当前位置:文档之家› 交流伺服系统的应用1

交流伺服系统的应用1

永磁交流伺服系统研究背景意义及现状

永磁交流伺服系统研究背景意义及现状 1研究背景及意义 伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标或给定值任意变化的自动控制系统,是控制理论、电力电子技术、电机技术、微电子技术、检测技术等学科相互发展融合的产物,是自动化学科及工业生产领域重要的分支。在机械制造行业、冶金工业,交通运输以及军事上都得到了广泛的应用。 伺服系统强调对控制命令的快速跟踪和响应,所以伺服控制系统可以认为是随动控制系统,既可以是转速的随动控制,也可以是位置的随动控制。在广义的角度上看,电动机的调速系统也可以认为是伺服控制的一种,只不过在调速系统中,强调的被调量是电动机的转速,更加有效的实现功率变换。而伺服系统则强调忠实跟踪给定信号,即按控制器发出的控制命令而动作,并产生足够的力或力矩,使被驱动的机械获得期望的运动速度和位姿。 伺服系统的发展经历了由液压伺服到电气伺服的过程。在电气伺服系统中,按驱动装置的执行元件电动机类型来分,通常分为直流伺服系统和交流伺服系统两大类。六十年代以后,特别是七十年代以来,随着电力电子学、微电子学、传感技术、永磁技术和控制理论的惊人发展,尤其是先进控制策略的成功应用,交流伺服系统的研究和应用取得了举世瞩目的发展,己具备良好的技术性能,其动、静态特性已完全可与直流伺服系统相媲美,交流伺服系统取代直流伺服系统己成定局。其中交流永磁同步电机 (PMSM)又以其结构简单、气隙磁密高、功率密度大、转动惯量小的优点,成为研究的热点。和直流电机相比,交流永磁同步电机没有直流电机的换向器和电刷等缺点,和其他类型交流电动机相比,它由于没有励磁电流,因而功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好。现已广泛用于数控机床、工业机器人、超大规模集成电路制造、柔性制造系统、载人宇宙飞船、电动工具以及家用电器等高科技领域。 另一方面,高速数字信号处理芯片(DSP) 的快速发展也对伺服系统的发展起到了推动作用。DSP强大的数据处理能力和高运行速度使得先进的控制技术如矢量控制、直接转矩控制等得以实现。并且DSP芯片内部集成了A/D转换、数字输

PLC控制伺服电机应用实例

PLC控制伺服电机应用实例,写出组成整个系统的PLC模块及外围器件,并附相关程序。 PLC品牌不限。 以松下FP1系列PLC和A4系列伺服驱动为例,编制控制伺服电机定长正、反旋转的PLC程序并设计外围接线图,此方案不采用松下的位置控制模块FPG--PP11\12\21\22等,而是用晶体管输出式的PLC,让其特定输出点给出位置指令脉冲串,直接发送到伺服输入端,此时松下A4伺服工作在位置模式。在PLC 程序中设定伺服电机旋转速度,单位为(rpm),设伺服电机设定为1000个脉冲转一圈。PLC输出脉冲频率=(速度设定值/6)*100(HZ)。假设该伺服系统的驱动直线定位精度为±0.1mm,伺服电机每转一圈滚珠丝杠副移动10mm,伺服电机转一圈需要的脉冲数为1000,故该系统的脉冲当量或者说驱动分辨率为0.01mm(一个丝);PLC输出脉冲数=长度设定值*10。 以上的结论是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致过程如下: 机械机构确定后,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的定位精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下FP1---40T 的PLC的CPU本体可以发脉冲频率为50KHz,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000 个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU输出点工作频率就不够了。需要位置控制专用模块等方式。 有了以上频率与脉冲数的算法就只需应用PLC的相应脉冲指令发出脉冲即可实现控制了。假设使用松下 A4伺服,其工作在位置模式,伺服电机参数设置与接线方式如下: 一、按照伺服电机驱动器说明书上的“位置控制模式控制信号接线图”接线: pin3(PULS1),pin4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。 pin5(SIGN1),pin6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制,pin7(com+)与外接24V直流电源的正极相连。pin29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。

伺服系统的发展及展望

伺服系统的发展及展望 摘要:本文主要介绍了伺服系统的三个发展阶段,包括步进电动机开环伺服系统阶段、直流伺服电动机闭环伺服系统阶段、无刷直流伺服电动机、交流伺服电动机伺服系统阶段,并分析了伺服系统的发展趋势:交流化、智能化、网络化、小型化。 关键词:伺服;智能化;小型化 伺服系统也叫位置随动系统,它的根本任务是实现执行机械对位置指令(给定量)的准确跟踪,当给定量随机变化时,系统能使被控制量准确无误地跟随并复现给定量,是一个位置反馈控制系统[1],主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。随着电力电子、控制理论、计算机术等技术的快速发展以及电机制造工艺水平的不断提高,伺服系统近年来获得了迅速发展。 1伺服系统的发展阶段 伺服系统的发展与伺服电动机的不同发展阶段相联系,

由直流电机构成的伺服系统是直流伺服系统,由交流电机构成伺服系统是交流伺服系统。伺服电动机至今经历了三个主要发展阶段: 1.1 第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统 伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°。 步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。 1.2 第二个发展阶段(20世纪60-70年代):直流伺服电动机闭环伺服系统 由于直流电动机具有优良的调速性能,很多高性能驱动装置采用了直流电动机,伺服系统的位置控制也由开环系统发展成为闭环系统。在数控机床的应用领域,永磁式直流电动机占统治地位,其控制电路简单,无励磁损耗,低速性能好。 1.3 第三个发展阶段(80年代至今):无刷直流伺服电动机、交流伺服电动机伺服系统

伺服系统设计.

辽宁工程技术大学《电力拖动自动控制系统》课程设计 目录 1、前言 (1) 1.1设计目的 (1) 1.2设计内容 (1) 2、伺服系统的基本组成原理及电路设计 (2) 2.1伺服系统基本原理及系统框图 (2) 2.2 伺服系统的模拟PD+数字前馈控制 (4) 2.3 伺服系统的程序 (6) 3、仿真波形图 (9) 结论 (12) 心得与体会 (13) 参考文献 (14)

1、前言 1.1设计目的 1、使学生进一步掌握电力拖动自动控制系统的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力; 2、使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力; 3、熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。 1.2设计内容 1、分析和设计具有三环结构的伺服系统,用绘图软件(matlab)画原理图还有波形图; 2、分析并理解具有三环结构的伺服系统原理。

2、伺服系统的基本组成原理及电路设计 2.1伺服系统基本原理及系统框图 伺服系统三环的PID控制原理: 以转台伺服系统为例,其控制结构如图2-1所示,其中r为框架参考角位置输入信号, 为输出角位置信号. 图2-1 转台伺服系统框图 伺服系统执行机构为典型的直流电动驱动机构,电机输出轴直接与负载-转动轴相连,为使系统具有较好的速度和加速度性能,引入测速机信号作为系统的速度反馈,直接构成模拟式速度回路.由高精度圆感应同步器与数字变换装置构成数字式角位置伺服回路. 转台伺服系统单框的位置环,速度环和电流环框图如图2-2,图2-3和图2-4所示. 图2-2 伺服系统位置环框图 图2-3 伺服系统速度环框图

液压伺服系统工作原理

液压伺服系统工作原理 1.1 液压伺服系统工作原理 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值x i。对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移x p。当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服 阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。 图2 给出对应图1实例的方框图。控制系统常用方框图表示系统各元件之间的联系。上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。 液压伺服系统的组成 液压伺服系统的组成 由上面举例可见,液压伺服系统是由以下一些基本元件组成;

发展战略-现代交流伺服系统技术和市场发展综述 精品

现代交流伺服系统技术和市场发展综述 (时光科技有限公司华南办事处刘孙亮) 摘要: 本文首先从历史的角度介绍了现代交流伺服系统从电机控制的大家族中脱颖而出的过程,并从技术和市场两个方面展示了当今交流伺服系统的发展状况,重点放在国内外市场、技术、产品和厂商竞争策略的对比上,希望给关心中国交流伺服产业成长的人们一个全景式扫描。 概述 1.历史的角度看电机发展 1800 年伏特发明电池,是电气出现的开端,电动机的诞生和发展在这之后可以分成几 个阶段。从1820 年一直到整个19 世纪末叶,发现了电磁现象以及相关的各种法则,诞 生了交流电机的原型,并确立了电机的工业运用。从20 世纪开始一直到1970 年代,是 电动机的成长和成熟期,有刷直流电机、感应电动机、同步电动机和步进电动机等各种 电机相继诞生,半导体驱动技术和电子控制概念引入,带来变频驱动的实用化。从1970 年代到20 世纪末期,计算技术的飞跃发展为发展高性能驱动带来了机会,随着设计、 评价、测量、控制、功率半导体、轴承、磁性材料、绝缘材料、制造加工技术的不断进步,电动机本体经历了轻量化、小型化、高效化、高力矩输出、低噪音振动、高可靠、 低成本等一系列变革,相应的驱动和控制装置也更加智能化和程序化。进入21 世纪, 在以多媒体和互联网为特征的信息时代,电动机和驱动装置继续发挥支撑作用,向节约 资源、环境友好、高效节能运行的方向发展。 永磁无刷直流电机(Brushless DC Motor)就是随着永磁材料技术、半导体技术和控制 技术的发展而出现的一种新型电机。无刷直流电机诞生于20 世纪50 年代,并在60 年 代开始用于宇航事业和军事装备,80 年代以后,出现了价格较低的钕铁硼永磁,研发 重点逐步推广到工业、民用设备和消费电子产业。本质上,无刷直流电机是根据转子位 置反馈信息采用电子换相运行的交流永磁同步电机,与有刷直流电机相比具有一系列优势,近年得到了迅速发展,在许多领域的竞争中不断取代直流电机和异步电动机。进入 90 年代之后,永磁电机向大功率、高功能和微型化发展,出现了单机容量超过1000KW,最高转速超过300000rpm,最低转速低于0.01rpm,最小体积只有0.8x1.2mm 的品种。 实际上,永磁无刷直流电机和本文重点论述的永磁交流伺服电机都属于交流永磁同步电机。按照反电动势波形和驱动电流的波形,可以将永磁同步电机分为方波驱动和正弦波

(新)台达数控定子绕线机伺服系统应用实例_

台达数控定子绕线机伺服系统应用实例 利用中达CNC数控系统强大的轴控功能和台达伺服系统快速精准的运动响应,使绕线机的工作效率得到了很大的提高。 本文主要介绍了数控定子绕线机功能的需求,以及系统操作界面和I/O的规划。 一、前言 图1 数控定子绕线机外观 目前绕线机的市场可谓庞大,品种繁多,有平行绕线机、环型绕线机、定转子绕线机、纺织绕线机等。本文主要介绍的是利用中达CNC数控系统和伺服产品构建出的设备:数控定子绕线机。他的最大特点是可以自动变换绕线方向,所绕的线圈整齐且圈数准确。操作简便,节省人工,提高产量,产品品质好,其绕线、排线、停车、换槽,完全按程序自动执行。排线宽幅可调,圈数准确。生产速度快,并大量节省线材。下面概述如何利用中达的数控和台达的伺服整合此方案。 二、技术和精度要求 客户原用PLC+伺服控制整台设备,因其加工出来的产品的合格率较低,且一些功能无法实现,满足不了市场上需求,故提出开发数控定子绕线机,并且需要控制系统和伺服满足如下条件: 1.伺服运动轴 在机械上,需要三轴的控制坐标系。其中,排线X轴采用伺服电机直接驱动螺距为4mm 的滚珠丝杠,在连接工作台做直线运动;飞叉Y轴采用伺服电机驱动1:2的齿轮箱间接传动,做360度的圆周运动;分度Z轴采用伺服电机驱动1:9的齿轮箱间接传动,做360度的圆周运动。这3个轴要求能够联动。 此外,对于飞叉轴来说,由于在运动过程中,机械负载惯量会因为绕线的速度的不同而发生较大的变化,这就要求伺服系统具有优异的稳定性、相应性和对负载变化自适应能力。 2.精度要求 机械回零精度:排线轴0.005mm 飞叉轴+/-1度分度轴+/-1度 定位精度:0.02mm +/-1度 要求控制系统和伺服系统能够具有检测反馈,来保证机械运动精度。 3.CNC控制系统 因定子绕线机不仅讲究绕的匝数要准确,而且排线出来的密度要均匀,即最少需要两轴之间做插补运算,实现联动;画面可以自由规划;要给客户方便传输加工程序,并且可以对NC程序编辑和存储;控制系统要提供一个D/A口,实现恒张力控制功能。 另外,客户希望数控系统再开放一个轴,以备后用。

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧 只瘮或摶旌鲜綌、撊只瘮的永磁交流伺服系统。 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

交流伺服系统发展现状及其趋势

交流伺服系统发展现状及其趋势运动控制系统作为电气自动化的一个重要的应用领域,已经被广泛应用于国民经济各个部门。运动控制系统主要研究电动机拖动及机械设备的位移控制问题。交流伺服系统是运动控制系统所研究的重要的一部分,而纵观电力拖动的发展过程,交、直流两种拖动方式并存与各个生产领域,随着工业技术的发展,两者相互竞争,相互促进。 1990年以前,由于技术成本等原因,国内伺服电机以直流永磁有刷电机和步进电机为主,而且主要集中在机床和国防军工行业。1990年以后,进口永磁交流伺服电机系统逐步进入中国,此期间得益于稀土永磁材料的发展、电力电子及微电子技术日新月异的进步,交流伺服电机的驱动技术也得以很快发展。如今约占整个电力拖动容量80%的不变速拖动系统都采用交流电动机,而只占20%的高精度、宽广调速范围的拖动系统采用直流电动机。自20世纪80年代以来,随着现代电机技术、现代电力电子技术、微电子技术、控制技术及计算机技术等支撑技术的快速发展,交流伺服控制技术的发展得以极大的迈进,使得先前困扰着交流伺服系统的电机控制复杂、调速性能差等问题取得了突破性的进展,交流伺服系统的性能日渐提高,价格趋于合理,使得交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。 一、交流伺服系统的概述 伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。我们通常说的伺服驱动器已经包括了控制器的基本功能和功率放大部分。虽然采用功率步进电机直接驱动的开环伺服系统曾经在90年代的所谓经济型数控领域获得广泛使用,但是迅速被交流伺服所取代。进入21世纪,交流伺服系统越来越成熟,市场呈现

伺服电机计算选择应用实例全解

伺服电机计算选择应用实例 1. 选择电机时的计算条件 本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的 W :运动部件(工作台及工件)的重量(kgf )=1000 kgf 机械规格 μ :滑动表面的摩擦系数=0.05 π :驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf )=50 kgf Fc :由切削力引起的反推力(kgf )=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf ) =30kgf Z1/Z2: 变速比=1/1 例:进给丝杠的(滚珠 Db :轴径=32 mm 丝杠)的规格 Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格 Ta :加速力矩(kgf.cm ) Vm :快速移动时的电机速度(mm -1)=3000 mm -1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec 2) Jl :负载惯量(kgf.cm.sec 2) ks :伺服的位置回路增益(sec -1)=30 sec -1 1.1 负载力矩和惯量的计算 计算负载力矩 加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P ×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F ×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

交流伺服系统的相关系统参数和指标

伺服系统的参数调整和性能指标试验1 伺服系统的参数调整理论基础 伺服系统包括三个反馈回路(位置回路、速度回路以及电流回路)。最内环回路的反应速度最快,中间环节的反应速度必须高于最外环。假使未遵守此原则,将会造成震动或反应不良。伺服驱动器的设计可确保电流回路具备良好的反应效能。用户只需调整位置回路与速度回路增益。 伺服系统方块图包括位置、速度以及电流回路,如图1所示。 图1 伺服系统方块图 一般而言,位置回路的反应不能高于速度回路的反应。因此,若要增加位置回路的增益,必须先增加速度回路增益。如果只增加位置回路的增益,震动将会造成速度指令及定位时间增加,而非减少。 如果位置回路反应比速度回路反应还快,由于速度回路反应较慢,位置回路输出的速度指令无法跟上位置回路。因此就无法达到平滑的线性加速或减速,而且,位置回路会继续累计偏差,增加速度指令。这样,电机速度会超过,位置回路会尝试减少速度指令输出量。但是,速度回路反应会变得很差,电机将赶不上速度指令。速度指令会如图2振动。要是发生这种情形,就必须减少位置回路增益或增加速度回路增益,以防速度指令振动。 图2 速度指令 位置回路增益不可超过机械系统的自然频率,否则会产生较大的振荡。例如,机械系统若是连接机器人,由于机器的机械构造采用减低波动的齿轮,而机械系统的自然频率为10~20Hz,因此其刚性很低。此时可将位置回路增益设定为10至20(1/s)。 如果机械构造系统是晶片安装机、IC黏合机或高精度工具机械,系统的自然频率为70Hz以上。因此,可将位置回路增益设定为70(1/s)或更高。 需要很快的反应时,不只是要确保采用的伺服系统(控制器、伺服驱动器、电机以及编码器)的反应,而且也必须确保机械系统具备高刚性。 1.1交流伺服系统相关参数的设定 速度回路增益主要用以决定速度回路的反应速度。在机械系统不震动的前提下,参数设定的值愈大,反应速度就会增加。如果负载惯量比设定的正确,速度回路增益的值就可以达到预想数值。 负载惯量比设定为以下的值。

伺服控制系统

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。 1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。

1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置伺服、速度伺服和加速度伺服系统等。 电器伺服系统根据电气信号可分为直流伺服系统和交流伺服系统两大类。交流伺服系统又有感应电机伺服系统和永磁同步电机伺服系统两种。 1.2 伺服系统的发展过程 伺服系统的发展经历了由液压到电气的过程,电器伺服系统的发展则与伺服电机的不同发展阶段具有紧密的联系,伺服电机至今已有50多年的发展历史,经历了三个主要发展阶段。 第一发展阶段(20世纪60年代以前):此阶段是以步进电动机驱动的液压伺服马达或以功率步进电动机直接驱动为中心的时代,伺服系统的位置控制多为

S形曲线在伺服控制系统中的应用分析

S形曲线在伺服控制系统中的应用分析 发表时间:2007-12-6郝为强来源:《伺服控制》网络版 关键字:伺服系统机械共振S形曲线Simulink 信息化调查找茬投稿收藏评论好文推荐打印社区分享 工业控制领域常用的位置或速度控制曲线包括梯形曲线、S形曲线等。本文对伺服控制系统仿真模型,并对该模型进行了仿真分析。仿真结果表明,S形速度控制曲线较之梯形曲线能够带来更小的负载速度超调与调整时间。 伺服系统具有优异的控制带宽,快速的响应速度和定位精度,已被越来越广泛地应用到 机械控制系统中。机械系统中常用的传动方式有带传动、链传动、齿轮传动等等。带传动结 构简单、适宜远距离传输,而齿轮传动准确度高,适宜对传动精度要求较高的场合。虽然上 述传动方式各具优点,但传动刚性相差较大,比如带传动的刚性较弱,属于柔性件传动;而 齿轮传动的刚性较强。传动部分的刚性与伺服控制系统的闭环共振频率点密切相关。如果机 械传动部分的刚性较弱,如带传动,则伺服控制系统在通过增益调节而改善闭环控制带宽的 过程中很容易出现共振频率点,从而导致伺服控制系统的位置或速度跟踪出现波动,甚至出 现振荡,同时机械噪音显著增加,严重恶化了伺服控制系统的性能。 为了有效地抑制共振频率点,从而改善伺服控制系统性能,设计低通滤波器或陷波器是 伺服控制领域经常使用的方法。低通滤波器主要用来抑制高频共振,但会降低了伺服控制系 统的带宽;陷波器即为带阻滤波器,主要针对共振频率点进行抑制,由于伺服控制系统共振 频率点可能有多个,且很难准确测定,因此陷波器实际的抑制效果往往不是很理想。同时无 论是低通滤波器还是带通滤波器都存在不同程度的相位延迟,使用不当可能使得伺服控制系 统出现更大的过冲或振荡,因此使用时需要反复进行对比试验,较为复杂。 工业控制领域常用的位置或速度控制曲线包括梯形曲线、S形曲线等,见图1。 图1(a)梯形位置或速度控制曲线图

伺服系统介绍.doc

一、相关概念 伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。 在机器人中,伺服驱动器控制电机的运转。驱动器采用速度环,位置环,电流环三环闭环电路,内部还设有错误检出和保护电路。驱动器通过通信连接器,控制连接器,编码连接器跟外部输入信号和输出信号相连。通信连接器主要用于跟电脑或控制器通信。控制连接器用于跟伺服控制器联接,驱动器所需的输入信号、输出信号、控制信号和一些方式选择信号都通过该控制连接器传输,它是驱动器最为关键的连接器。编码连接器跟电机编码器连接,用于接收编码器闭环反馈信号,即速度反馈和换向信号。 伺服电机主要用于驱动机器人的关节。关节越多,机器人的柔性和精准度越高,所需要使用的伺服电机的数量就越多。机器人对伺服电机的要求非常高,必须满足快速响应、高起动转矩、动转矩惯量比大、调速范围宽,要适应机器人的形体做到体积小、重量轻,还必须经受频繁的正反向和加减速运行等苛刻的条件,做到高可靠性和稳定性。伺服电机分为直流、交流和步进,工业机器人用的较多的是交流。 机器人用伺服电机

二、伺服系统的技术现状 2.1视觉伺服系统 随着机器人技术的迅猛发展,机器人承担的任务更加复杂多样,传统的检测手段往往面临着检测范围的局限性和检测手段的单一性.视觉伺服控制利用视觉信息作为反馈,对环境进行非接触式的测量,具有更大的信息量,提高了机器人系统的灵活性和精确性,在机器人控制中具有不可替代的作用。 视觉系统由图像获取和视觉处理两部分组成,图像的获取是利用相机模型将三维空间投影到二维图像空间的过程,而视觉处理则是利用获取的图像信息得到视觉反馈的过程。基本的相机模型主要包括针孔模型和球面投影模型,统一化模型是对球面模型的推广,将各种相机的图像映射到归一化的球面上。视觉伺服中的视觉反馈主要有基于位置、图像特征和多视图几何的方法。 其中,基于位置的方法将视觉系统动态隐含在了目标识别和定位中,从而简化了控制器的设计,但是一般需要已知目标物体的模型,且对图像噪声和相机标定误差较为敏感。基于图像特征的视觉反馈构造方法,其中基于特征点的方法在以往的视觉伺服中应用较为广泛,研究较为成熟,但是容易受到图像噪声和物体遮挡的影响,并且现有的特征提取方法在发生尺度和旋转变化时的重复性和精度都不是太好,在实际应用中存在较大的问题。因此,学者们提出了基于全局图像特征的视觉反馈方法,利用更多的图像信息对任务进行描述,从而增强视觉系统的鲁棒性,但是模型较为复杂,控制器的设计较为困难,且可能陷入局部极小点。目前针对这一类系统的控制器设计的研究还比较少,一般利用局部线性化模型进行控制,只能保证局部的稳定性。多视图几何描述了物体多幅图像之间的关系,间接反映了相机之间的几何关系。相比于基于图像特征的方法,多视图几何与笛卡尔空间的关系较为直接,简化了控制器的设计。常用的多视图几何包括单应性、对极几何以及三焦张量。 2.2伺服系统控制技术 现代的机器人伺服系统多采用交流伺服驱动系统,而且正在逐渐向数字化方向转变。数字控制技术已经五孔不入,如信号处理技术中的数字滤波、数字控制器,把功能更加强大的控制器芯片已经各种智能处理模块应用到工业机器人交流伺服系统中,可以实现更好的控制性能。 最近几十年,由于微电子技术的进步,各种方便用户开发的微控制器与数字信号处理器件大量涌现市场,为各种先进的智能控制算法在控制系统中的应用提供了可能。如今,各种新型的伺服控制策略大量涌现,大有与传统控制策略一较高低的趋势下面简单介绍几种: 1)矢量控制矢量控制技术的提出,为交流伺服驱动系统的快速进步提供了理论支持。矢量控制技术的主要原理为:以转子旋转磁场作为参考系,将电动机定子矢量电流经过两次坐标变换分解为直轴电流和交轴电流分量,且使两电流分量相互正交,同时对交直轴电流分量的

伺服控制系统

交流伺服运动控制系统 班级电气5班 学号 2015345 姓名李宏阳

1.引言 随着社会的发展,伺服控制系统在现代社会的作用就越来越大,运用范围也越来越广。从最开始的主要运用与军事方面到工业的方方面面都离不开伺服控制系统。伺服系统最初是用于船舶的自动驾驶、火炮控制和指挥仪中,后来逐渐推广到很多领域,特别是自动车床、天线位置控制、导弹和飞船的制导等。 伺服控制系统在整个社会发展中的地位越来越重要,我们主要可以去了解控制策略、控制方法、系统设计(包括交直流伺服、数控、视觉伺服、液压伺服、.气动伺服、机器人伺服等系统)、伺服电动机(包括永磁同步电机、步进电机、直线电机、开关磁阻电机等电机的设计、新原理、新材料、新结构和电机磁场与性能分析及软件分析平台)、伺服控制前沿技术、行业信息、应用案例、伺服器件、传感器、工业通信、新产品等关于伺服控制系统的知识。 2.伺服运动控制系统简介 2.1概念 用来精确地跟随或复现某个过程的反馈控制系统称为伺服控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。 2.2指标要求 (1)系统精度要高 伺服系统精度指的是输出量复现输入信号要求的精确程度,以误差的形式表现,可概括为动态误差,稳态误差和静态误差三个方面组成。在伺服控制系统中一般系统精度越高越好。 (2)稳定性要好 伺服系统的稳定性是指当作用在系统上的干扰消失以后,系统能够恢复到原来稳定状态的能力;或者当给系统一个新的输入指令后,系统达到新的稳定运行状态的能力,在实际运用中我们希望系统的这一能力越强越好。 (3)响应速度要快 响应特性指的是输出量跟随输入指令变化的反应速度,决定了系统的工作效率.响应速度与许多因素有关,如计算机的运行速度,运动系统的阻尼和质量等。在生产运用中我们希望响应速度是越快越好。 (4)工作频率范围要宽 工作频率通常是指系统允许输入信号的频率范围.当工作频率信号输入时,系统能够按技术要求正常工作;而其它频率信号时,体统不能正常工作。根据我们的实际需求我们希望一个系统的工作频率的范围要比较宽,这样才能将伺服控制系统用于实际生产。 2.3体系架构

伺服电机计算选择应用实例

伺服电机计算选择应用实例 1.选择电机时的计算条件本节叙述水平运动伺服轴(见下图)的电机选择步骤。 例:工作台和工件的W :运动部件(工作台及工件)的重量(kgf)=1000 kgf 机械规格μ:滑动表面的摩擦系数=0.05 π:驱动系统(包括滚珠丝杠)的效率=0.9 fg :镶条锁紧力(kgf)=50 kgf Fc :由切削力引起的反推力(kgf)=100 kgf Fcf :由切削力矩引起的滑动表面上工作台受到的力(kgf) =30kgf Z1/Z2:变速比=1/1 例:进给丝杠的(滚珠Db :轴径=32 mm 丝杠)的规格Lb :轴长=1000 mm P :节距=8 mm 例:电机轴的运行规格Ta :加速力矩(kgf.cm) Vm :快速移动时的电机速度(mm-1)=3000 mm-1 ta :加速时间(s)=0.10 s Jm :电机的惯量(kgf.cm.sec2) Jl :负载惯量(kgf.cm.sec2) ks :伺服的位置回路增益(sec-1)=30 sec-1 1.1 负载力矩和惯量的计算 计算负载力矩加到电机轴上的负载力矩通常由下式算出: Tm = + Tf Tm :加到电机轴上的负载力矩(Nm) F :沿坐标轴移动一个部件(工作台或刀架)所需的力(kgf) L :电机转一转机床的移动距离=P×(Z1/Z2)=8 mm Tf :滚珠丝杠螺母或轴承加到电机轴上的摩擦力矩=2Nm F×L 2πη

无论是否在切削,是垂直轴还是水平轴,F值取决于工作台的重量, 摩擦系数。若坐标轴是垂直轴,F值还与平衡锤有关。对于水平工 作台,F值可按下列公式计算: 不切削时: F = μ(W+fg) 例如: F=0.05×(1000+50)=52.5 (kgf) Tm = (52.5×0.8) / (2×μ×0.9)+2=9.4(kgf.cm) = 0.9(Nm) 切削时: F = Fc+μ(W+fg+Fcf) 例如: F=100+0.05×(1000+50+30)=154(kgf) Tmc=(154×0.8) / (2×μ×0.9)+2=21.8(kgf.cm) =2.1(Nm) 为了满足条件1,应根据数据单选择电机,其负载力矩在不切削时 应大于0.9(Nm),最高转速应高于3000(min-1)。考虑到加/减速, 可选择α2/3000(其静止时的额定转矩为2.0 Nm)。 ·注计算力矩时,要注意以下几点: 。考虑由镶条锁紧力(fg)引起的摩擦力矩 根据运动部件的重量和摩擦系数计算的力矩通常相当小。镶条 锁紧力和滑动表面的质量对力矩有很大影响。 。滚珠丝杠的轴承和螺母的预加负荷,丝杠的预应力及其它一些因 素有可能使得滚动接触的Fc相当大。小型和轻型机床其摩擦力矩 会大大影响电机的承受的力矩。 。考虑由切削力引起的滑动表面摩擦力(Fcf)的增加。切削力和驱 动力通常并不作用在一个公共点上如下图所示。当切削力很大时, 造成的力矩会增加滑动表面的负载。 当计算切削时的力矩时要考虑由负载引起的摩擦力矩。 。进给速度会使摩擦力矩变化很大。欲得到精确的摩擦力矩值,应 仔细研究速度变化,工作台支撑结构(滑动接触,滚动接触和静压 力等),滑动表面材料,润滑情况和其它因素对摩擦力的影响。 。机床的装配情况,环境温度,润滑状况对一台机床的摩擦力矩影 响也很大。大量搜集同一型号机床的数据可以较为精确的计算其负

液压伺服控制系统的优缺点

液压伺服控制系统的优缺点 参考资料:https://www.doczj.com/doc/7818139632.html,/s/blog_71facf0001010n63.html 液压伺服控制系统,是在液压传动和自动控制理论基础上建立起来的一种自动控制系统。近年来,随着自动控制的发展,无论是电气或液压伺服系统,在所有的工业部门中都开始得到应用,并普遍地为人们所熟知起来。由于其具有结构紧凑、尺寸小、重量轻、出力大,刚性好,响应快,精度高等特点,因而在工业上获得了广泛的应用。 一、液压伺服控制系统的优点 现对液压伺服控制系统在设计和应用中体现的优缺点进行一下归纳和总结。同机电伺服系统、气动伺服系统相比较,液压伺服系统具有以下的突出特点,以致成为采用液压系统而不采用其他控制系统的主要原因: 1、重量比大 在同样功率的控制系统中,液压系统体积小,重量轻。这是因为对机电元件,例如电动机来说,由于受到激磁性材料饱和作用的限制,单位重量的设备所能输出的功率比较小。液压系统可以通过提高系统的压力来提高输出功率,这时只受到机械强度

和密封技术的限制。在典型的情况下,发电机和电动机的功率比仅为16.8W/N,而液压泵和液压马达的功率——重量比为 168W/N,是机电元件的10倍。在航空、航天技术领域应用的液压马达是675W/N。直线运动的动力装置更加悬殊。 这个特点,在许多场合下,在采用液压伺服而不采用其他伺服系统的重要原因,也是直线运动系统控制系统中多用液压系统的重要原因。例如在航空、特别是导电、飞行器的控制中液压伺服系统得到了很广泛的应用。几乎所有的中远程导弹的控制系统都是采用液压控制系统。 2、力矩惯量比大 一般回转式液压马达的力矩惯量比是同容量电动机的10倍至20倍,一般液压马达为61x10Nm/Kgm2。力矩惯量比大,意味着液压系统能够产生大的加速度,也意味着时间常数小,响应速度快,具有优良的动态性能。因为液压马达或者电动机消耗的功率一部分来克服负载,另一部分消耗在加速液压马达或者电动机本身的转子。所以一个执行元件是否能够产生所希望的加速度,能否给负载以足够的实际功率,主要受到它的力矩惯量比的限制。 这个特点也是许多场合下采用液压系统,而不是采用其他控制系统的重要原因。例如火箭炮武器的防真系统中,要求平台

相关主题
文本预览
相关文档 最新文档