当前位置:文档之家› 量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用
量子阱半导体激光器的的基本原理及其应用

量子阱半导体激光器的的基本原理及其应用

无研01 王增美(025310)

摘要:本文主要阐述了量子阱及应变量子阱材料的能带结构,以及能态密度和载流子有效质量的变化对激光器阈值电流等参数的影响,简要说明了量子阱激光器中对光场的波导限制。最后对量子阱半导体激光器的应用作了简要的介绍,其中重点是GaN 蓝绿光激光器的发展和应用。

引言

半导体激光器自从1962年诞生以来,就以其优越的性能得到了极为广泛的应用,随着新材料新结构的不断涌现和制造工艺水平的不断提高,其各方面的性能也不断得到改善,应用范围也不在再局限于信息传输和信息存储,而是逐渐渗透到材料加工、精密测量、军事、医学和生物等领域,正在迅速占领过去由气体和固体激光器所占据的市场。

20世纪70年代的双异质结激光器、80年代的量子阱激光器和90年代出现的应变量子阱激光器是半导体激光器发展过程中的三个里程碑。制作量子阱结构需要用超薄层的薄膜生长技术,如分子外延术(MBE )、金属有机化合物化学气相淀积(MOCVD )、化学束外延(CBE )和原子束外延等。我国早在1974年就开始设计和制造分子束外延(MBE )设备,而直到1986年才成功的制造出多量子阱激光器,在1992年中科院半导体所(ISCAS )使用国产的MBE 设备制成的GRIN-SCH InGaAs/GaAs 应变多量子阱激光器室温下阈值电流为1.55mA ,连续输出功率大于30mW ,输出波长为1026nm [4]。

量子阱特别是应变量子阱材料的引入减少了载流子的一个自由度,改变了K 空间的能带结构,极大的提高了半导体激光器的性能,使垂直腔表面发射激光器成为现实,使近几年取得突破的GaN 蓝绿光激光器成为新的研究热点和新的经济增长点,并将使半导体激光器成为光子集成(PIC )和光电子集成(OEIC )的核心器件。

减少载流子一个自由度的量子阱已经使半导体激光器受益匪浅,再减少一个自由度的所谓量子线(QL )以及在三维都使电子受限的所谓量子点(QD )将会使半导体激光器的性能发生更大的改善,这已经受到了许多科学家的关注,成为半导体材料的前沿课题。 量子阱和应变量子阱半导体激光器的基本原理

1、半导体超晶格

半导体超晶格是指由交替生长两种半导体材料薄层组成的一维周期性结构,薄层的厚度与半导体中电子的德布罗意波长(约为10nm )或电子平均自由程(约为50nm )有相同量级。这种思想是在1968年Bell 实验室的江崎(Esaki )和朱肇祥首先提出的,并于1970年首次在GaAs 半导体上制成了超晶格结构。江崎等人把超晶格分为两类:成分超晶格和掺杂超晶格。理想超晶格的空间结构及两种材料的能带分布分别如图1和图2:

2、 量子阱及量子阱材料的能带结构

图1

由于两种材料的禁带宽度不同而引起的沿薄层交替生长方向(z 方向)的附加周期势分布中的势阱称为量子阱。量子阱中电子与块状晶体中电子具有完全不同的性质,即表现出量子尺寸效应,量子阱阱壁能起到有效的限制作用,使阱中的载流子失去了垂直于阱壁方向(z 方向)的自由度,只在平行于阱壁平面(xy 面)内有两个自由度,故常称此量子系统为二维电子气。

量子阱中电子的运动服从薛定谔方程。

在xy 平面内,电子不受附加周期势的作用,与体材料中电子的运动规律相同,相应的能量

)2/()(*

//222m k k E y x xy += ,其中x k 、y k 分别为电子在x 和y 方向上的波矢,//*m 是电子xy 平面上的有效质量。在z 方向上,电子受到阱壁的限制,能量是量子化的,只能取一些分立的值,既2

z n z n E E ∝=(n z =1,2,3,…)。

所以,电子的总能量E为:xy z E E E +=,即由于xy E 的作用,相当于把能级n E 展宽为能带,称为子能带。 即材料能带沿z k 方向分裂为许多子能带(图3(a ))。而且态密度呈现阶梯状分布,同一子能带内态密度为常数,(图3(b ))。

图3 (a)量子阱导带和价带中子能带沿//k 方向的分布:导带子能带仍是抛物线型分布,价带中子能带却与抛物线型相差很多,这是由于价带中轻重空穴带混合(mixing )所致(b )体材料与量子阱有源材料态密度)(E ρ对比图:量子阱中能带分裂为子能带(n =1,2,…),Eg-b 与Eg-q 为分裂前后禁带宽度,且Eg-b

能带的变化导致以下结果:

(1)带电子与重空穴和轻空穴复合分别产生TE 模与TM 模,重空穴带与轻空穴带在带顶处简并解除加剧了TE 模与TM 模的非对称性。

(2)不象体材料抛物线能带中载流子必须从接近带底处开始填充那样,量子阱的阶梯状能带允许注入的载流子依子能带逐级填充。因此注入载流子能量量子化,提高了注入有源层内载流子的利用率,明显增加了微分增益dg/dN 。高微分增益带来一系列好处:降低了激光器的阈值电流;减少了载流子内部损耗,提高了效率;提高了激光器的调制带宽,减少了频率啁啾。

(3)由于Eg-q>Eg-b,量子阱激光器的输出波长通常要小于同质的体材料激光器。

(4)在导带中子能带沿//k 的分布仍是抛物线型,而在价带中却远非如此,这是由于重空穴带

和轻空穴带混合(mixing )并相互作用所致,这使得价带的能态密度分布并不象右图所示的那样呈现阶梯状,而是使价带的能态密度增大,加剧了价带和导带能态密度的不对称,提高了阈值电流,降低了微分增益,从而使激光器的性能,这种情况要靠后面要提的应变量子阱来改善。

3、单量子阱(SQW )和多量子阱(MQW )激光器中对光子的限制

在量子阱激光器中,由于有源层厚度很小,若不采取措施,会有很大一部分光渗出。 对SQW 采取的办法是采用如图4所示的分别限制(separated confinement heterojunction )结构,在阱层两侧配备低折射率的光限制层(即波导层)。该层的折射率分布可以是突变的(如图4(b )左图所示)也可以是渐变的(如右图),分别对应波导层带隙的突变和渐变)。

而对MQW 采取如图5所示的在最外层势垒之后再生长低折射率的波导层以限制光子

Eg

图4(a ) 折射率 图4(b ) 图4 (a )单量子阱激光器的禁带宽度分布(b )分别限制单量子阱激光

器(SCH-SQW )的折射率分布,左边是阶梯型(step index

),右边是渐

变型(grated index )(对应带隙渐变)

折射率

E 图5 多量子阱禁带宽度及折射率随厚

4、应变量子阱材料激光器

前面提到的量子阱材料的使用大大改善了半导体激光器的性能,与含厚有源层的双异质结一样,要求组成异质结的材料之间在晶体结构和晶格常数是匹配的,否则将会造成悬挂键,对器件性能造成不利的影响。但是只要将超薄层的厚度控制在某一临界尺寸以内,存在于薄层内的应变能可通过弹性形变来释放而不产生失配位错,相反,薄层之间的晶格常数失配所造成的应力能使能带结构发生有利变化,而且,应变的引入降低了晶格匹配的要求,可以在较大的范围内调整化合物材料各成分的比例。

(1)压应变与张应变

如图6所示,设结平面为xy 平面,晶体生长方向为z 方向,阱层晶格常数为a o ,垒层晶格常数为a s ,当在垒层上生长出很薄的阱层材料时,在xy 平面内,阱层材料的晶格常数变为a //=a s ,为保持晶胞体积不变,在z 方向上,阱层材料晶格常数变为⊥a 。

若a //=a s

若a //=a s >a o >⊥a ,则阱层内产生张应变(tensile strain )

总的应变可分解为纯的轴向分量和静态分量。

(2) 应变导致的材料能带变化

a 、先不考虑阱中的量子效应,而只考虑纯粹的应变的影响(图7)。

(a )静态分量将使价带整体上移h1(meV ),而使价带整体下移h2(meV )(对于张应力h1<0,h2<0)。即压应变的静态分量将使阱材料的禁带变宽,而张应变的将使其变窄。这会改变激光器的输出波长。

//k Γ ⊥k //k Γ ⊥k //k Γ ⊥k (a)unstrained (b)under biaxial compression (c)under biaxial tension 图7(a )无应变时能带分布(b )压应变下能带变化(c )张应变下能带变化

(b )更重要的是,应变的轴向分量将会使价带产生更大的变化:价带在整体移动的基础上,重空穴带和轻空穴带分离,分别上移和下移s/2(meV )(对张应力,s<0),对1%的晶格失配s 约为60—80meV 。

(c )在沿⊥k 方向上轻重空穴的有效质量发生变化(对应图中曲线的曲率半径的变化),重空穴的变轻而重孔穴变重。在压应变情况下,价带中能量最高的能带沿//k 方向上的有效质量比沿⊥k 方向上的轻,所以我们可在价带中最高的能带上获得轻的空穴,这可以提高导带和价带的对称性,提高激光器的性能。

b 、应变对量子阱中能带的影响

(a )压应变的影响

上面提到,在量子阱中导带和价带分裂为子能带,在//k 方向上,导带中子能带仍

是抛物线型,而由于混合效应,价带中子能带远非抛物线型,加剧了导带和价带能态密度的不对称性,降低了激光器的性能。而压应变可以使价带中的轻重空穴带分离。所以在量子阱中引入压应变可以使轻重空穴进一步分离,减轻混合效应,减小价带的能态密度,增加导价带能态密度的对称性,提高微分增益,降低阈值电流,提高激光器的性能。如图8,轻空穴带被“推入”阱底,在图中不可见。

(b )对于张应变,由于它将会提升轻空穴带,而

使重空穴带降低,且减小其有效质量,所以可以增加TE 模与TM 模的对称性,输出与偏振模式无关

的激光或TM 偏振模激光。1993年7月日本的

H.Tanaka 等人用GaAs/AlGaAs 张应变量子阱得到了输出波长为780nm (红外)的TM 模CW 振荡

激光器[7]。并通过控制注入电极载流子浓度,用

GaAs/AlGaAs 多量子阱TM 模振荡激光器实现偏振模调制[8]。由于张应变与量子效应分离轻重空穴带的效果相反,所以最终的能带分布要取决于应变

与量子效应的“竞争”结果。

量子阱激光器的应用

量子阱材料特别是应变量子阱的引入给半导体激光器的发展注入了新的活力,各波段低阈值大功率的 CW 半导体激光器相继研制成功,从而推动了相关应用领域的进一步发展。

1、量子阱结构使垂直腔表面发射激光器(VCSEL )成为可能

所谓表面发射是相对于一般端面发射激光器而言,光从垂直于结平面的表面发射。而所谓垂直腔是指激光腔方向(光子振荡方向)垂直于半导体芯片的衬底,即光子振荡方向与光出射方向一致。有源层厚度即为腔长,由于有源层很薄,要在如此短的腔内实现低阈值振荡,除了要求有高增益的有源介质外,还要求有高的腔面反射率,这只有到80年代用MBE 和MOCVD 等技术制成量子阱材料和分布bragg 反射器(DBR )后才有可能。

在1984年和1988年先后实现了VCSEL 的室温脉冲和连续工作,随着技术的不断改善,其性能迅速提高。VCSEL 体积小,阈值低,功耗低,便于制成大规模二维列阵激光器,方便与光纤高效耦合,而且可以输出窄线宽,发散角小的单纵模激光。可用于泵浦固体激光器,光信息并行处理等,它的特点也决定了其在光子集成(PIC )和光电子集成(OEIC )中的重

图8 压应变对量子阱中价带的影响

要地位。

2、变量子阱激光器进一步推动了光纤通信的发展

半导体激光器由于具有体积小,价格低,可以直接调制等优点,已成为光纤通信系统重要组成部分,大容量光纤通信的发展对半导体激光器提出了更高的要求,而量子阱(特别是应变量子阱)半导体激光器具有好的动态特性,低的阈值电流,再引入光栅进行分布反馈(DFB),成为目前高速通信中最为理想的激光源。

此外,980nm低阈值大功率AlGaAs/InGaAs[5],InAs/GaAs,InGaAlP/InGaAs,InGaAs/GaAs 应变量子阱激光器相继研制成功,可以为EDFA提供泵浦,在这个波段上,铒离子表现为理想的三能级系统,可以获得比1480nm波段泵浦更高的耦合效率。

半导体光放大器(SLA)无论是在光通信还是在光信息处理技术中都是非常重要的器件,其发展曾经一度受到EDFA的挑战,但应变量子阱材料的出现使SLA具有宽且平的增益谱,易集成,低损耗,体积小,价格便宜等优点,使其重新具有了竞争力。SLA最重要的应用是波长转换器(如Fig.1和Fig.2)[9],实现灵活的波长路由。此外,还希望用其作为光传输系统中1310nm窗口的功率放大器,线路放大器和前置放大器以及利用SLA中的非线性来作啁啾补偿和色散补偿。

3、红光半导体激光器逐渐取代传统的气体激光器

1991年报道了第一个发射波长为634nm(红)的InGaP/InGaAlP应变量子阱激光器[6],输出功率超过600mW,阈值电流密度为1.7kA/cm2。半导体红光激光器的光束质量不断提高,并以其体积小,价格便宜等优点向传统的He-Ne激光器提出挑战,并在光信息存储,条形码扫描,激光打印和复印及医学等方面的应用上逐步取代了He-Ne激光器的部分市场。

4、蓝绿光激光器

尽管蓝绿光LED早已广泛应用,但相应的半导体激光器却经历了一个相当困难的阶段才开始逼近市场,其中研究较多的是蓝绿光的材料体系和包括掺杂在内的与之相容的材料生长工艺。近几年,蓝绿光半导体激光器取得了几个阶段性的进展。

蓝绿激光的发射需宽带隙(3eV左右)材料,目前研究较多并取得较大进展的材料为III 族氮化物(GaN,AlN,InN)。下面的图[10]是日本日亚(Nichia)化学工业公司的Nakamura等人在1997年制作的可连续工作10000小时的InGaN多量子阱蓝光激光器:由三层35A厚的Si:In0.15Ga0.85N阱层和70A厚的In0.02Ga0.98N垒层组成多量子阱。激射波长为405.83nm,20℃时阈值电流为80mA。

最近两年研制成功的Fabry-perot nitride LD,仍然使用上面的多量子阱材料(两个阱),但在p-GaN波导层和最外面的垒层之间插入20nm厚的p-Al0.2Ga0.8N阻挡层,并加厚n型包层(从600m到1200nm)以减弱光腔中光向衬底的渗漏。其输出功率可达420mW,阈值电流密度为1.7kA/cm2。其各层的成分和结构如下表所示[11]:

蓝光激光器的发展提高了信息存储的容量,并推动海洋探测技术的发展。对海水来说,蓝绿激光是一个透明窗口,在军事上,可以用这个波段的激光进行探测潜艇位置和潜艇通信、潜艇导航及鱼雷跟踪,在环境科学方面,可以用于海洋污染监测,海底行貌成像等。

结束语

量子阱特别是应变量子阱材料极大的提高了半导体激光器的性能,拓宽了半导体激光器的应用范围,本文在阐述了量子阱激光器的基本原理之后对其应用作了简单的介绍,相信今后随着新技术新材料的不断发展,量子阱激光器及正在研究的量子线和量子点激光器将会推动相关应用领域的进一步发展,在社会和科技的进步中起到更加重要的作用。

参考文献:

1、《半导体物理学》(第四版)/刘恩科等国防工业出版社1997

2、《半导体激光器及其应用》/黄德修刘雪峰编著国防工业出版社1999.5

3、Quantum Well Lasers /(Edited by )Peter S. Zory,Jr,1993

4、An Overview of Optical Device Research in China/Zhou BingKun IEEE communications

magazine /July 1993

5、High-Power 980nm AlGaAs/InGaAs Strained Quantum Well Lasers Growned by

OMVPE/Y.K.Chen etc./IEEE photonics technology letters V ol.3, No.5. May 1991

6、High Performance 634nm Strained InGaP/InGaAlP Quantum Well Lasers/C.J.Chang Hasnain

etc./ELECTRONICS LETTERS 15th August 1991,V ol.27,No.17

7、780nm band TM-mode laser operation of GaAsP/AlGaAs tensile-strained quantum well

lasers/H.Tanaka /ELECTRONICS LETTERS 2nd September 1993 Vol.29,No.18

8、polarization modulation of GaAsP/AlGaAs tensilely strained quantum well laser

diodes/H.Tanaka/ Lasers and Electro-Optics Society Annual Meeting, 1994. LEOS '94 Conference Proceedings. IEEE , Volume: 1, 1994

9、Semiconductor Laser Amplifier and Applications/Huang Dexiu /Solid-State and

Integrated Circuit Technology, 1998. Proceedings. 1998 5th International

Conference on, 1998

10、InGaN-Based Blue Laser Diodes /Shuji Nakamura/ IEEE journal of selected topics in

quantum electronics V ol.3, No.3, June 1997

11、physics of high-power InGaN/GaN lasers /J.piprek and S.Nakamura /IEE. proc.

-Optoelectron.V ol.149.No.4 August 2002

有关双异质结激光器与量子阱激光器的基础报告

有关双异质结激光器与量子阱激光器的基础报告 xxx (xxxxxxxxxxxxxxx) 摘要:异质结半导体激光器是半导体激光发展史上的重要突破,它的出现使光纤通信及网络技术成为现实并迅速发展。异质结构已成为当代高性能半导体光电子器件的典型结构,具有巨大的开发潜力和应用价值。 关键词:双异质结半导体激光器;量子阱激光器;泵浦 About double heterostructure lasers andreport on the basis of quantum well laser xxx (xxxx) Abstract:Heterojunction semiconductor laser is an important breakthrough in the history of the development of semiconductor laser, it make the optical fiber communication and network technology become a reality and rapid development. Heterostructure has become the contemporary typical structure of high performance semiconductor optoelectronic devices, has huge development potential and application value Key words: double heterojunction semiconductor lasers; Quantum well laser; pump 0 引言 双异质结激光器和量子阱激光器在我们的当代的科研中都取得了一定的成绩,有很多相关的资料供我们查看和研究,这些惊人的成就给我的生活带来的巨大的改变,我们作为新一代的基础人员,有义务去发展,将这些激光器的研究壮大和深入。 1 双异质结基本结构 双异质结基本结构是将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm的半导体激光器在室温下能连续工作。图表示出双异质结激光器的结构示意图和相应的能带图在正向偏压下,电子和空穴分别从宽带隙的N区和P区注进有源区。它们在该区的扩散又分别受到P-p异质结和N-p异质结的限制,从而可以在有源区内积累起产生粒子数反转所需的非平衡载流子浓度。同时,窄带隙具有源区有高的折射率与两边低折射率的宽带隙层构成了一个限制光子在有源区内的介质光波导。 异质结激光器激光器的供应商是半导体半导体的供应商激光发展史上的重要突破,它的出现使光纤光纤的供应商通信及网络技术成为现实并迅速发

CdSe量子点的电荷存储

Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly …N -vinylcarbazole …polymer layer Fushan Li,Dong-Ik Son,Seung-Mi Seo,Han-Moe Cha,Hyuk-Ju Kim,Bong-Jun Kim,Jae Hun Jung,and Tae Whan Kim a ? Advanced Semiconductor Research Center,Division of Electronics and Computer Engineering,Hanyang University,17Haengdang-dong,Seongdong-gu,Seoul 133-791,Korea ?Received 16July 2007;accepted 16August 2007;published online 21September 2007?Current-voltage measurements on the Al/?CdSe/ZnS nanoparticles embedded in a hole-transporting poly ?N -vinylcarbazole ??PVK ?layer ?/indium tin oxide ?ITO ?/glass structures at 300K showed a nonvolatile electrical bistability behavior.Capacitance-voltage ?C -V ?measurements on the Al/?CdSe/ZnS nanoparticles embedded in a PVK layer ?/ITO/glass structures at 300K showed a metal-insulator-semiconductor behavior with a ?atband voltage shift due to the existence of the CdSe/ZnS nanoparticles,indicative of trapping,storing,and emission of charges in the electronic states of the CdSe nanoparticles.Operating mechanisms for the Al/?CdSe/ZnS nanoparticles embedded in the PVK layer ?/ITO/glass devices are described on the basis of the C -V results.?2007American Institute of Physics .?DOI:10.1063/1.2783189? Organic structures containing inorganic nanoparticles have been particularly attractive due to interest in their prom-ising applications in electronic and optoelectronic devices 1–7because of their unique advantages of low-power consump-tion,high mechanical ?exibility,and chemical structural ver-satility.Such hybrid organic/inorganic devices are also excel-lent candidates for potential applications in next-generation transistor and memory devices.8,9Potential applications of memory devices utilizing nanoparticles embedded in organic layers have driven extensive effort to form various kinds of nanoparticles.10,11Even though some studies concerning the formation of metal nanoparticles embedded in an organic layer for applications such as nonvolatile organic bistable devices ?OBDs ?have been conducted,almost all of the devices were fabricated by using strin-gent high-vacuum evaporation method.12–14The memory effects of core/shell-type cadmium selenium ?CdSe ?nano-particles embedded in a conducting poly ?2-methoxy-5-?2-ethylhexyloxy ?-1,4-phenylene-vinylene ??MEH-PPV ?poly-mer fabricated by using a simple spin-coating technique were reported.15Because the narrow band gap of MEH-PPV leads to a low charge capturing ef?ciency,resulting in the realization of memory effect at a high bias voltage of 10V,a hole transport poly ?N -vinylcarbazole ??PVK ?matrix can be introduced here to obtain the memory effects in CdSe/PVK nanocomposites under an applied bias voltage as small as 2V.Furthermore,studies on the memory effects and their operating mechanisms for OBDs made of semiconductor nanoparticles embedded in a conducting polymer are very important for improving the ef?ciencies of nonvolatile ?ash memories. This letter reports data for the bistability and the operat-ing mechanisms of the memory effects of OBDs fabricated utilizing CdSe semiconductor nanoparticles embedded in a PVK polymer layer.Core/shell-type CdSe nanoparticles have become particularly attractive because of their promising ap-plications in next-generation nonvolatile ?ash memory de-vices with low-power and ultrahigh-density elements.16,17Current-voltage ?I -V ?measurements were carried out to in-vestigate the electrical bistable properties of the fabricated OBDs containing CdSe/ZnS nanoparticles embedded in the PVK layer.Capacitance-voltage ?C -V ?measurements were carried out to investigate the possibility of fabricating memory effects involving the CdSe/ZnS nanoparticles em-bedded in the PVK layer.Furthermore,the dependence of the memory effects on the thickness of the PVK layer containing CdSe/ZnS nanoparticles was also investigated. The CdSe/ZnS nanoparticles with a diameter of about 6nm were purchased commercially,and a schematic dia-gram of the core/shell-type CdSe/ZnS nanoparticles is shown in Fig.1?a ?.The device with a structure shown in Fig.1?b ?was fabricated through the following process:At ?rst,the indium tin oxide ?ITO ?coated glass acting as a hole-injection layer in the OBDs was alternately cleaned with a chemical cleaning procedure by using trichloroehylene,ac-etone,and methanol solutions.Then,the PVK layer contain-ing the CdSe/ZnS nanoparticles was formed by spin coating a chloroform solution of 1.3%by weight PVK and 0.5%by weight CdSe/ZnS nanoparticles.Finally,a top Al electrode layer with a thickness of about 800nm was deposited by thermal evaporation.The I -V and C -V measurements were performed by using an HP 4284precision LCR meter at room temperature. Figure 2shows I -V curves for the Al/?CdSe/ZnS nano-particles embedded in the PVK layer ?/ITO/glass OBD struc- a ? Author to whom correspondence should be addressed;electronic mail: twk@hanyang.ac.kr FIG.1.Schematic diagrams of the CdSe/ZnS nanoparticles and the fabri-cated device studied in this study. APPLIED PHYSICS LETTERS 91,122111?2007? 0003-6951/2007/91?12?/122111/3/$23.00?2007American Institute of Physics 91,122111-1Downloaded 22 Oct 2007 to 166.104.58.178. Redistribution subject to AIP license or copyright, see https://www.doczj.com/doc/781691287.html,/apl/copyright.jsp

表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用 李智豪 1.表面等离子体共振的物理学原理 人们对金属介质中等离子体激元的研究, 已经有50多年的历史。1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。 1.1 基本原理[1] 光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。 等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。 金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场

大功率半导体激光器件最新发展现状分析

大功率半导体激光器件最新发展现状分析 1 引言 半导体激光器由于具有体积小、重量轻、效率高等众多优点,诞生伊始一直是激光领域的关注焦点,广泛应用于工业、军事、医疗、通信等众多领域。但是由于自身量子阱波导结构的限制,半导体激光器的输出光束质量与固体激光器、CO2激光器等传统激光器相比较差,阻碍了其应用领域的拓展。近年来,随着半导体材料外延生长技术、半导体激光波导结构优化技术、腔面钝化技术、高稳定性封装技术、高效散热技术的飞速发展,特别是在直接半导体激光工业加工应用以及大功率光纤激光器抽运需求的推动下,具有大功率、高光束质量的半导体激光器飞速发展,为获得高质量、高性能的直接半导体激光加工设备以及高性能大功率光纤激光抽运源提供了光源基础。 2 大功率半导体激光器件最新进展 作为半导体激光系统集成的基本单元,不同结构与种类的半导体激光器件的性能提升直接推动了半导体激光器系统的发展,其中最为主要的是半导体激光器件输出光束发散角的降低以及输出功率的不断增加。 2.1 大功率半导体激光器件远场发散角控制 根据光束质量的定义,以激光光束的光参数乘积(BPP)作为光束质量的衡量指标,激光光束的远场发散角与BPP成正比,因此半导体激光器高功率输出条件下远场发散角控制直接决定器件的光束质量。从整体上看,半导体激光器波导结构导致其远场光束严重不对称。快轴方向可认为是基模输出,光束质量好,但发散角大,快轴发散角的压缩可有效降低快轴准直镜的孔径要求。慢轴方向为多模输出,光束质量差,该方向发散角的减小直接提高器件光束质量,是高光束半导体激光器研究领域关注的焦点。 在快轴发散角控制方面,如何兼顾快轴发散角和电光效率的问题一直是该领域研究热点,尽管多家研究机构相续获得快轴发散角仅为3o,甚至1o的器件,但是基于功率、光电效率及制备成本考虑,短期内难以推广实用。2010年初,德国费迪南德-伯恩研究所(Ferdinand-Braun-Inst itu te)的P. Crump等通过采用大光腔、低限制因子的方法获得了30o快轴发散角(95%能量范围),光电转换效率为55%,基本达到实用化器件标准。而目前商用高功率半导体激光器件的快轴发散角也由原来的80o左右(95%能量范围)降低到50o以下,大幅度降低了对快轴准直镜的数值孔径要求。 在慢轴发散角控制方面,最近研究表明,除器件自身结构外,驱动电流密度与热效应共同影响半导体激光器慢轴发散角的大小,即长腔长单元器件的慢轴发散角最易控制,而在阵列器件中,随着填充因子的增大,发光单元之间热串扰的加剧会导致慢轴发散角的增大。2009年,瑞士Bookham公司制备获得的5 mm腔长,9XX nm波段10 W商用器件,成功将慢轴发散角(95%能量范围)由原来的10o~12o降低到7o左右;同年,德国Osram公司、美国相干公司制备阵列器件慢轴发散角(95%能量范围)也达7o水平。 2.2 半导体激光标准厘米阵列发展现状 标准厘米阵列是为了获得高功率输出而在慢轴方向尺度为1 cm的衬底上横向并联集成多个半导体激光单元器件而获得的半导体激光器件,长期以来一直是大功率半导体激光器中最常用的高功率器件形式。伴随着高质量、低缺陷半导体材料外延生长技术及腔面钝化技术的提高,现有CM Bar的腔长由原来的0.6~1.0 mm增大到2.0~5.0mm,使得CM Bar输出功率大幅度提高。2008年初,美国光谱物理公司Hanxuan Li等制备的5 mm腔长,填充因子为83%的半导体激光阵列,利用双面微通道热沉冷却,在中心波长分别为808 nm,940 nm,980 nm处获得800 W/bar,1010W/bar,950 W/bar的当前实验室最高CM Bar连续功率输出水平。此外,德国的JENOPTIK公司、瑞士的Oclaro公司等多家半导体激光供应商也相续制备获得千瓦级半导体激光阵列,其中Oclaro公司的J. Müller等更是明确指出,在现有技术

量子点的制备及应用进展

龙源期刊网 https://www.doczj.com/doc/781691287.html, 量子点的制备及应用进展 作者:于潇张雪萍王才富倪柳松等 来源:《科技视界》2013年第29期 【摘要】本文分别从量子点的概念、特性、制备方法、表面修饰等方面对量子点进行了 描述及讨论,在此基础上,对量子点在生物传感器方面的应用进行了,最后分析了量子点生物传感器的存在的问题,对其未来发展趋势进行了展望。 【关键词】量子点;光学;生物传感器 量子点主要是由Ⅱ-Ⅵ族和Ⅲ-Ⅴ族元素组成的均一或核壳结构纳米颗粒,又称半导体纳米晶体。由于发生结构和性质发生宏观到微观的转变,其拥有独特的光、电、声、磁、催化效应,因此成为一类比较特殊的纳米材料。国内外关于量子点传感器的研究非常广泛,例如在生命科学领域,可以用于基于荧光共振能量转移原理的荧光探针检测,可以用于荧光成像,生物芯片等;在半导体器件领域,量子点可以用于激光器,发光二极管、LED等。本文对量子点 的制备方法和应用领域及前景进行了初步讨论。 1 量子点的基本特性及其制备方法 1.1 量子点的特性及优势 量子点的基本特性有:量子尺寸效应、表面效应、量子限域效应、宏观量子隧道效应,除此之外,量子点具有一些独特的光学效应,这使得量子点较传统的荧光染料用来标记生物探针具有以下优势: (1)量子点具有宽的激发光谱范围,可以用波长短于发射光的光激发,产生窄而对称的发射光谱,避免了相邻探测通道之间的干扰。 (2)量子点可以“调色”,即通过调节同一组分粒径的大小或改变量子点的组成,使其荧光发射波长覆盖整个可见光区。尺寸越小,发射光的波长越小。 (3)量子点的稳定性好,抗漂白能力强,荧光强度强,具有较高的发光效率。半导体量子点的表面上包覆一层其他的无机材料,可以对核心进行保护和提高发光效率,从而进一步提高光稳定性。正是由于量子点具有以上特性使其在生物识别及检测中具有潜在的应用前景,有望成为一类新型的生化探针和传感器的能量供体,因此备受关注。 1.2 量子点的制备方法 根据原料的不同分为无机合成路线和金属-有机物合成路线,两种合成方法各有利弊。

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

量子阱原理及应用

光子学原理课程期末论文 ——量子阱原理及其应用 信息科学与技术学院 08电子信息工程 杨晗 23120082203807

题目:量子阱原理及其应用 作者:杨晗 23120082203807 摘要:随着半导体量子阱材料的发展,量子阱器件广泛应用于各种领域.本文主 要介绍量子阱的基本特征,重点从量子阱材料、量子阱激光器、量子阱LED、等方面介绍量子阱理论在光电器件方面的发展及其应用。 关键词:量子阱量子约束激光器 量子阱是指由2种不同的半导体材料相间排列形成的、具有明显量子限制效应的电子或空穴的势阱。量子阱的最基本特征是,由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱,简单来说,就是由多个势阱构成的量子阱结构为多量子阱,简称为MQW(Multiple Quantum Well),而由一个势阱构成的量子阱结构为单量子阱,简称为SQW(Single Quantum Well)。 一量子阱最基本特征 由于量子阱宽度(只有当阱宽尺度足够小时才能形成量子阱)的限制,导致载流子波函数在一维方向上的局域化。在由2种不同半导体材料薄层交替生长形成的多层结构中,如果势垒层足够厚,以致相邻势阱之间载流子波函数之间耦合很小,则多层结构将形成许多分离的量子阱,称为多量子阱。如果势垒层很薄,相邻阱之间的耦合很强,原来在各量子阱中分立的能级将扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这样的多层结构称为超晶格。有超晶格特点的结构有时称为耦合的多量子阱。量子肼中的电子态、声子态 和其他元激发过程以及它们之间 的相互作用,与三维体状材料中的 情况有很大差别。在具有二维自由 度的量子阱中,电子和空穴的态密 度与能量的关系为台阶形状。而不 是象三维体材料那样的抛物线形 状[1]。 图1半导体超晶格的层状结构,白圈和灰圈代 表两种材料的原子

半导体量子点发光

. 半导体量子点发光 一、半导体量子点的定义 当半导体的三维尺寸都小于或接近其相应物质体相材料激子的玻尔半径(约5.3nm)时,称为半导体量子点。 二、半导体量子点的原理 在光照下,半导体中的电子吸收一定能量的光子而被激发,处于激发态的电子向较低能 级跃迁,以光福射的形式释放出能量。大多数情况下,半导体的光学跃迁发生在带边,也就是说光学跃迁通常发生在价带顶和导带底附近。半导体的能带结构可以用图的简化模型来表 示。如图所示,直接带隙是指价带顶的能量位置和导带底的能量位置同处于一个K 空间,间接带隙是指价带顶位置与导带底位置的K 空间位置不同。电子从高能级向低能级跃迁,伴随着发射光子,这是半导体的发光现象。

. 对于半导体量子点,电子吸收光子而发生跃迁,电子越过禁带跃迁入空的导带,而在原来的价带中留下一个空穴,形成电子空穴对(即激子),由于量子点在三维度上对激子施加 量子限制,激子只能在三维势垒限定的势盒中运动,这样在量子点中,激子的运动完全量子 化了,只能取分立的束缚能态。激子通过不同的方式复合,从而导致发光现象。原理示意图,如图所示,激子的复合途径主要有三种形式。 (1)电子和空穴直接复合 ,产生激子态发光。由于量子尺寸效应的作用 ,所产生的发射光的波长随着颗粒尺寸的减小而蓝移。 (2)通过表面缺陷态间接复合发光。在纳米颗粒的表面存在着许多悬挂键,从而形成了许多表面缺陷态。当半导体量子点材料受光的激发后,光生载流子以极快的速度受限于表面缺 陷态而产生表面态发光。量子点的表面越完整,表面对载流子的捕获能力就越弱,从而使得表面态的发光就越弱。 (3)通过杂质能级复合发光。杂质能级发光是由于表面分子与外界分子发生化学反应生 成其它杂质,这些杂质很容易俘获导带中的电子形成杂质能级发光。 以上三种情况的发光是相互竞争的。如果量子点的表面存在着许多缺陷,对电子和空穴的俘获能力很强,电子和空穴一旦产生就被俘获,使得它们直接复合的几率很小,从而使得激子态的发光就很弱,甚至可以观察不到,而只有表面缺陷态的发光。 为了消除由于表面缺陷引起的缺陷态发光而得到激子态的发光,常常设法制备表面完整 的量子点或者通过对量子点的表面进行修饰来减少其表面缺陷,从而使电子和空穴能够有效 地直接复合发光。

量子阱半导体激光器

量子阱半导体激光器 :本文主要叙述了量子阱半导体激光器发展背景、基本理论、主要应用与发展现状。一、发展背景 1962年后期,美国研制成功GaAs同质结半导体激光器,第一代半导体激光器产生。但 这一代激光器只能在液氮温度下脉冲工作,无实用价值。直到1967年人们使用液相外延的方法制成了单异质结激光器,实现了在室温下脉冲工作的半导体激光器。1970年,贝尔实验室有一举实现了双异质结构的在室温下连续工作的半导体激光器。至此之后,半导体激光 器得到了突飞猛进的发展。半导体激光器具有许多突出的优点:转换效率高、覆盖波段范围 广、使用寿命长、可直接调制、体积小、重量轻、价格便宜、易集成等。其发展速度之快、 应用范围之广、潜力之大是其它激光器所无法比拟的。但是,由于应用的需要,半导体激光 器的性能有待进一步提高。 80年代,量子阱结构的出现使半导体激光器出现了大的飞跃。量子阱结构源于60年代末期贝尔实验室的江崎(Esaki)和朱肇祥提出超薄层晶体的量子尺寸效应。当超薄有源层材料 后小于电子的德布罗意波长时,有源区就变成了势阱区,两侧的宽带系材料成为势垒区,电 子和空穴沿垂直阱壁方向的运动出现量子化特点。从而使半导体能带出现了与块状半导体完

全不同的形状与结构。在此基础上,根据需要,通过改变超薄层的应变量使能带结构发生变 化,发展起来了应变量子阱结构。这种所谓“能带工程”赋予半导体激光器以新的生命力, 其器件性能出现大的飞跃。具有量子阱结构的量子阱半导体激光器与双异质结半导体激光器 (DH)相比,具有阈值电流密度低、量子效应好、温度特性好、输出功率大、动态特性好、 寿命长、激射波长可以更短等等优点。目前,量子阱已成为人们公认的半导体激光器发展的 根本动力。 其发展历程大概为:1976年,人们用GaInAsP/InP实现了长波长激光器。对于激光腔 结构,Kogelnik和Shank提出了分布反馈结构,它能以单片形式形成谐振腔。Nakamura用实验证明了用光泵浦的GaAs材料形成的分布反馈激光器(DBR)。Suematsu提出了用于光通信的动态单模激光概念,并用整体激光器验证了这种想法。1977年,人们提出了所谓的面 发射激光器,并于1979年做出了第一个器件。目前,垂直腔面发射激光器(VECSEL)已用于千兆位以太网的高速网络。自从Nakamura实现了GaInN/GaN蓝光激光器,可见光半导体激 光器在光盘系统中得到了广泛应用,如CD播放器、DVD系统和高密度光存储器。1994年,一种具有全新机理的波长可变、可调谐的量子级联激光器研制成功,且最近,在此又基础上

激光二极管原理及应用

激光二极管参数与原理及应用 2011-06-19 17:10:29 来源:互联网 一、激光的产生机理 在讲激光产生机理之前,先讲一下受激辐射。在光辐射中存在三种辐射过程, 一时处于高能态的粒子在外来光的激发下向低能态跃迁,称之为自发辐射; 二是处于高能态的粒子在外来光的激发下向低能态跃迁,称之为受激辐射; 三是处于低能态的粒子吸收外来光的能量向高能态跃迁称之为受激吸收。 自发辐射,即使是两个同时从某一高能态向低能态跃迁的粒子,它们发出光的相位、偏振状态、发射方向也可能不同,但受激辐射就不同,当位于高能态的粒子在外来光子的激发下向低能态跃迁,发出在频率、相位、偏振状态等方面与外来光子完全相同的光。在激光器中,发生的辐射就是受激辐射,它发出的激光在频率、相位、偏振状态等方面完全一样。任何的受激发光系统,即有受激辐射,也有受激吸收,只有受激辐射占优势,才能把外来光放大而发出激光。而一般光源中都是受激吸收占优势,只有粒子的平衡态被打破,使高能态的粒子数大于低能态的粒子数(这样情况称为离子数反转),才能发出激光。 产生激光的三个条件是:实现粒子数反转、满足阈值条件和谐振条件。产生光的受激发射的首要条件是粒子数反转,在半导体中就是要把价带内的电子抽运到导带。为了获得离子数反转,通常采用重掺杂的P型和N型材料构成PN结,这样,在外加电压作用下,在结区附近就出现了离子数反转—在高费米能级EFC以下导带中贮存着电子,而在低费米能级EFV以上的价带中贮存着空穴。实现粒子数反转是产生激光的必要条件,但不是充分条件。要产生激光,还要有损耗极小的谐振腔,谐振腔的主要部分是两个互相平行的反射镜,激活物质所发出的受激辐射光在两个反射镜之间来回反射,不断引起新的受激辐射,使其不断被放大。只有受激辐射放大的增益大于激光器内的各种损耗,即满足一定的阈值条件: P1P2exp(2G - 2A) ≥1 (P1、P2是两个反射镜的反射率,G是激活介质的增益系数,A是介质的损耗系数,exp 为常数),才能输出稳定的激光,另一方面,激光在谐振腔内来回反射,只有这些光束两两之间在输出端的相位差Δф=2qπq=1、2、3、4。。。。时,才能在输出端产生加强干涉,输出稳定激光。设谐振腔的长度为L,激活介质的折射率为N,则 Δф=(2π/λ)2NL=4πN(Lf/c)=2qπ, 上式可化为f=qc/2NL该式称为谐振条件,它表明谐振腔长度L和折射率N确定以后,只有某些特定频率的光才能形成光振荡,输出稳定的激光。这说明谐振腔对输出的激光有一定的选频作用。 二、激光二极管本质上是一个半导体二极管,按照PN结材料是否相同,可以把激光二极管分为同质结、单异质结(SH)、双异质结(DH)和量子阱(QW)激光二极管。量子阱激光二极管具有阈值电流低,输出功率高的优点,是目前市场应用的主流产品。同激光器相比,激光二极管具有效率高、体积小、寿命长的优点,但其输出功率小(一般小于2mW),线性差、单色性不太好,使其在有线电视系统中的应用受到很大限制,不能传输多频道,高性能模拟信号。在双向光接收机的回传模块中,上行发射一般都采用量子阱激光二极管作为光源。 半导体激光二极管的基本结构如图所示,垂直于PN结面的一对平行平面构成法布里—

半导体激光器的发展与应用

题目:半导体激光器的发展与应用学院:理 专业:光 姓名:刘

半导体激光器的发展与应用 摘要:激光技术自1960年面世以来便得到了飞速发展,作为激光技术中最关键的器件激光器的种类层出不穷,这其中发展最为迅速,应用作为广泛的便是半导体激光器。半导体激光器的独特性能及优点,使其获得了广泛应用。本文就简要回顾半导体激光器的发展历程,着重介绍半导体激光器在日常生活与军用等各个领域中的应用。 关键词:激光技术、半导体激光器、军事应用、医学应用

引言 激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。这种光就叫做激光。激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。激光因为拥有这种特性,所以拥有广泛的应用。 激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。 半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半导体激光器具有体积小、效率高等优点,因此可广泛应用于激光通信、印刷制版、光信息处理等方面。

LED原理及应用概述

LED原理及应用概述 纵观人类照明史,先后经历了火光照明、白炽灯照明、荧光灯照明,LED(发光二极管)作为加入照明家族的新成员,目前正处于蓬勃发展阶段。从1962年第一支红色二极管问世,黄色、绿色、橙色、蓝光LED被陆续开发出来。1998年,基于蓝光的LED芯片的成功开发,孕育了新一代的照明革命。随着国家半导体照明工程的启动,半导体照明技术将进一步改变我们的世界。由于白光LED光效的迅速提高,加上其体积小、耐震动、响应速度快、方向性好、寿命长达数万小时、光色接近白炽灯光色、低压驱动、无汞和铅的污染,将发展成为可用来代替白炽灯和荧光灯的主要绿色光源。 1、 LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由三部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子,中间通常是1至5个周期的量子阱。当电流通过导线作用于这个晶片的时候,电子和空穴就会被推向量子阱,在量子阱内电子跟空穴复合,然后就会以光子的形式发出

能量。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。 因此,只要有理想的半导体材料就可以制成各种光色的LED。 LED结构图如下图所示。发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。随着国家半导体照明工程的启动,半导体照明技术将进一步改变我们的世界。由于白光LED光效的迅速提高,加上其体积小、耐震动、响应速度快、方向性好、寿命长达数万小时、光色接近白炽灯光色、低压驱动、无汞和铅的污染,将发展成为可用来代替白炽灯和荧光灯的主要绿色光源。

半导体量子点及其应用概述_李世国答辩

科技信息2011年第29期 SCIENCE&TECHNOLOGY INFORMATION 0引言 近年来半导体材料科学主要朝两个方向发展:一方面是不断探索扩展新的半导体材料,即所谓材料工程;另一方面是逐步从高维到低维深入研究己知半导体材料体系,这就是能带工程。半导体量子点就是通过改变其尺寸实现能级的改变,达到应用的目的,这就是半导体量子点能带工程。半导体量子点是由少量原子组成的准零维纳米量子结构,原子数目通常在几个到几百个之间,三个维度的尺寸都小于100纳米。载流子在量子点的三个维度上运动受尺寸效应限制,量子效应非常显著。在量子点中,由于量子限制效应作用,其载流子的能级类似原子有不连续的能级结构,所以量子点又叫人造原子。由于特殊能级结构,使得量子点表现出独特的物理性质,如量子尺寸效应、量子遂穿效应、库仑阻塞效应、表面量子效应、量子干涉效应、多体相关和非线性光学效应等,它对于基础物理研究和新型电子和光电器件都有很重要的意义,量子点材料生长和器件应用研究一直是科学界的热点之一[1]。 1量子点制备方法 目前对量子点的制备有很多方法,主要有外延技术生长法、溶胶-凝胶法(Sol-gel 和化学腐蚀法等,下面简单介绍这几种制备方法: 1.1外延技术法 外延技术法制备半导体量子点,主要是利用当前先进的分子束外延(MBE、金属有机物分子束外延(MOCVD和化学束外延(CBE等技术通过自组装生长机理,在特定的生长条件下,在晶格失配的半导体衬底上通过异质外延来实现半导体量子点的生长,在异质外延外延中,当外延材料的生长达到一定厚度后,为了释放外延材料晶格失配产生的应力能,外延材料就会形成半导体量子点,其大小跟材料的晶格失配度、外延过程中的条件控制有很大的关系,外延技术这是目前获得高质量半导体量子点比较普遍的方法,缺点是对半导体量子点的生长都是在高真空或超高真空下进行,使得材料生长成本非常高。1.2胶体法

相关主题
文本预览
相关文档 最新文档