当前位置:文档之家› 丝素蛋白做为生物医用材料的研究进展

丝素蛋白做为生物医用材料的研究进展

丝素蛋白做为生物医用材料的研究进展
丝素蛋白做为生物医用材料的研究进展

丝素蛋白作为生物医用材料的研究进展

前言

生物医用材料是以生物医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的材料。金属材料、合成高分子材料在生物医用材料中多有应用,但金属材料的生物力学性能不匹配,合成高分子材料的生物相容性较差以及生物降解性能可调性差限制了其作为生物医用材料的应用。丝素蛋白是由蚕茧缫丝脱胶而得的纤维状蛋白[1],是一种性能优异的天然高分子材料。丝素蛋白分子结构独特,除具备良好的生物相容性和稳定的生物安全性、出色的机械性能之外还具备吸湿保湿性能、透氧透气性能、细胞附着性。

因此,丝素蛋白在人造皮肤、人工角膜、人工肺、隐形眼镜、酶固定化载体、药物缓释载体、细胞培养基等生物医药领域有诸多潜在应用[2-3]。

1 丝素蛋白的结构组成

丝素蛋白中含有18种氨基酸,其中侧基较小的氨基酸残基,如甘氨酸、丙氨酸和丝氨酸等按照一定序列排成较为规则的链段,构成结晶区,构成了丝素蛋白高强度力学的基础;带有较大侧基的苯氨酸、酪氨酸和色氨酸等构成非结晶区,赋予了丝素蛋白较高的弹性和较好的韧性[4-5]。

丝素蛋白有四种分子构象,分别是无规卷曲、sil kⅠ、sil kⅡ、sil kⅢ:丝素蛋白分子链按照α-螺旋和β-平行折叠构象交替堆积构成sil kⅠ型构象,其晶胞属于正交晶系;分子链按照反平行β折叠则形成sil kⅡ型构象;分子链按照β-折叠螺旋形成sil kⅢ型构象,其晶胞为六方晶系。sil kⅠ型丝素蛋白亲水性较好,不宜形成沉淀;sil kⅡ型丝素蛋白则亲水性差,易结晶沉淀,是丝素蛋白的主要晶型。

以β-折叠为基础,丝素蛋白可以形成直径大约为10nm的微纤维,微纤维又可以密切结合程直径大约1μm的细纤维,进而细纤维沿长轴排列可构成直径为10-18μm的丝素蛋白纤维[4]。

2 丝素蛋白的性能特点

丝绸的生产在中国已有千年的历史,真丝绸穿着舒适、手感柔软滑爽、色泽和谐、华丽高贵,同时,还具备保健功能,被称为保健性纤维。蚕丝最早应用在

医疗领域是作为手术缝合线,目前已在外科手术中广泛应用。丝素蛋白是天然蚕丝的主要成分,相关研究表明,丝素蛋白作为生物材料[1]有如下优点:①机械性能可媲美高性能纤维,明显优于其他天然纤维②可加工成膜支架等形式;③表面易化学共价修饰黏附位点和细胞因子;④可通过遗传工程改造丝蛋白成分来调节相对分子质量的大小、可结晶性和可溶性;⑤可部分生物降解,在体内外降解速率缓慢,降解产物不仅对组织无毒副作用,还对周围组织有营养与修复作用。

3 丝素蛋白的应用

3.1 丝素蛋白作为骨组织工程材料

骨[6]主要是由纳米晶羟基磷灰石和胶原纤维组成,其中,针状结晶羟基磷灰石长40~60nm,径向为3~20nm,它的结晶方向沿着胶原纤维的长轴分布,晶体中心轴与胶原纤维的长轴平行。骨组织工程[7]是在分子细胞学、生物材料等学科基础上发展起来的,其研究内容包括:种子细胞、生长因子和基质材料三大部分,最终目的是组合三种因素构建组织工程化骨来解决临床上的问题。由于天然骨中I 型胶原蛋白含量最多,因此,国内外相关骨组织工程材料的研究多选用该类型蛋白质。但胶原蛋白提纯工艺复杂,不易获取高纯度胶原蛋白,并易引起炎症反应。因此,利用胶原以外的有机基质作为骨组织工程材料的支架可能是一条理想的途径。

丝素蛋白材料在传统领域中多用作纺织材料,劳动强度大、产值小、效益低[3]。基于其优越的力学性能和良好的生物亲和性能,丝素蛋白材料被研究用于骨组织工程材料。苏州大学的卢神州等[6]研究了羟基磷灰石/丝素蛋白纳米复合颗粒的制备,他们用氢氧化钙与磷酸湿法合成羟基磷灰石,加入丝素蛋白以诱导羟基磷灰石晶体的定向生长,以仿生的方法得到复合颗粒。结果表明,制备的复合颗粒为纳米级粉体,长度在100-400nm,宽度在30~80nm之间。丝素蛋白可以诱导羟基磷灰石形成针状晶体,晶体的长轴方向沿着c轴方向,这是因为丝素蛋白与羟基磷灰石之间的相互作用造成的。并且随着丝素蛋白加入量的增加,长径比增加,随着温度的增加,结晶度增加,其组成和结构与入骨组织中纳米微晶非常相似。由于羟基磷灰石丝素蛋白复合纳米粒子与入骨中磷灰石微晶的相似性以及基体材料的可降解性,这些材料被赋了;优异的骨诱导性能和可降解性能,在骨修

复或骨固定材料方面有着潜在的用途,可以为适合于临床应用的HA产品提供优质的粉体原料。张家港第一人民医院的徐卫袁等[7]复合了丝素蛋白/牛骨形态发生蛋白及骨髓间充质干细胞复合新型组织工程骨,并采用脊柱融合实验进行生物力学分析。取10只兔体外扩增骨髓间充质干细胞,接种复合于丝素蛋白,牛骨形态发生蛋白复合物上,构建组织工程骨。剩余60只兔随机分成5组:丝素蛋白,牛骨形态发生蛋白,骨髓间充质干细胞组、丝素蛋白/骨髓间充质干细胞组、丝素蛋白,牛骨形态发生蛋白组、单纯丝素蛋白组、空白对照组。12只,组。各组均咬除L5棘突建立植骨床,前4 组植入对应移植物进行椎板间融合,空白对照组仅去皮质骨,不给予任何外植物。结果:①植入12周时,丝素蛋白/牛骨形态发生蛋白/骨髓间充质干细胞组100% 融合,丝素蛋白/牛骨形态发生蛋白组、丝素蛋白/骨髓间充质干细胞组、单纯丝索蛋白组融合率分别为83.3% ,25.0% ,16.7%,空白对照组为0 ;②丝素蛋白/牛骨形态发生蛋白/骨髓间充质干细胞组丝素蛋白完全降解。新生骨组织已进入塑形期,向板层骨发展;丝素蛋白/牛骨形态发生蛋白丝素蛋白完全降解,新生骨组织以编织骨为主;丝素蛋白/骨髓问充质干细胞组骨岛数目较前增多,未见连续性新生骨;单纯丝素蛋白组新生骨增加不明显;空白对照组始终未见新生骨生成;③丝素蛋白/牛骨形态发生蛋白/骨髓间充质干细胞组、丝索蛋白/牛骨形态发生蛋白组体内植入的融合脊柱具有明显的稳定性,刚度、强度较好,与其余 3 组比较差异有显著性意义。证明丝素蛋白是一种良好的细胞外基质材料。浙江理工大学的刘琳[8]研究了纳米羟基磷灰石/丝素蛋白复合支架材料的降解特性及生物相容性研究应用共混法制备了纳米羟基磷灰石/丝素蛋白复合支架材料,通过体外降解和细胞培养实验研究了复合支架材料的降解特性和生物相容性.体外降解实验结果显示,复合支架材料具有稳定的降解能力;在降解过程中,羟基磷灰石由于与降解液发生钙、磷等离子的交换,使其结晶得到了进一步生长和完善.利用细胞计数法、四甲基偶氮唑盐(MTT)比色法和碱性磷酸酶(ALP)活性测定等分析了复合支架材料的生物相容性,结果表明,MG63细胞在复合支架材料上具有良好的粘附、增殖能力,并可引起早期的骨分化.因此,纳米羟基磷灰石/丝素蛋白复合支架作为骨组织工程的支架材料具有良好的应用前景。

Joshua R. Mauney[9]等采用水性溶剂(AB)和有机溶剂(HFTIP)处理的方法制

备了丝素蛋白支架材料,并同胶原蛋白、聚乳酸同时进行体外实验和体内实验的表征。采用人骨髓细胞和脂肪间充质细胞进行体外细胞培养,小鼠进行植入实验并采取Alamar Blue Analysis、Oil-Red O analysis等表征细胞在三种材料上的活性、分化等。研究表明:具有三维大孔结构的AB和HFIP丝素蛋白支架能够作为脂肪组织工程支架,尤其能够为体内软组织的生长提供长期的结构支撑。

相关研究均表明,丝素蛋白对细胞表现出良好的细胞附着率和增值率,具有维持细胞正常形态的作用,可以被用作细胞支架材料;丝素蛋白降解缓慢,其降解能力可以通过与其他材料复合进行调整,可以为细胞生长提供合适的支持。同时,基于丝素蛋白良好的力学性能,考虑加工方法提高其作为细胞支架材料要求的空隙、形状以及表面性能是丝素蛋白作为骨组织工程材料的未来研究方向。

3.2 丝素蛋白作为抗凝血材料的研究

血液相容性(blood compatibility)是指生物医用聚合物与血液接触后,产生符合要求的生物学反应和起有效作用的性能。生物材料良好的抗凝血性和诱导血管分化能力是作为血管材料的必要条件。

丝素蛋白中含有大量由6种氨基酸残基交替排列的结构(Gly-Ala—GI la-Gly-Ser-),其中Ser之间的距离,与肝磷脂中有抗凝血作用的重要基团硫酸基的距离十分接近。用浓硫酸在在一定温度下处理丝素水溶液一定时间[2],用NaOH 中和后,将硫酸化的丝素溶液透析脱盐,经冷冻干燥后得到硫酸化丝素粉.红外光谱表征结果表明丝素蛋白分子中的酪氨酸或丝氨酸的羟基被硫酸酯化,形成的硫酸酯基在1 100~1 400 cm-1处有强烈吸收峰.说明丝素蛋白中被导入了硫酸基。相关学业实验则表明,硫酸化丝素粉具备良好的抗凝血性能。使用氯磺酸来代替浓硫酸处理丝素蛋白材料,得到的抗凝血活性约提高100倍,活性达到肝细胞的20%左右。因此硫酸化丝素由于具有阻止血凝的作用。Tamada等[10]报道将丝素蛋白硫酸化后具有阻止血凝的作用,可用于制造人工血管。丝素蛋白作为需求量很大的人造血管高新材料,已开始在日本应用。我国始于1957年研制蚕丝人造血管,目前上海丝绸研究所已制成多种类型和不同直径的真丝人造血管。

丝素蛋白纤维具有出色的力学性能和生物相容性。Zhang Xiaohui等[11]将人类主动脉内皮细胞和人类冠状动脉平滑肌细胞接种到静电纺丝法制备的丝素蛋白纤维支架上,采用扫描电镜、共聚焦显微镜等技术手段,考察了上述细胞的形态、分化、细胞外基质的形成,结果表明:丝素蛋白纤维适合作为血管组织工程材料。

现有合成的生物材料多被用作制备大直径血管但未能在微血管的制备上取得进展。Michael Lovett等[12]报道了微管丝素蛋白用于微血管修复。表征了PEO致孔微管丝素蛋白支架的孔径、爆裂强度、蛋白质通透性、酶降解状况、细胞迁移能力。低孔隙度的微管丝素蛋白表现出了卓越的高爆破压力和低的蛋白通透性;较高空隙率则表现出低的爆破压力和较高的蛋白通透性。同时,丝素蛋白本身具备优异的生物相容性,因此,微管丝素蛋白是很有潜力应用于微血管移植。

3.3 丝素蛋白作为人工神经组织材料

用于周围神经损伤修复的神经管道要能够引导轴突发芽同时在数周之后完成降解和适于加载相应的生长因子来促进神经再生。丝素蛋白具有良好的生物相容性和生物力学性能且生物降解速率缓慢,适宜作为神经管道材料。Lorenz Uebersax 等[13]报道了加载NGF(生长因子)的丝素蛋白神经管道的研究。研究了生长因子在3种不同方法制备的丝素蛋白神经管道3周之内的释放状况,表明该材料没有造成明显的蛋白聚集和PC12细胞活性的损失,可以进一步研究该材料在周围神经损伤修复中的应用。Yang yuming等[14]报道了丝素蛋白材料用于周围神经组织和细胞体外培养的生物相容性。将大叔背根神经节衬底上丝素纤维,结合显微镜和电镜观察细胞生长过程;同时在丝素蛋白提取液中培养大鼠坐骨神经细胞。结果,显微镜、MTT法实验和细胞周期分析均表明丝素蛋白提取液培养雪旺细胞无明显生理学差异。总之,丝素蛋白材料对雪旺细胞无任何毒性,是潜在的神经组织工程材料。

参考文献:

[1]王宏昕,李敏. 丝素蛋白作为组织工程生物材料的研究进展.中国修复重建外科杂志,2008,22(2):192-195.

[2]程忠玲,邵建明.丝素蛋白作为抗凝血材料的研究与进展.中国组织工程研究与临床康复,2007,11(18):3621-3624.

[3]马芳,邹凤竹.丝素蛋白在生物材料领域的应用研究概况.山东农业大学学报,2005,36(4):632-636.

[4]汝玲,黄毅萍,陈萍等.蚕丝素蛋白最新研究进展.化学推进剂与高分子材料,2007,5(4):26-30.

[5]卢神州.丝素蛋白材料的生物学性能.丝绸,2007,(12):58-62.

生物医用材料产业发展现状及思考

生物医用材料产业发展现状及思考生物医用材料是用于诊断、治疗、修复或替换人体组织或器官或增进其功能的一类高技术新材料,与人类的健康息息相关。随着经济发展水平提高,大健康概念日趋升温,加之当代材料科学与技术、细胞生物学和分子生物学的进展在分子水平上深化了材料与机体间相互作用的认识,当代生物医用材料产业已经成为快速发展的高科技新兴产业。 一、生物医用材料及其产业概述生物医用材料又称为生物材料,其传统领域主要包括支持运动功能人工器官(骨科植入物、人工骨、人工关节、人工假肢等),血液循环功能人工器官(人工血管、人工心脏瓣膜等)整形美容功能人工器官、感觉功能人工器官(人工晶体、人工耳蜗等)等,新型领域主要包括分子诊断、3D 打印等。 生物医用材料的特征主要包括:安全性、耐老化、亲和性,及物理和力学性质稳定、易于加工成型、价格适当。同时,便于消毒灭菌、无毒无热源,不致癌不致畸也是必须考虑的。对于不同用途的材料,其要求各有侧重。其产业特征包括:低原材料消耗、低能耗、低环境污染、高技术附加值,高投入、高风险、高收益、知识与技术密集。 二、生物医用材料及其产业发展现状 (一)市场分析

2016 年全球生物医用材料市场规模为709 亿美元,预计2021 年将达到1491.7 亿美元,2016 ~2021 年的复合年增长率为16% 。骨科植入材料和心血管材料是生物医用材料市场占比最高的两个细分领域,其中骨科植入材料占据了全球生物医用材料市场的头把交椅,市场占有率为37.5% 。心血管材料占据生物医用材料市场的36.1% 。其他的主要细分领域还包括牙科材料、血液净化材料、生物再生材料和医用耗材。 (二)竞争态势全球生物医用材料和制品持续增长,美国、欧盟、日本仍然占据绝对领先优势。2015 年,在全球医疗器械生产和消费方面,美国、欧盟、日本的市场占比分别为41% 、31% 和14% 。 美国的生物医用材料产业集聚于技术资源丰富的硅谷、128 号公路科技园、北卡罗来纳研究三角园,以及临床资源丰富的明尼阿波利斯及克利夫兰医学中心等;德国聚集于巴州艾尔格兰、图林根州等地区;日本聚集于筑波、神奈川、九州科技园等。 图1 :主要国家生物医用材料销售收入占全球医疗器械市场比例分析 中国和印度拥有最多的人口,且其医疗保健系统正在发展 当中尚未成熟,因此在医学发展和临床巨大需求的驱动下最具

生物医用材料探究进展

医用羟基磷灰石的研究进展 摘要: 羟基磷灰石(HA)是人体骨、牙无机组成的主要成分,组成生物体骨、牙组织的磷灰石晶体为纳米级、低结晶度、非化学当量和被多种离子的置换的针状纳米微晶.纳米羟基磷灰石由于与生物硬组织结构成分相似,以及在结构上的可模拟性,在生物医用材料研究中占据着重要的地位,并以各种应用形式出现在各类医学研究中。 羟基磷灰石[Calo(P04)6(0H)2】(hydroxyapatite,HAp)是一种生物活性材料,具有独特的生物相容性,是人体和动物骨骼、牙齿的主要无机成分【I】,基于HAp良好的生物活性以及生物相容性,使其成为理想的硬组织替代材料,广泛应用于硬组织修复、药物载体和抗肿瘤活性的研究。 关键词:羟基磷灰石;特性;医用功能 前言: 生物材料是生命科学和材料科学的交叉边缘学科,成为现代医学和材料科学的匿要领域之一.预计生物材料的发展将成为21世纪国际经济的主要支柱产业之一。 生物医学材料的历史与人类的历电一样漫长,最初人们用木、金属、动物牙齿作为牙齿种植修复的材料.到19世纪,金、镀、锦等开始用T-口腔修复中,而陶瓷作为骨种植材料具有意义的研究是smitll在20世纪印年代开始的。70年代玻璃陶瓷、羟基磷灰石等进入n舱临床以后,把口腔种植修复推向丁新阶段,特别是80年代以来各种复合材料的H}现,使几腔种植的临床应用更加广泛。 纳米羟基磷灰石是人体骨、牙无机组成的主要成分,具有骨引导作用,在较短的时间内能与骨坚固结合,结合了生物材料和纳米材料的优点,临床已广泛应用,在生物医用材料中也占据着重要的地位. 羟基磷灰石(HA)具有骨引导作用,在较短的时间内能与骨坚固结合,临床已广泛应用.生物体内天然羟基磷灰石以纳米晶体的形式存在,为65~80 nm的针状结晶体.根据“纳米效应”理论,单位质量的纳米级粒子的表面积明显大于微米级粒子,使得处于粒子表面的原子数目明显增加,提高了粒子的活性,十分有利于组织的结合.目前人工合成的纳米羟基磷灰石直径在1—100 nm之间,钙磷比值约为1.67,因而与人骨的结构和成分很相似,是一种理想的组织植入材料.然而以羟基磷灰石作为骨植入材料因强度偏低,尤其是脆性太大尚难直接应用于人体承载部位。 正文: 羟基磷灰石概念: 羟基磷灰石制备方法:1.高温分解法2.煅烧磷酸钙法3.干法合成4.湿法合成:

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

全球生物医用材料市场分析

全球生物医用材料市场分析 一、市场规模 生物材料是一门新兴的多学科交叉融合的前沿科学。自20世纪90年代后期以来,世界生物材料科学和技术迅速发展,全球的生物医用材料和医疗器械市场以每年13%的速度快速增长。即使在当今全球经济低迷的大环境下,生物材料和医疗器械仍是少数几个保持高增长的朝阳产业之一,充分体现了生物材料具有强大的生命力和广阔的发展前景。 近年来,世界生物材料市场发展势头更为迅猛,其发展态势可与信息、汽车产业在世界经济中的地位相比。根据1988年美国国家健康统计中心调查,美国已有1100万人(不包括齿科材料)植入了一件以上的生物医用材料,全球达3000万人以上,1995年世界生物医用材料市场已达200亿美元。中国科学院在2002年《高技术发展报告》中披露,1990年至1995年,世界生物医用材料市场以每年大于20%的速度增长。2000年,全球医疗器械市场已达1650亿美元,其中生物医学材料及制品约占40%至50%,发展到2005年,全球生物材料市场已超过2300亿美元。 生物医学材料在2010年的全球市场规模达3209亿美元,年增长率为10.8%。就市场需求面而言,主要市场增长动能来自于欧、美、日等国家老年人口数目提升及慢性疾病问题逐渐增加,对于人工关节等骨科应用及心脏支架等心血管应用的需求持续攀升,预期未来市场将仍维持稳定成长趋势。同时由于全球生医材料的应用领域的扩展、产品技术的改良和人们对生物材料产品接受度的逐渐提升,也是促使生物材料市场需求和提升市场规模的主要推动力。 近20年来,全球生物医用材料和制品持续增长,美国、西欧、日本仍然占据绝对领先优势。中投顾问发布的《2017-2021年中国生物医用材料行业投资分析及前景预测报告》数据显示:2015年,美国、欧盟、中国、日本销售收入占全球医疗器械市场之比分别为39%、28%、12%和11%。 图表主要国家生物医用材料销售收入占全球医疗器械市场比重 中投顾问·让投资更安全经营更稳健

纳米生物医用材料的进展研究样本

生物医用材料的研究进展 生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料, 它是研究人工器官和医疗器械的基础, 己成为材料学科的重要分支, 特别是随着生物技术的莲勃发展和重大突破, 生物材料己成为各国科学家竞相进行研究和开发的热点。研究动态 迄今为止 ,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。当前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料, 具体体现在以下几个方面: 1. 提高生物医用材料的组织相容性 途径不外乎有两种, 一是使用天然高分子材料, 例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表示; 二是在材料表面固定有生理功能的物质, 如多肽、酶和细胞生长因子等, 这些物质充当邻近细胞、基质的配基或受体 ,使材料表面形成一个能与生物活体相适应的过渡层。 2. 生物医用材料的可降解化 组织工程领域研究中 ,一般应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。其中组织工程材料除了具备一定的机械性能外, 还需具有生物相容性和可降解性。 英国科学家创造了一种可降解淀粉基聚合物支架。以玉米淀粉为基本材料, 分别加入乙烯基乙烯醇和醋酸纤维素 ,再分别对应加入不同比例的发泡剂 (主要为羧酸 ), 注塑成型后就能够获得支撑组织再生的可降解支架。 3. 生物医用材料的生物功能化和生物智能化 利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面 ,经过表面修饰构建新一代的分子生物材料 ,来引发我们所需的特异生物反应 ,抑制非特异性反应。例如将一种名叫玻璃粘连蛋白 (VN)的物质固定到钛表面, 发现固定VN的骨结合界面上有相对多的蛋白存在。4.开发新型医用合金材料

我国生物医用材料现状

我国生物医用材料现状 我国是生物医用材料和器械的需求大国,医疗保健服务人口基数大,医疗费用近十年平均增长率近20%,远远高于同期国民经济增长率,已逐渐成为社会和公民的沉重负担。因此,利用现代高科技,加速生物材料及制品的开发,解除千百万患者的痛苦,提高生活及健康水平,无疑是非常有意义的,也是社会发展的呼唤。生物材料及制品投入产出比高,经济效益十分显著,易于形成科技经济一体化发展,并可带动相关产业的改造。加速生物材料科技经济一体化发展,对于我国参与世界经济发展竞争具有重要意义。 但我国生物医用材料产业基础薄弱,生物医用材料及器械产品单一,技术落后,科研与产业脱节,70-80%要依靠进口。目前,植入体内的技术含量高的生物医用材料产品约80%为进口产品。常用的生物医用材料产品约20%为进口产品,2002年进口产品约100亿元人民币,此外还有大量的医用级原材料大多需要进口。同时,我国材料加工工艺差距较大,基础研究水平不高,这些都直接制约了新技术和新材料的开发和应用,加之资金及合作单位等原因造成生物医用材料科研成果难于产业化。在我国,药品和医疗器械产值的比例约为10:2.5,远远落后于国际上的比例(10:7);而我国在世界生物材料及制品市场中所占份额不足3%。这意味着我国生物材料产业今后将直接面临着世界市场的竞争、限制和压力。 近年来随着国内高新技术发展,医疗器械产业的面貌变化很大。在2002年材料类医疗器械产值约300亿人民币,目前每年以10-15%的速度递增,预计到2010年可达600亿人民币,2020年可达1500亿元人民币。随着我国经济的发展,特别是广大农村和西部地区的生活水平提高,对生物医用材料需求可能会大于这些预测产值。十几亿人口医疗保健需求的巨大压力与我国生物材料、医疗器械及制药工业的薄弱基础形成了尖锐矛盾。这对于我国的经济、社会发展来说,既是难得的机遇.又是一个巨大的挑战。 目前,我国已取得了一批具有自主知识产权的技术项目,并逐步形成了生物医用材料的研发机构和团队。涉及到生物医用材料的学会及协会组织有中国生物医学工程学会生物医用材料分会、中国人工器官学会、北京生物医学工程学会、上海市生物医学工程学会生物医用材料专业委员会、四川省生物医学工程学会、重庆市生物医学工程学会、中国生物复合材料学会和中国生物化学与分子生物学会等。目前,国家已经建立与生物医用材料相关的各类国家重点实验室及研究中心十余家(见表1)。中国科学院系统的金属所、硅酸盐所、化学所、大连化物所、长春应化所和成都有机所都有专门从事生物医用材料研发的团队和学术带头人;同时在北京、天津,上海、广州、武汉、成都、西安也已逐步形成了基于各地区主要大学和研究机构的生物医用材料研发团队和学术带头人。已取得具有自主知识产权的技术项目有:羟基磷灰石涂层技术、聚乳酸及可吸收骨固定和修复材料、胶原和羟基磷灰石复合骨修复材料、自固化磷酸钙材料、介入支架材料、纳米类骨磷灰石晶体与聚酰胺仿生复合生物活性材料、氧化钛和氮化钛涂层技术、免疫隔离微囊材料、壳聚糖防粘连材料、海藻酸钠血管栓塞材料。 表1 国内主要研究机构及重点研究方向 机构名称重点研究方向

蜘蛛丝蛋白聚吡咯复合纤维膜细胞相容性研究【开题报告】

毕业设计开题报告 纺织工程 蜘蛛丝蛋白/聚吡咯复合纤维膜细胞相容性研究 一、选题的背景、意义 组织工程材料是当前生命科学和材料科学共同的前沿研究热点之一。目前已经开发应用于组织工程等生物医学领域的生物相容性高分子材料主要有胶原蛋白、聚乳酸、聚乙醇酸及其共聚物等,但大多数这类材料的原创性研究工作属于国外。我国是一个人口大国,因创伤和疾病造成的组织、器官丧失或功能障碍病例居世界各国之首,每年仅因烧伤需进行皮肤移植的患者就达百万之多。因此,积极寻找合适的原料,研制具有我国自主知识产权的生物材料,对于减小我国组织工程支架等生物材料对国外的依赖性,培育新的高新技术产业和实现国民经济的可持续发展具有重要意义。 研究者一直在寻找具有良好的生物相容性的支架材料以应用于细胞培养中,以及研究支架材料在细胞培养中的各项性能指标以及实验环境对细胞培养的影响,了解细胞在支架材料上的生长情况,以便更好的应用在临床中[1]。而导电支架细胞培养技术发展迅速,是近年来研究的热点。本文主要选择蜘蛛丝蛋白和聚吡咯复合制得的支架材料,将细胞培养在带电的支架材料上,重点研究培养过程中支架材料的性质、电刺激的电流强度及电刺激的时间长短对细胞再生的影响。 二、相关研究的最新成果及动态 2.1 蜘蛛丝蛋白的概况和研究现状 2.1.1蜘蛛丝蛋白的概况 蜘蛛丝的主要成份为蛋白质,如所有的蛋白质纤维一样,其组成长链蛋白质的单元为带不同侧链R的酰胺结构,同尼龙2结构相似[2]。蜘蛛丝的氨基酸的摩尔分数和氨基酸的主链序列与天然聚肽如蚕丝、羊毛和人头发有很大的差异。这种差异和组成取决于蜘蛛的种类、食物、气候及其它因素。不同蜘蛛丝所含的氨基酸种类差异不大,为十七种左右,各种氨基酸的含量也因蜘蛛的种类不同而有一定的差异。它们的共同点为具有小侧链的氨基酸如甘氨酸和丙氨酸的含量丰富,十字圆蛛和大腹圆蛛的这两者含量之和分别达到59.6%和53.2%与蚕丝的含量74.0%相比较就显得较低[3]。 蜘蛛丝是一种特殊的蛋白纤维,它具有很高的强度、弹性、柔韧性、伸长度和抗断裂功能,

生物医用纺织材料及其器件研究进展

生物医用纺织材料及其器件研究进展 生物医用纺织材料是生物医用材料的重要组成部分,是以纤维为基础、纺织技术为依托、医疗应用为目的的医用材料,用于临床诊断、治疗、修复、替换以及人体的保健与防护。生物医用纺织材料是纺织与材料、生物、医学及其他相关基础学科深度交叉融合产生的一类医用材料,其产品是医疗器械的一个重要组成部分,由各级食品药品监督部门监管。与服用和家用纺织品相比,生物医用纺织品研发流程长,产品审批手续复杂,故新产品注册上市所需时间更长。 生物医用纺织材料按来源分类可分为生物医用金属纤维( 如不锈钢丝缝合线) 、生物医用无机非金属纤维( 如氧化铝纤维) 和生物医用高分子纤维。其中,以高分子纤维居多。生物医用高分子纤维包括: 1) 天然高分子基生物医用纤维,含纤维状的天然物质直接分离、精制而成的天然纤维和用天然高分子为原料经化学和机械加工制成的纤维,如纤维素及其衍生物纤维( 氧化纤维素) 、甲壳素及其衍生物纤维、蚕丝和骨胶原纤维等; 2) 合成高分子基生物医用纤维,如聚酯、聚酰胺、聚烯烃、聚丙烯腈、聚四氟乙烯、聚丙烯、聚乳酸纤维等。 生物医用纺织材料纤维的主要成型方法有: 干法纺丝、湿法纺丝、熔融纺丝、干湿纺丝、乳液纺丝、凝胶纺丝等。不同的纺丝方法可获得不同的截面形态和直径尺度的纤维。截面形态包括圆形、三角、核壳及中空型等。根据不同的成型方法可获得从纳米级到毫米级的不同纤维尺度。熔融和湿法纺丝的纤维直径与大多数动植物细胞尺度相近,而静电纺丝纤维更接近于病毒的尺度。 生物医用纤维可经纺织手段制备成一维(线状)、二维(平面) 或三维(管状)纺织品。其手段主要是指机织、针织、编织、非织、静电纺及复合成型方法。实际研发过程中,常常根据医疗产品的需求,可选择1种或数种纺织手段来进行成型。生物医用纺织品具有规则的多孔结构且连续贯穿,表面拓扑形貌规则且易控,厚度可在1 × 102~ 1 × 107nm范围内调节。通过不同的纺织手段获得的纺织品,其力学性能各具特色且调节范围大。 生物医用纺织材料在临床上具有广泛的用途,可独立或参与制成人体器官或组织的替代物,不同的产品具有不同的医学功能。1) 支持运动功能: 人工关节、人工骨、人工肌腱等; 2) 血液循环功能: 人工心脏瓣膜、人工血管等; 3) 呼吸功能: 人工肺、人工气管、人工喉等; 4) 血液净化功能: 人工肾、人工肝等; 5) 消化功能:人工食管、人工胆管、人工肠等;6) 泌尿功能: 人工输尿管、人工尿道等; 7) 生殖

蚕丝和蜘蛛丝再生蛋白纤维研究进展

0253-9721(2011)12-0147-10 蚕丝和蜘蛛丝再生蛋白纤维研究进展 谢吉祥李晓龙张袁松 西南大学纺织服装学院,重庆400715 蚕丝和蜘蛛丝的性能优良,通过人造方法获得性能良好的再生蚕丝和蜘蛛丝一直是国内外学者研究的热点,但目前研究所获得的再生蚕丝或蜘蛛丝并不理想。本文总结了有关蚕丝和蜘蛛丝再生研究,包括纺丝液的制备、湿法纺丝和静电纺丝的方法以及纺丝工艺条件对纤维特性的影响等;探讨了pH值调整、醇处理、拉伸、热处理 等改善再生丝纤维性能的方法及其效果;阐述了再生丝纤维广阔的发展前景,期望能为今后人造蚕丝和蜘蛛丝提 供有用的信息。 蚕丝;蜘蛛丝;再生;人造纺丝 TS 102.3A Progress of studies on regenerated protein fiber of  silkworm silk and spider silk XIE JixiangLI XiaolongZHANG Yuansong 2010-12-132011-04-15 中央高校基本科研业务费专项资金资助( XDJK2009B007);第39批教育部留学回国人员科研启动基金项目(教外司留[2010] 1174号);教育部春晖计划项目(教外司留[2010] 610号);重庆市自然科学基金项目(CSTC,2008BB0008);西南大学博士基金项目(SWUB2007067);人力资源和社会保障部留学人员优先资助基金项目(渝人社办[2009]116号) 谢吉祥(1986-),女,硕士生。主要研究方向为复合再生蚕丝蛋白材料的成形与性质。张袁松,通信作者,E-mail:yszhang@ swu. edu. cn。

医用金属材料的研究进展

医用金属材料的研究进展 姓名:因 学号: 专业:材料

摘要:介绍了医用金属材料目前的研究现状、性能和应用,指出了医用金属材料 应用中目前存在的主要问题,阐述了近年来生物医用金属材料的新进展1。Medical metal materials with high strength toughness, fatigue resistance, easy processing and forming excellent properties become clinical dosage biggest and wide application of biomedical materials. 关键词:医用金属种类应用研究进展 一生物医用金属材料的简介 生物医用材料是指能够植入生物体或与生物组织相结合的材料,可用于诊断、治疗,以及替换生物机体中的组织、器官或增进其功能。生物医用金属材料是用作生物医用材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料2。这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料。该类材料的应用非常广泛,遍及硬组织、软组织、人工器官和外科辅助器材等各个方面。除了要求它具有良好的力学性能及相关的物理性质外,优良的抗生理腐蚀性和生物相容性也是其必须具备的条件。医用金属材料应用中的主要问题是由于生理环境的腐蚀而造成的金属离子向周围组织扩散及植入材料自身性质的退变,前者可能导致毒副作用,后者常常导致植入的失败。已经用于临床的医用金属材料主要有纯金属钛、钽、铌、锆等、不锈钢、钴基合金和钛基合金等3。 二生物医用金属材料的特性 2.1材料毒性 生物医用金属材料的毒性主要来自金属表面离子或原子因腐蚀或磨损进入周围生物组织,由此作用于细胞,抑制酶的活性,组织酶的扩散和破坏溶酶体。具体可表现为与体内物质生成有毒化合物。并且金属离子进入组织液,会引起水肿、栓塞、感染和肿瘤等。一般才用的降毒方法包括合金化、提高耐蚀性、提高光洁度、表面涂层等4。 2.2生理腐蚀性 生物医用金属材料的生理腐蚀性是决定材料植入后成败的关键,其产物对生物机体的影响决定植入器件的使用寿命。 2.3力学性能 生物医用金属材料需要有足够的强度与塑性。一般说来,对人工髋关节金属材料的要求是:屈服强度>450Mpa;抗拉强度>800Mpa;疲劳强度>400Mpa;延伸率>8%。通常材料的弹性模量大于骨的弹性模量,由此会使得材料与骨应变不同,界面处发生的相对位移造成界面松动;除此产生应力屏蔽,引起骨组织的功能退化或吸收8。 2.4耐磨性 耐磨性影响植入摩擦器件的寿命;以及可能产生有害的金属微粒或微屑,导致周围组织的炎性、毒性反应。可通过提高硬度,表面处理等方法进行改善。 三医用金属材料的种类

新型仿生材1

新型仿生材料 1.引言 仿生材料学以阐明生物体材料结构与形成过程为目标,用生物材料的观点来思考人工材料,从生物功能的角度来考虑材料的设计与制作。仿生材料的当前研究热点包括贝壳仿生材料、蜘蛛丝仿生材料、骨骼仿生材料、纳米仿生材料等,它们具有各自特殊的微结构特征、组装方式及生物力学特性。仿生材料正向着复合化、智能化、能动化、环境化的趋势发展,给材料的制备及应用带来革命性进步。 在自然界,通过二氧化碳、水和阳光周而复始地合天然材料,这些天然材料具有优良的性能,废弃物可以靠微生物降解,参加自然界生态大循环;同时生物界奇妙的遗传技术将材料的特性一代一代地传递下去。因此,如何运用生物技术来合成高分子材料得到广大科学工作者的关注,他们不断致力于该领域的研究,并且取得了重大的进展。世界最大的合成纤维制造商美国杜邦公司已经将发展重点转移到生物科技上,推出了三道曙光计划,并称生物科技将巩固杜邦公司作为世界领先科学公司的地位。杜邦公司经过在这一领域20年的不懈努力,发现采用生物科技合成高分子材料比传统方法更安全、更环保,成本也更低廉。本文主要介绍蜘蛛丝、聚乳酸纤维以及生物医用材料的研究情况。 (一) 蜘蛛丝的研究数百万年来,蜘蛛制造着最细的丝。这种蛋白质蜘蛛丝是人们所知道的强度最高的纤维,并且具有优异的弹性,其特性很像高强度合成纤维芳纶1414和弹性纤维氨纶。就强度而论,蜘蛛丝甚至优于高性能的Kevlar 纤维,虽然两种纤维都有类似的高强度水平,但Kevlar纤维在断裂之前仅能延伸其原长的4%,而蜘蛛丝的断裂伸长可达30%。蜘蛛丝的特殊品质引起了科学工作者的兴趣。 美国杜邦公司在该领域进行了多年的研究。他们提出获得这种新结构材料的基础是要有能力从分子层面开始控制材料构架的所有方面,切实可行的方法是重组DNA技术,即使用生物合成过程的能量来控制聚合的顺序和链的长度。他们收集所有数据,通过计算机模拟技术设计出一种分子模型,并将迄今所得到的有关这种纤维的结构信息全部集成进去,他们还设计了合成基因为这种丝蛋白的复制品编码。这些基因被植入酵母和细菌,蛋白质的复制品由此产生。他们采用的方法是把细菌打开,分离出蛋白质微滴,并把它作为起始材料。而在采用酵母的过程中,可以设计基因系统,使酵母能在其体外生成蛋白质。不管采用哪种方法,细菌和酵母都制出了类似的蛋白质,其结构等同于蜘蛛用来拉出网丝的蛋白质,蜘蛛是将这种蛋白质溶解在一种水基溶剂中,然后一步到位地将它纺成坚固的纤维。研究人员把这种蛋白质溶解于一种化学溶剂中,溶液通过湿法成型由小孔挤出,纺出了坚固的纤维。

2019年生物医用材料市场分析报告

2019年生物医用材料市场分析 报告

正文目录 1.生物医用材料行业快速发展 (4) 1.1.生物医用材料行业规模加速扩大 (4) 1.2.透明质酸应用领域愈发广泛 (5) 1.2.1.透明质酸宝藏逐渐被挖掘 (6) 1.2.2.透明质酸主流提取方式 (7) 1.2.3.透明质酸应用领域广泛 (8) 2.医疗美容服务行业蓬勃发展 (9) 2.1.非手术类医美项目占比逐渐提升 (9) 2.2.我国是全球增速最快的医美市场之一 (10) 2.3.透明质酸生产商处于医美产业链上游 (12) 3.医美透明质酸市场空间大 (12) 3.1.交联技术释放透明质酸魅力 (13) 3.2.玻尿酸成为拉动医药级HA增长的主要动力 (15) 3.2.1.透明质酸原料市场规模稳步提升 (15) 3.2.2.玻尿酸拉动医药级HA市场增长 (16) 3.3.医药级HA竞争格局良好 (17) 3.3.1.医美玻尿酸原料国内企业占优 (17) 3.3.2.骨科玻璃酸钠注射液国产主导 (18) 3.3.3.眼科透明质酸国产化明显 (18) 3.3.4.防粘连医用透明质酸钠昊海独大 (19) 4.主要相关企业登陆科创板 (19) 5.配置建议 (22) 6.风险提示 (23)

1.生物医用材料行业快速发展 1.1.生物医用材料行业规模加速扩大 生物医用材料是医疗器械的重要组成部分,是一类用于诊断、治疗、修复和替代人体组织、器官或增进其功能的新型高技术材料。在众多生物医用材料中,生物医用高分子材料发展最早、应用最广泛、用量最多,其按照来源可以分为天然高分子材料和合成高分子材料,按照性质又可分为非降解型材料和可生物降解材料。医用透明质酸钠、医用几丁糖等属于生物医用高分子材料中天然、可降解的生物医用材料。天然可生物降解的高分子生物医用材料功能多样、机体相容性好,以及易于改性、杂化等,加上其能在水存在的环境下被酸、碱、酶或微生物促进而降解,因而被广泛地用于药物载体、修复材料和体内植入器件材料等。 图表1:生物医用材料组成体系 目前,我国生物医用材料产业仍处于起步阶段,其发展模式以资源消耗、廉价劳动力等物质要素驱动型为主,产品技术结构以低端产品为主,高端生物医用材料市场国产产品占有率不足30%。国内常用生物医用材料产品主要为低值一次性产品(如一次性注射器、输液器、采血器、血袋等)、敷料、缝合线(针)等;而技术含量较高的植入性生物医用材料则较为薄弱,主要依赖进口。 近年来,全球高新技术生物材料及制品产业形成并蓬勃发展,2016年全球生物医用材料市场规模已达1709亿美元,预计2020年市场规模将突破3000亿美元。我国生物医用材料产业起步于20世纪80年代初期,2016年国内生物医用材料市场规模达1730亿元,2010-2016年CAGR达到17.13%,预计2020年其市场规模将达到4000亿元,2016-2020年CAGR将达到23.31%。

生物功能材料的研究进展

生物功能材料的研究进展 随着人民生活水平的提高,人们对于医疗保健方面的要求也越来越强,使得对于生物医用材料的要求也越苛刻。本文详细阐述了生物医用功能高分子材料近年来的应用研究及发展状况,综述了国内外生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。 生物功能材料和加工技术的发展, 使得人工合成材料在医学上的应用, 变得越来越广泛。数十年的医学发展和临床应用, 证明医用高分子材料在人体内外, 获得了成功的应用, 而医学的进步, 又给高分子材料提出了大量新的课题, 使其向“精细化”, “功能化”的方向发展, 赋予了高分子材料以新的生命力。 生物医用高分子材料分合成和天然两大类,下面我们就分别对这两种材料进行详细的论述。 ﹙1﹚天然生物材料 天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维等。这些纤维由于他们来自生物体内且都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈方面具有强大的优势,已引起国内外医务界广泛的关注。自然界广泛存在的天然生物材料仍有着人工材料无可比拟的优越性能。例如:迄今为止再高明的材料学家也做不出具有高强度和高韧性的动物牙釉质,海洋生物能长出色彩斑斓、坚阊义不被海水腐蚀的贝壳等等。甲壳素又称几丁质(chitin),广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。它是一种惰性多糖,用浓碱脱去乙酰基可转变成聚壳糖(chintosan)。甲壳素、聚壳糖及其衍生物具有良好的生物相容性和生物降解性。降解产物带有一定正电荷,能从血液中分离出血小板因子,增加血清中H-6水平,促进血小板聚集或凝血素系统,作为止血剂有促进伤口愈合,抑制伤口愈合中纤维增生,并促进组织生长的功能,对烧、烫伤有独特疗效。比如家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是一种优质的生物医学材料,具有无毒、无刺激性、良好的血液相容性和组织相容性。根据研究报道,由于天然高分子医用材料的独特临床效果,它的应用前景相当广阔。﹙2﹚合成生物材料 由于天然材料的有限,人们需要大量的生物材料来维持他们的健康。合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料。目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶和硅凝胶等。应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道)等。 合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅

仿生材料

源于自然的力量——仿生材料 一、神奇的大自然——仿生学 自然界的创造力总是令人惊奇,天然生物材料经历几十亿年进化,大都具有最合理、最优化的宏观、细观、微观复合完美的结构,并具有自适应性和自愈合能力,如竹、木、骨骼和贝壳等。其组成简单,通过复杂结构的精细组合,从而具有许多独有的特点和最佳的综合性能。 例如,荷叶的表面有许多微小的乳突,让水不能在上面停留,滴形成后会从荷叶上滚落,同时将灰尘带走;海洋生物乌贼和斑马鱼体内的色素细胞决定了它们天生有一种改变自身颜色的能力;水稻表面突起沿平行于叶边缘的方向排列有序,使得排水十分便利;昆虫复眼的减反射功能,使得黑夜观看成为可能;水黾腿部有数千根按同一方向排列的多层微米尺寸的刚毛使其在水面行走自如;壁虎由壁虎脚底大量的细毛与物体表面分子间产生的“范德华力”累积使其有了特殊的粘附力…… 道法自然,向自然界学习,采用仿生学原理,设计、合成并制备新型仿生材料,是近年快速崛起和发展的研究领域,并已成为材料、化学、物理、生物、纳米技术、制造技术及信息技术等多学科交叉的前沿方向之一。 仿生学是模仿生物的科学,早在1960年9月13日美国召开第一次仿生学会上由Steele等提出。仿生学研究生物系统的结构、性质、原理、行为及相互作用,为工程技术提供新的设计思想、工作原理和系统构成;仿生材料指依据仿生学原理、模仿生物各种特点或特性而制备的材料;材料仿生设计包括材料结构仿生、功能仿生和系统仿生 3个方面。 二、了解仿生材料 仿生材料的定义 仿生材料是指模仿生物的各种特点或特性而研制开发的材料。通常把仿照生命系统的运行模式和生物材料的结构规律而设计制造的人工材料称为仿生材料。仿生学在材料科学中的分支称为仿生材料学(biomimetic materials science),它是指从分子水平上研究生物材料的结构特点、构效关系,进而研发出类似或优于原生物材料的一门新兴学科,是化学、材料学、生物学、物理学等学科的交叉。地球上所有生物体都是由无机和有机材料组合而成。由糖、蛋白质、矿物质、水等基本元素有机组合在一起,形成了具有特定功能的生物复合材料。仿生设计不仅要模拟生物对象的结构,更要模拟其功能。将材料科学、生命科学、仿生学相结合,对于推动材料科学的发展具有重大意义。自然进化使得生物材料具有最合理、最优化的宏观、细观、微观结构,并且具有自适应性和自愈合能力,在比强度、比刚度与韧性等综合性能上都是最佳的。 仿生材料的研究 国际上对天然生物材料及仿生材料研究的重视始于20世纪80年代。目前,国

杭州生物医用材料项目申请报告

杭州生物医用材料项目 申请报告 规划设计/投资分析/产业运营

承诺书 申请人郑重承诺如下: “杭州生物医用材料项目”已按国家法律和政策的要求办理相关手续,报告内容及附件资料准确、真实、有效,不存在虚假申请、分拆、重复申请获得其他财政资金支持的情况。如有弄虚作假、隐瞒真实情况的行为,将愿意承担相关法律法规的处罚以及由此导致的所有后果。 公司法人代表签字: xxx实业发展公司(盖章) xxx年xx月xx日

项目概要 生物医用材料是当代科学技术中涉及学科最为广泛的多学科交叉领域,涉及材料、生物和医学等相关学科,是现代医学两大支柱—生物技术和生 物医学工程的重要基础。由于当代材料科学与技术、细胞生物学和分子生 物学的进展,在分子水平上深化了材料与机体间相互作用的认识,加之现 代医学的进展和临床巨大需求的驱动,当代生物材料科学与产业正在发生 革命性的变革,并已处于实现意义重大的突破的边缘─再生人体组织,进 一步,整个人体器官,打开无生命的材料转变为有生命的组织的大门。在 我国常规高技术生物医用材料市场基本上为外商垄断的情况下,抓住生物 材料科学与工程正在发生革命性变革的有利时机,前瞻未来20-30年的世 界生物材料科学与产业,刻意提高创新能力,不仅可为振兴我国生物材料 科学与产业,赶超世界先进水平赢得难得的机遇,且可为人类科学事业的 发展做出中国科学家的巨大贡献。 生物医用材料及植入器械产业是学科交叉最多、知识密集的高技术产业,其发展需要上、下游知识、技术和相关环境的支撑,因此产业高度集 中(垄断),产品多样或多角化是生物医用材料产业发展的又一特点和趋势。2010年世界医疗器械产业由27000个医疗器械公司构成,其中90%以上为 中小企业。发达国家的中小企业主要从事新产品、新技术研发,通过向大 公司转让技术或被大公司兼并维持生存。大规模产品生产及市场运作基本 上由大公司进行。不同于我国医疗器械企业“多、小、散”的局面,发达

生物医用材料未来发展趋势

生物医用材料未来发展趋势 作者:亦云来源:上海情报服务平台发布者:日期:2006-09-07 今日/总浏览:7/6023 组织工程材料面临重大突破 组织工程是指应用生命科学与工程的原理和方法,构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。它的主要任务是实现受损组织或器官的修复和再建,延长寿命和提高健康水乎。其方法是,将特定组织细胞"种植"于一种生物相容性良好、可被人体逐步降解吸收的生物材料(组织工程材料)上,形成细胞――生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的具有与自身功能和形态相应的组织或器官;这种具有生命力的活体组织或器官能对病损组织或器宫进行结构、形态和功能的重建,并达到永久替代。近10年来,组织工程学发展成为集生物工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学以及临床医学于一体的一门交叉学科。 生物材料在组织工程中占据非常重要的地位,同时组织工程也为生物材料提出问题和指明发展方向。由于传统的人工器官(如人工肾、肝)不具备生物功能(代谢、合成),只能作为辅助治疗装置使用,研究具有生物功能的组织工程人工器官已在全世界引起广泛重视。构建组织工程人工器官需要三个要素,即"种子"细胞、支架材料、细胞生长因子。最近,由于干细胞具有分化能力强的特点,将其用作"种子"细胞进行构建人工器官成为热点。组织工程学已经在人工皮肤、人工软骨、人工神经、人工肝等方面取得了一些突破性成果,展现出美好的应用前景。 例如,存在于脂肪组织基质中的脂肪干细胞(ADSCs)是一类增殖能力强、具有多向分化潜能的成体干细胞,被发现不但具有与骨髓基质干细胞(BMSc)相似的向成骨、软骨、脂肪、肌肉和神经等细胞多分化的能力,而且表达与BMSc相同的表面标志如CD29、CD105、

蛛丝蛋白的研究现状和进展

蛛丝蛋白的研究现状和进展 摘要:蛛丝蛋白是一种很特殊的纤维蛋白。由于其高度重复的一级结构、特殊的溶解特性 和分子折叠行为以及具有形成非凡力学特性丝纤维的能力而引人注目。本文主要对蛛丝蛋白的结构、特点以及目前对其研究比较多的应用和新型的合成方法进行综述,同时也对将来蛛丝蛋白的研究方向以及在研究中可能会遇见的问题进行分析。通过本文的介绍希望可以在其蛋白质的结构上有更深刻的理解和认识,同时也为蛛丝蛋白的研究和应用提供一个很好的参考和依据。 关键词:蛛丝蛋白;结构;基因合成;弹性、韧性材料 前言:蛛丝蛋白是一种很特殊的纤维蛋白,它是由节肢动物门昆虫纲、蛛形纲和多足纲中 某些类群的特殊腺体产生的。蛛丝主要包括拖丝和捕捉丝, 其中拖丝主要用于构成蜘蛛网的牵丝和轮状网面, 捕捉丝则用来粘附昆虫并在昆虫挣扎时提供强大的弹性, 以免由于强大的动能导致反弹, 将捕捉到的食物弹出去。因此,蛛丝蛋白的结构性能以及其强大的力学特性值得深入的研究。另外,尽管某些具有优良力学特性的蛛丝可以被开发为有潜力的、应用价值高的新型生物材料,但在人工条件下大规模、高密度地养殖蜘蛛以获得蛛丝的现实困难迫使人们寻求另外的途径生产蛛丝蛋白来满足研究、开发和应用的需要。因此,高效的合成和生产方法变得也不可忽视。纵观近十年的研究史,大多数好的研究技术也逐渐走向成熟。比如近来从蜘蛛丝腺cDNA文库中克隆蛛丝蛋白基因或通过化学合成编码蛛丝蛋白的人工基因用于重组蛛丝蛋白基因工程生产已成为制备蛛丝蛋白的一个主要方法。蛛丝蛋白基因克隆和表达的成功为人们初步了解各种类型蛛丝蛋白分子的结构、折叠行为和功能之间的内在联系及各种类型蛛丝各自独特力学特性的分子基础提供了良好的开端。与上述蛛丝蛋白的结构与性能的研究深入,它的应用也逐渐发展起来。比如研究人员首先通过转基因技术培育出了一种山羊,这种山羊能够生产出具有蛛丝蛋白的羊奶。在羊奶中加入一种特殊的溶剂后,就能提取到大量的蛛丝纤维。这种蛛丝纤维甚至比著名的凯夫拉尔纤维还结实,强度是钢的10 倍。将这些纤维纺纱编织就能制成所需要的“超强布料”。同时,蛛丝蛋白在其结构性能和应用方面的研究同时也面临着众多的问题等待解决。 一、蛛丝蛋白的结构和功能 1、总体认识:蛛丝蛋白具有典型的蛋白质二级结构,即蜘蛛丝由α-螺旋和β-片层共同 组成。 特点:1、规则的β-片层被不规则的α-螺旋和β-弯曲所包围。 2、β-片层赋于丝力度α-螺旋赋于丝弹性。

苏州生物医用材料项目实施方案

苏州生物医用材料项目 实施方案 规划设计/投资分析/产业运营

苏州生物医用材料项目实施方案 生物医用材料是当代科学技术中涉及学科最为广泛的多学科交叉领域,涉及材料、生物和医学等相关学科,是现代医学两大支柱—生物技术和生 物医学工程的重要基础。由于当代材料科学与技术、细胞生物学和分子生 物学的进展,在分子水平上深化了材料与机体间相互作用的认识,加之现 代医学的进展和临床巨大需求的驱动,当代生物材料科学与产业正在发生 革命性的变革,并已处于实现意义重大的突破的边缘─再生人体组织,进 一步,整个人体器官,打开无生命的材料转变为有生命的组织的大门。在 我国常规高技术生物医用材料市场基本上为外商垄断的情况下,抓住生物 材料科学与工程正在发生革命性变革的有利时机,前瞻未来20-30年的世 界生物材料科学与产业,刻意提高创新能力,不仅可为振兴我国生物材料 科学与产业,赶超世界先进水平赢得难得的机遇,且可为人类科学事业的 发展做出中国科学家的巨大贡献。 该生物医用材料项目计划总投资15593.19万元,其中:固定资产投资13131.13万元,占项目总投资的84.21%;流动资金2462.06万元,占项目 总投资的15.79%。 达产年营业收入19914.00万元,总成本费用15433.36万元,税金及 附加269.03万元,利润总额4480.64万元,利税总额5367.69万元,税后

净利润3360.48万元,达产年纳税总额2007.21万元;达产年投资利润率28.73%,投资利税率34.42%,投资回报率21.55%,全部投资回收期6.14年,提供就业职位327个。 报告根据我国相关行业市场需求的变化趋势,分析投资项目项目产品 的发展前景,论证项目产品的国内外市场需求并确定项目的目标市场、价 格定位,以此分析市场风险,确定风险防范措施等。 ...... 生物医用材料及植入器械产业是学科交叉最多、知识密集的高技术产业,其发展需要上、下游知识、技术和相关环境的支撑,因此产业高度集 中(垄断),产品多样或多角化是生物医用材料产业发展的又一特点和趋势。2010年世界医疗器械产业由27000个医疗器械公司构成,其中90%以上为 中小企业。发达国家的中小企业主要从事新产品、新技术研发,通过向大 公司转让技术或被大公司兼并维持生存。大规模产品生产及市场运作基本 上由大公司进行。不同于我国医疗器械企业“多、小、散”的局面,发达 国家医疗器械产业已形成“寡头”统治的局面,全球市场也呈现类似的格局。2009年,排名前50位的跨国大公司占有全球医疗器械市场的88%,其 中排名前25位的公司占有75%;2008年6家美、英公司:DePuy,Zimmer,Stryker,Biomet,Medtronic,SynthesMathys和Smith&Nephew占有全球 骨科材料和器械市场的≈75%,其中前4家美国公司和英国Smith&Nephew 公司占有人工关节市场的90%;6家大公司:Johnson&Johnson,Abbott,

相关主题
文本预览
相关文档 最新文档