)、(d)中的三阶小量(亦即令2 2 ,d xdy dxd y 都趋于0),并将各式都除以dxdy 后合并同类项,分别得到xy yx ττ=。 【分析】由本题可得出结论:微分体对任一点取力矩平衡得到的结果都是验证了切应力互等定理。

弹性力学教材习题及解答完整版

弹性力学教材习题及解 答 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

1-1. 选择题 a. 下列材料中,D属于各向同性材料。 A. 竹材; B. 纤维增强复合材料; C. 玻璃 钢; D. 沥青。 b. 关于弹性力学的正确认识是A。 A. 计算力学在工程结构设计的中作用日益重要; B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设; C. 任何弹性变形材料都是弹性力学的研究对象; D. 弹性力学理论像材料力学一样,可以没 有困难的应用于工程结构分析。 c. 弹性力学与材料力学的主要不同之处在于B。 A. 任务; B. 研究对象; C. 研究方法; D. 基本假设。 d. 所谓“完全弹性体”是指B。 A. 材料应力应变关系满足胡克定律; B. 材料的应力 应变关系与加载时间历史无关; C. 本构关系为非线性弹性关系; D. 应力应变关系满足 线性弹性关系。 2-1. 选择题 a.所谓“应力状态”是指B。 A. 斜截面应力矢量与横截面应力矢量不同; B. 一点不 同截面的应力随着截面方位变化而改变; C. 3个主应力作用平面相互垂直; D. 不同截 面的应力不同,因此应力矢量是不可确定的。 2-2. 梯形横截面墙体完全置于水中,如图所示。已知水的比重为,试写出墙体横截面边

界AA',AB,BB’的面力边界条件。 2-3. 作用均匀分布载荷q的矩形横截面简支梁,如图所示。根据材料力学分析结果,该梁横截面的应力分量为 试检验上述分析结果是否满足平衡微分方程和面力边界条件。 2-4. 单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。试写出楔形体的边界条件。 2-5. 已知球体的半径为r,材料的密度为1,球体在密度为1(1>1)的液体中漂浮,如

弹性力学简明习题提示与参考答案

题提示和答案 《弹性力学简明教程》 习题提示和参考答案 第二章习题的提示与答案 2-1 是 2-2 是 2-3 按习题2-1分析。 2-4 按习题2-2分析。 2-5 在的条件中,将出现2、3阶微量。当略去3阶微量后,得出的切 应力互等定理完全相同。 2-6 同上题。在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。其区别只是在3阶微量(即更高阶微量)上,可以略去不计。 2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。 2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。 2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。 2-10 参见本章小结。 2-11 参见本章小结。 2-12 参见本章小结。 2-13 注意按应力求解时,在单连体中应力分量必须满足 (1)平衡微分方程, (2)相容方程, (3)应力边界条件(假设)。 2-14 见教科书。 2-15 见教科书。 2-16 见教科书。 2-17 取

它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。 2-18 见教科书。 2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得 出。 第三章习题的提示与答案 3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解: (1)校核相容条件是否满足, (2)求应力, (3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。 3-2 用逆解法求解。由于本题中 l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。 3-3 见3-1例题。 3-4 本题也属于逆解法的问题。首先校核是否满足相容方程。再由求出 应力后,并求对应的面力。本题的应力解答如习题3-10所示。应力对应的面力是:主要边界: 所以在边界上无剪切面力作用。下边界无法向面力;上边 界有向下的法向面力q。 次要边界: x=0面上无剪切面力作用;但其主矢量和主矩在 x=0 面上均为零。 因此,本题可解决如习题3-10所示的问题。 3-5 按半逆解法步骤求解。 (1)可假设 (2)可推出 (3)代入相容方程可解出f、,得到

弹性理论基础

弹性理论基础 产生弹性形变的介质叫弹性介质。 (一)各向同性介质和各向异性介质 对弹性介质,如果沿不同方向测定的物理性质均相同,称各向同性介质,否则是各向异性介质。 (二)均匀介质、层状介质 若介质的弹性性质不仅与测定方向无关,而且与坐标位置无关,就称为均匀介质;非均匀介质中,介质的性质表现出成层性,称这种介质为层状介质;其中每一层是均匀介质;不同介质层的分界处称界面(平面或曲面);两个界面之间的间隔称为该层的厚度。 (三)连续介质 将速度v是空间连续变化函数的介质定义为连续介质。连续介质是层状介质的一种极限情况。即当层状介质的层数无限增加,每层厚度无限减小,层状介质就过渡为连续介质,如 v=v0 (1+bz)叫线性连续介质。 (四)单相介质和双相介质 只考虑单一相态的介质称单相介质,由两种相态组成例如一种是固相一种是流相的,称为双相介质。 二、弹性模量 (一)应力与应变 1.应力:弹性体受力后产生的恢复原来形状的内力称内应力,简称为应力。应力和外力相抗衡,阻止弹性体的形变。对于一个均匀各向同性的弹性圆柱体,设作用于s面上的法向应力为N,若力f在s面上均匀分布,则应力pn定义为 Pn=f/s ,若外力f非均匀分布,则可以取一小面元△S,作用于小面元上的力为△f,则应力定义为(lim(△f/△S))。因此应力的数学定义为:单位横截面上所产生的内聚力称为内力。根据力的分解定理,可以将力分解成垂直于单元面积的应力—法向应力(正应力);相切于单元面积的应力—切向应力(剪切应力)。 2.应变:物理定义:弹性体受应力作用,产生的体积和形状的变化称为应变。只发生体积变化而形状不变的应变称正应变;反之,只发生形状变化的应变称切应变。数学定义:弹性理论中,将单位长度所产生的形变称应变。 3.应力与应变的关系:应力与应变成正比关系的物体叫完全弹性体,虎克定律表示了应力与应变之间的线性关系。对于一维弹性体,虎克定律为: F=kx; F: 外力; x: 形变; k: 弹性系数。对于三维弹性体,用广义虎克定律表示应力与应变之间的关系。

弹性力学基础知识点复习

固体力学的重要分支,它研究弹性物体在外力和其他外界因素作用下产生的变形和内力,又称弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。 弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。

弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。 ①变形连续规律弹性力学(和刚体的力学理论不同)考虑到物体的变形,但只限于考虑原来连续、变形后仍为连续的物体,在变形过程中,物体不产生新的不连续面。如果物体中本来就有裂纹,则弹性力学只考虑裂纹不扩展的情况。 反映变形连续规律的数学方程有两类:几何方程和位移边界条件。几何方程反映应变和位移的联系,它的力学含义是,应变完全由连续的位移所引起,

弹性力学简明教程课后习题解答(精校版)

弹性力学简明教程(第四版)课后习题解答 第一章绪论 【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体? 【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。 【解答】均匀的各项异形体如:竹材,木材。 非均匀的各向同性体如:混凝土。 【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体? 【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。 【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。 【1-3】五个基本假定在建立弹性力学基本方程时有什么作用? 【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。 均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。 各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。 小变形假定:假定位移和变形是微小的。亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。这样在建立物体变形以后的平衡方程时,就可以方便的用变形以前的尺寸来代替变形以后的尺寸。在考察物体的位移与形变的关系时,它们的二次幂或乘积相对于其本身都可以略去不计,使得弹性力学中的微分方程都简化为线性的微分方程。

弹性力学与有限元分析试题及其答案

一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa , 50=y σMPa ,5010=xy τ MPa ,则主应 力=1σ150MPa ,=2σ0MPa , =1α6135' 。 8、已知一点处的应力分量, 200=x σMPa , 0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa , =1α-37°57′。 9、已知一点处的应力分量, 2000-=x σMPa ,1000=y σMPa , 400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别 建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题(请在正确命题后的括号内打“√”,在错误命题后的括号内打“×”)

弹性力学练习--答案

弹性力学练习--答案

一、填空题 1. 等截面直杆扭转问题中, 2D dxdy M φ=??的物理意义是 : 杆端截面上剪应力 对转轴的矩等于杆截面内的扭矩M 。 5.弹性力学的基本假定为:连续性、完全弹性、均匀性、各向同性、小变形性。 6. 一组可能的应力分量应满足: 平衡微分方程 、相容方程(变形协调条件) 。 7. 最小势能原理等价于弹性力学基本方程中:平衡微分方程 、应力边界条件 。 13.弹性力学平衡微分方程、几何方程的张量表示为: ,0ij j i X σ+=,,,1 ()2ij i j j i u u ε= +

17. 有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 18. 为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19. 每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 20. 为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。 二、判断题 1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(√) 2、均匀性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。(×) 3、表示位移分量与应力分量之间关系的方程为物理方程。(×) 4、当物体的位移分量完全确定时,形变分量即完全确定。(√) 5、连续性假定是指整个物体是由同一材料组成的。(×) 6、平面应力问题与平面应变问题的物理方程是完全相同的。(×) 7、按应力求解平面问题,最后可以归纳为求解一个应力函数。(×) 8、在有限单元法中,结点力是指单元对结点的作用力。(×) 9、在有限单元法中,结点力是指结点对单元的作用力。(√) 10、当物体的形变分量完全确定时,位移分量却不能完全确定。(√) 11、在平面三结点三角形单元的公共边界上应变和应力均有突变。(√ ) 12、按应力求解平面问题时常采用位移法和应力法。(×) 13、表示应力分量与面力分量之间关系的方程为平衡微分方程。(×) 三、问答题 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。

弹性理论考试题及答案

需求的价格弹性是指__________变动的比率所引起的__________变动的比率。 选择一项: a. 价格需求量 b. 需求量价格 正确答案是:价格需求量 当某商品的价格上升6%,而需求量减少9%时,该商品属于需求__________弹性。当某商品的价格下降5%而需求量增加3%时,该商品属于需求__________弹性。选择一项: a. 富有缺乏 b. 缺乏富有 正确答案是:富有缺乏 若某种商品的需求无弹性,则其需求曲线是一条的线。 选择一项: a. 与横轴平行(与横轴垂直) b. 与横轴垂直(与纵轴平行) 正确答案是:与横轴垂直(与纵轴平行) 收入弹性是指__________变动的比率所引起的__________变动的比率。 选择一项: a. 收入需求量 b. 需求量收入

正确答案是:收入需求量 税收负担在经营者和消费者之间的分割称为,税收负担最终由谁承担称为。 选择一项: a. 税收归宿税收分摊 b. 税收分摊税收归宿 正确答案是:税收分摊税收归宿 如果某种商品需求富有弹性而供给缺乏弹性,则税收就主要落在身上。选择一项: a. 消费者 b. 生产者 正确答案是:生产者 在需求的价格弹性小于1的条件下,卖者适当__________价格能增加总收益。选择一项: a. 提高 b. 降低 正确答案是:提高 需求弹性的弹性系数是指__________与__________的比值。

选择一项: a. 需求量变动的比率价格变动的比率 b. 价格变动的比率需求量变动的比率 正确答案是:需求量变动的比率价格变动的比率 需求缺乏弹性是指需求量变动的比率__________价格变动的比率,需求富有弹性则是指需求量变动的比率__________价格变动的比率。 选择一项: a. 小于大于 b. 大于小于 正确答案是:小于大于 一般来说,生活必需品的需求弹性__________,而奢侈品的需求弹性。 选择一项: a. 大小 b. 小大 正确答案是:小大 若某种商品需求量变动的比率大于价格变动的比率,该商品属于需求__________弹性。若某种商品需求量变动的比率小于价格变动的比率时,该商品属于需求 __________弹性。 选择一项:

弹性力学基础知识归纳知识讲解

弹性力学基础知识归 纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时,应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。

4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号? 由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。 平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。

最新弹性力学基础知识归纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静 力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单 的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时, 应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题? 应力边界条件,位移边界条件和混合边界条件。 4.弹性体任意一点的应力状态由几个分量决定?如何确定他 们的正负号?

由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。 满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。一般混凝土构件和一般土质地基可以看做为理想弹性体。 7.什么是差分法?写出基本差分公式? 差分法是把基本方程和边界条件近似地看改用差分方程(代

弹性力学试卷及答案

一、概念题(32分) 1、 如图所示三角形截面水坝,其右侧受重度为γ的水压力作用,左侧为自 由面。试列出下述问题的边界条件 解:1)右边界(x=0) 1 1 2)左边界(x=ytg β) 1 1 由: 2 2 2、何谓逆解法和半逆解法。 答:1. 所谓逆解法,就是先设定各种形式、满足相容方程的应力函 数,利用公式求出应力分量,然后根据应力边界条件考察在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知设定的应力函数可以解决什么问题。 4 2. 所谓半逆解法,就是针对所要求解的问题,根据弹性体的边界形状与受力情况,假设部分或全部应力分量为某种形式的函数,从而推出应力函数,然后考察该应力函数是否满足相容方程,以及原来假设的应力分量和由这个应力函数求出的其余应力分量,是否满足应力边界条件和位移单值条件。如果相容方程和各方面的条件都能满足,就可得到正确解答;如果某一方面不能满足,就需要另作假设,重新考察。 4 3、已知一点的应力状态,试求主应力的大小及其作用的方向。 200,0,400x y xy MPa MPa σστ===- 解:根据公式122x y σσσσ+=± 2 和公式11tan x xy σσατ-=,求出主应力和主应力方向: 2 2000512.31312.322MPa σσ+==- 2 512200tan 0.7808,3757'11400 αα-==-=- 2 4、最小势能原理等价于 以位移表示的平衡微分 (3) 方程和 应力 (3) 边界条件,选择位移函数仅需满足 位移 (2) 边界条件。 二、图示悬臂梁,长度为l , 高度为h ,l >>h ,在梁上边界受均布荷载。试检验应力函数 523322ΦAy Bx y Cy Dx Ex y =++++ 能否成为此问题的解?,如果可以,试求出应力分量。(20分) 000y x x xy x σγτ=-===() () cos ,cos cos ,cos()2sin l n x m n y βπ ββ====+=-() () () () x y l m x xy s s l m xy y s s f f σττσ+=+=???? ?( ) ()() () cos sin 0 cos sin 0 x xy s s xy y s s σβτβτβσβ-=+=?????

弹性力学复习重点+试题及答案【整理版】

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系?在应用这些方程时,应注意些什么问题? 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。 位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的, 即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定?试将它们写出。如何确定它们的正负号? 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:σx、σy、σz、τxy、τyz、、τzx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定?什么是“理想弹性体”?试举例说明。 答:答:在推导弹性力学基本方程时,采用了以下基本假定:(1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题?什么叫平面应变问题?各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的 面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑?各方面反映的是那些变量间的关系? 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方 面主要反映的是形变分量与应力分量之间的关系,也就是平 面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题? 试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题:(1)平面应力问题:很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。这一类问题可以简化为平面应力问

相关主题
文本预览
相关文档 最新文档