当前位置:文档之家› 对数型复合函数的单调区间解答题(3)

对数型复合函数的单调区间解答题(3)

对数型复合函数的单调区间解答题(3)
对数型复合函数的单调区间解答题(3)

1.已知2

0.5()log ()f x x mx m =--.

(1)若函数()f x 的值域为R ,求实数m 的取值范围;

(2)若函数()f x 在区间上是增函数,求实数m 的取值范围. 答案:

(1)0m ≥或4m ≤-;

解答:

(1)∵()f x 值域为R ,令2()g x x mx m =--,

则()g x 取遍所有的正数,2

40,0m m m ∴?=+≥∴≥或4m ≤-;

(2)

2.已知函数9()log (91)()x

f x kx k R =++∈是偶函数.

(1)求k 的值;

(2)的图象与()f x 的图象有且只有一个公共点,求a 的取值范围.

答案: (2){3}(1,)-+∞.

解答:

令3x t =,则(0,)t ∈+∞,

有且只有一个正实根t ,

当10a -≠时,若0?=,则3a =-或 时,根20t =-<,舍去.3a =-时,根为 若0?>,则120t t <,解得1a >, 从而所求a 的范围是{3}

(1,)-+∞.

考点:函数的奇偶性,换元法,一元二次方程根的分布.

3. (1)求m 的值,并求f (x)的定义域; (2)判断函数)(x f 的单调性,不需要证明;

(3)是否存在实数λ,使得不等式

若存在,求出实数λ的取值范围;若不存在,

请说明理由. 答案: (1))1,1(-;

(2))(x f 在定义域内单调递增;

(3)

解答:

(1)为奇函数,)()(x f x f -=-∴在定义域内恒成立,

111-==-=∴m m m (舍去),即或,

故函数的定义域是)1,1(-; ,任取1121<<<-x x ,

∵1121<<<

-x x ,0)()(21<-x u x u ,∴)(lg )(lg 21x u x u >,

),()(21x f x f <∴即)(x f 在定义域内单调递增;

由(1),(2)知

当θ=0时成立; sinθ=t,

4

(1)若的定义域为,求实数的取值范围; (2)当时,求函数的最小值;

(3)是否存在非负实数m 、n,

的定义域为[]n m ,,值域为[]n m 2,2,

若存在,求出、的值;若不存在,则说明理由.

答案:

(3)2,0==n m .

2(2)g mx x m ++R m []1,1x ∈-[]2

()2()3y f x af x =-+)(a h m n

解答:

令 ,当,的定义域为,不成立; 当,R ,

∴,解得,综上所述,

对称轴为,当 时,a t =时,()2min 3a y a h -==; 当2>a 时,2=t 时,()a y a h 47min -==.

由题意,知?

??==n n m m 2222解得???==20

n m ,

∴存在2,0==n m ,使得函数的定义域为,值域为.

m x mx u ++=22时0=m x u 2=)

,(∞+0时0≠m ???<-=?>0

440

2

m m 1>m 1>m ]1,1[-∈x a t =]2,0[]4,0[

5(0>a ,1≠a ). (1)当1>a 时,讨论()f x 的奇偶性,并证明函数()f x 在()1,+∞上为单调递减; (2)当(),2∈-x n a 时,是否存在实数a 和n ,使得函数()f x 的值域为()1,+∞,若存在,求出实数a 与n 的值,若不存在,说明理由. 答案:

(1)奇函数,证明见解答:;

解答:

(1)()f x 的定义域为{}|11x x x ><-或关于原点对称, ,∴()f x 为奇函数, 法1:当1a >时,设121x x <<,则

()(()(11

11x x +-

又1a >,,()()12f x f x ∴>,

∴函数()f x 在(1,)+∞上为减函数 法2:当1a >时,设121x x <<,令

,所以12log log a a t t >,

∴函数()f x 在(1,)+∞上为减函数 (2)

,(),2∈-x n a

①当1a >时,要使()f x 的值域为(1,)+∞,则须(,)t a ∈+∞,

②当01a <<时,(0,)t a ∈,则

,当(),2∈-x n a 时,函数()f x 的值域为()1,+∞.

6.已知函数()2log 1f x x =-的定义域为[]1,16,函数()()()

2

2

2g x f x af x =++????

. (1)求函数()y g x =的定义域; (2)求函数()y g x =的最小值;

(3)若函数()y g x =的图象恒在x 轴的上方,求实数a 的取值范围. 答案: (1)[]1,4;

(2)()2min

3-,1

2,1133,1a a g x a a a a a ≥??

=-++-<

; (3)()1,3a ∈-. 解答:

(1)2

116116

x x ≤≤??≤≤?,14x ∴≤≤,即函数()y g x =的定义域为[]1,4. (2)()()()

()2

22

222log 22log 3g x f x af x x a x a =++=+--+????.

令[]2log ,0,2t x t =∈,则()()2

2222212y t a t a t a a a =+--+=---++????.

当1a ≥时,y 在[]0,2上是增函数,所有min 0,3t y a ==-; 当-11a <<时,y 在[]0,1a -上是减函数,[]1,2a -上是增函数,

所有2

min 1,2t a y a a =-=-++;

当1a ≤-时,y 在[]0,2上是减函数,所有min 2,33t y a ==+.

综上,()2min

3-,12,1133,1a a g x a a a a a ≥??

=-++-<

. (3)由题知,()0g x >恒成立,即()min 0g x >()min 0g x >. 当1a ≥时, min 30,13y a a =->∴≤<;

当-11a <<时, 2

min 20,11y a a a =-++>∴-<<;

当1a ≤-时, min 330,y a a =+>∴无解 综上,()1,3a ∈-.

7.已知函数)0(1)1()(2>++=-a a x g x 的图象恒过定点A ,且点

A 又在函数

(1)求实数a 的值; (2)

(3)的图象与直线b y 2=有两个不同的交点时,求b 的取值范围. 答案:

(1)1a =;

解答:

(1)函数()g x 的图像恒过定点A ,A 点的坐标为(2,2),又因为A 点在(

)f x 上,

图象与直线b y 2=

021b << ,故b 的取值范围为8.已知函数2()log (1)f x x =+,当点(,)x y 在函数()y f x =的图象上运动时,

函数()y g x =(的图象上运动. (1)求函数()y g x =的解析式; (2)求函数()()()F x f x g x =-的零点.

(3)函数()F x 在(0,1)x ∈上是否有最大值、最小值;若有,求出最大值、最小值;若没有请说明理由. 答案:

解答:

解得0x =或1x =,∴函数()F x 的零点0x =或1x =; (3)

设31m x =+,由(0,1)x ∈得(1,4)m ∈,函数在(1,2]上递减,在[2,4)上递增,

当2m =时有最小值4,无最大值,∴t 有最小值

∴函数()F x 在(0,1)x ∈内有最小值

9 (1)讨论函数()f x 的单调性;

(2)若对于任意的[)()()1,,1x f x a x ∈+∞≥-恒成立,求a 的范围. 答案:

(1)()f x 在()0,1上递减,在()1,+∞上递增; (2)2a ≤. 解答:

, ()f x 在()1,+∞上递增;

()()'0,1f x 在递增,()()()()''120,0,1f x f f x <=-<在上递减,

所以()f x 在()0,1上递减,在()1,+∞上递增.

(2) ()()()()()()1,1ln ,11ln 10x f x x x f x a x x x a x ≥=+≥-?+--≥

由(1)知,()()'1,g x +∞在上递增,()()''12g x g a ≥=- 若20,2a a -≥≤即,()()[)'01,g x g x ≥+∞,在上递增,

()()10,g x g ∴≥=所以不等式成立

2a >若,存在()()001,,'0x g x ∈+∞=使得,当0[1,)x x ∈时,

综上所述,2a ≤.

10

(1)当4=a 时,求函数)(x f 的定义域;

(2)若对任意的R x ∈,都有2)(≥x f 成立,求实数a 的取值范围. 答案:

(1){}

11|>-

解答: (1)

,即2-

,即1>x 综上所述,函数()

x f 的定义域为{}

11|>-

11

(1)

(2)若关于x 的不等式()

()2

520f x ax f x a -++++<对任意实数[]2,3x ∈恒成立,求实

数a 的取值范围. 答案:

(1)7m =;

解答:

(1)由()f x 是奇函数得:()()f x f x -=-,所以 即227m =,7m =±;

得定义域为()7,7-.∴7m =. 是增函数,

∴()f x 在()7,7-是增函数.又()

f x 为奇函数,∴()

()2

52f x ax f x a -->+,∴27257x a x ax -<+<--<对任意实数

[]2,3x ∈恒成立;对于225x a x ax +<--,即()252x x a x -->+,20x +>,∴

(23x ≤≤), 设2t x =+,则2x t =-,且45t ≤≤,

对于72x a -<+,

()2h x x a =+在[]2,3上递增,

∴()()min 2227h x h a ==+>-,则

对于257x ax --<,即()2

F 120x x ax =--<,

∴()()F 2280F 3330a a =--

,则1a >-;

综上,a 的取值范围是 12.定义在D 上的函数()f x ,如果满足:对任意x D ∈,存在常数0M ≥,都有|()|f x M ≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x

的一个上界.已知函数

(1)若函数()g x 为奇函数,求实数a 的值;

(2)在(1)的条件下,求函数()g x 在区间 (3)若函数()f x 在[0,)+∞上是以5为上界的有界函数,求实数a 的取值范围. 答案:

(1)1a =-; (2)[3,)+∞; (3)[7,3]-. 解答:

(1)因为函数()g x 为奇函数, 所以()()g x g x -=-,即 ,得1a =±,而当1a =时不合题意,故1a =-. (2)由(1)

,易知()g x 在区间(1,)+∞上单调递增,

上的值域为[3,1]--,所以|()|3g x ≤,

故函数()g x 在区间上的所有上界构成集合为[3,)+∞. (3)由题意知,|()|5f x ≤在[0,)+∞上恒成立,

,得1t ≥.

易知()P t 在[1,)+∞上递增, 设121t t ≤<,

所以()h t 在[1,)+∞上递减,

()h t 在[1,)+∞上的最大值为(1)7h =-,()p t 在[1,)+∞上的最小值为(1)3p =,

所以实数a 的取值范围为[7,3]-.

复合函数知识总结及例题

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ?B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题: (1)、已知f x ()的定义域,求[]f g x ()的定义域 思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。 例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为_____________。 解析:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<

(完整版)对数函数练习题(有答案)

对数函数练习题(有答案) 1.函数y =log (2x -1)(3x -2)的定义域是( ) A .????12,+∞ B .????23,+∞ C .????23,1∪(1,+∞) D .??? ?12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2- x },且 x ∈A ,则有( ) A .1>x 2>x B .x 2>x >1 C .x 2>1>x D .x >1>x 2 3.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( ) A .1<a <b B .1 <b <a C .0 <a <b <1 D .0 <b <a <1 4.若log a 45 <1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45 或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是 A .增函数 B .减函数 C .先减后增 D .先增后减 6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( ) 7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 8.若函数f (x )=log 12 ()x 3-ax 上单调递减,则实数a 的取值范围是 ( ) A .[9,12] B .[4,12] C .[4,27] D .[9,27] 9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________. 10.不等式????1310-3x <3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数 f (x )=????12|x -1| ,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 . 13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________. 14.当0<x <1时,函数y =log (a 2-3) x 的图象在x 轴的上方,则a 的取值范围为________.

中职函数、指数对数函数测试题

指数与对数函数测试题 姓名: 学号: 。 一、选择题:本大题共12小题,每小题5分,满分60分。在每小题给出的四个选项中, 只有一项是符合题目要求的. 13 4 2 8 64=( ) A .4 B .15 8 2 C .72 2 D .8 2.函数y = ) A .[1+∞,) B .-∞(,3] C .[3+∞, ) D .R 3.指数函数的图像过点(3,27),则其解析式是( ) A .9x y = B .3 y x = C .3x y = D .13 x y = () 4.下列函数在+∞(0,) 上是减函数的是( ) A .2 x y = B .2 y x = C .2log y x = D .12 x y = () 5.下列运算正确的是( ) A .4 33 4 22=2÷ B .lg11= C .lg10ln 2e += D .433 4 22=2 6.若对数函数()y f x =过点(4,2),则(8)f =( ) A .2 B .3 C . 12 D .1 3 7.设函数[) 22 log ,0,()9+,(,0)x x f x x x ?∈+∞?=?∈-∞?? ,则((f f = ( ) A .16 B .8 C .4 D .2 8.下列函数既是奇函数,又是增函数的是( ) A .2 y x = B .1y x = C .2x y = D .3y x = 9.某城市现有人口100万,根据最近20年的统计资料,这个城市的人口的年自然增长率为%,按这个增长率计算10年后这个城市的人口预计有( )万。

A .20100 1.012y =? B .10 1001+1.2%y =? () C .101001-1.2%y =? () D .10 100 1.12y =? 10.下列函数中,为偶函数的是 ( ) A .1 y x -= B .2 y x = C .3x y = D .3log y x = 11.下列函数中,在区间(0),+∞内为增函数的是( ); A .1 2x y =() B .2 log y x = C .12 log y x = D .1y x -= 12. 函数 y = ( ) A. []11,- B. (11) ,- C. ()1,-∞ D. ()1,-+∞ 二、填空题:(共4小题,每题5分,共20分) 13. 2=10x 化为对数式为: ; 2log 8=3化为指数式: 。 14.求值:2 -3 27= ;22log 1.25+log 0.2= ; 15.若幂函数()y f x =的图像过点(3,9),则f = 。 16.比较大小: 0.12 4 5() 0.15 4 5 (); 1.1log 2 0 三、解答题 (本大题共2个小题,共40分;解答应写出文字说明、证明过程或演算步骤) 17.计算:(1) 2113 2 4 20.25+-81+log 8()() (2)1 -23 51+log 1ln 8 e -() 18.某商场销售额为500万元,实行机制改革后,每年销售额以8%的幅度增长,照此发展下去,多少年后商场销售额达能够翻一番(结果精确到整数) (参考: 1.08log 29.006≈, 1.8log 2 1.179≈, 1.08log 418.013≈)

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

高一对数及对数函数练习题及答案

《对数与对数函数》测试 12.21 一、选择题: 1.已知3a +5b = A ,且 a 1+b 1 = 2,则A 的值是( ). (A).15 (B).15 (C).±15 (D).225 2.已知a >0,且10x = lg(10x)+lg a 1 ,则x 的值是( ). (A).-1 (B).0 (C).1 (D).2 3.若x 1,x 2是方程lg 2x +(lg3+lg2)+lg3·lg2 = 0的两根,则x 1x 2的值 是( ). (A).lg3·lg2 (B).lg6 (C).6 (D). 6 1 4.若log a (a 2+1)<log a 2a <0,那么a 的取值X 围是( ). (A).(0,1) (B).(0,21) (C).(21 ,1) (D).(1,+∞) 5. 已知x = 31log 12 1 + 31log 1 5 1 ,则x 的值属于区间( ). (A).(-2,-1) (B).(1,2) (C).(-3,-2) (D).(2,3) 6.已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lg b a )2的值是( ). (A).4 (B).3 (C).2 (D).1 7.设a ,b ,c ∈R ,且3a = 4b = 6c ,则( ). (A).c 1=a 1+b 1 (B).c 2=a 2+b 1 (C).c 1=a 2+b 2 (D).c 2=a 1+b 2 8.已知函数y = log 5.0(ax 2+2x +1)的值域为R ,则实数a 的取值X 围是( ). (A).0≤a ≤1 (B).0<a ≤1 (C).a ≥1 (D).a >1 9.已知lg2≈0.3010,且a = 27×811×510的位数是M ,则M 为( ).

复合函数单调性的判断

复合函数单调性的判断))((x g f y = 以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 1求函数y=2 1log (4x-x 2)的单调区间. 2、 求函数()2 31x y =的单调性及最值 3.在区间(-∞,0)上为增函数的是 A. ) (log 21x y --= B.x x y -=1 C.y =-(x +1)2 D.y =1+x 2 3、求函数)12(log )(2 1+=x x f 的单调区间. 4、(1)函数3422)(-+-=x x x f 的递增区间为___________; (2)函数)34(log )(2 2 1-+-=x x x f 的递减区间为_________ 5、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( ) (A ))(1 x f y -= (B ))(2x f y = (C ))(log 2 1x f y = (D )2 )]([x f y =

7、下列函数中,在区间]0,(-∞上是增函数的是 ( ) (A )842+-=x x y (B ))(log 21x y -=(C )1 2+- =x y (D )x y -=1 20.函数 342-+-=x x y 的单调增区间是 A.[1,3] B.[2,3] C.[1,2] D.(-∞,2] 21.函数y= 在区间[4,5]上的最大值是_______,最小值是_______。 21.若函数f (x )在R 上是减函数,那么f (2x -x 2 )的单调增区间是 A.(-∞,1] B.[-1,+∞) C.(-∞,-1] D.[1,+∞) 31.函数y =log a 2(x 2 -2x -3)当x <-1时为增函数,则a 的取值范围是 A.a >1 B.-11或a <-1 例7.若f(x)=log a (3-ax)在[0,1]上是减函数,则a 的取值范围是_______。 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_____ 例6.已知函数f(x)= (x 2-ax+3a)在区间[2,+∞)上是减函数,则实数a 的取值范围是_______。 分析如下: 令u=x 2-ax+3a ,y= u 。 因为y= u 在(0,+∞)上是减函数 ∴ f(x)= (x 2-ax+3a)在[2,+∞)上是减函数 u=x 2-ax+3a 在[2,+∞)上是增函数,且对任意x∈[2,+∞),都有u >0。

(完整word版)对数与对数函数练习题及答案

对数与对数函数同步练习 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、4 1 B 、4 C 、1 D 、4或1 3、已知221,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g 的两根是,αβ,则αβg 的值是( ) A 、lg5lg 7g B 、lg35 C 、35 D 、35 1 5、已知732log [log (log )]0x =,那么1 2 x -等于( ) A 、1 3 B C D 6、函数2lg 11y x ?? =- ?+?? 的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称 7、函数(21)log x y -= ) A 、()2,11,3??+∞ ???U B 、()1,11,2?? +∞ ???U C 、2,3??+∞ ??? D 、1,2??+∞ ??? 8、函数212 log (617)y x x =-+的值域是( ) A 、R B 、[)8,+∞ C 、(),3-∞- D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( ) A 、 1 m n >> B 、1n m >> C 、01n m <<< D 、01m n <<<

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

复合函数的概念和性质

复合函数的概念和性质 一、知识点内容和要求: 理解复合函数的概念,会求复合函数的单调区间 二、教学过程设计 (一)复习函数的单调性 引例:函数y=f(x)在上单调递减,则函数(a>0,且a≠1)增减性如何? (二)新课 1、复合函数的概念 如果y是a的函数,a又是x的函数,即y=f(a),a=g(x),那么y关于x的函数y=f[g(x)] 叫做函数y=f(x)和a=g(x)的复合函数,其中a是中间变量,自变量为x,函数值y。 例如:函数是由复合而成立。 函数是由复合而成立,a是中间变量。 2、复合函数单调性 由引例:对任意a,都有意义(a>0且a≠1)且。 对任意, 当a>1时,单调递增,当0<a<1时,单调递减。 ∵当a>1时, ∵y=f(u)是上的递减函数∴ ∴ ∴是单调递减函数 类似地, 当0<a<1时, 是单调递增函数 一般地, 定理:设函数u=g(x)在区间M上有意义,函数y=f(u)在区间N上有意义,且当X∈M时,u∈N。有以下四种情况: (1)若u=g(x)在M上是增函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是增函数;

(2)若u=g(x)在M上是增函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是减函数;(3)若u=g(x)在M上是减函数,y=f(u)在N上是增函数,则y=f[g(x)]在M上也是减函数;(4)若u=g(x)在M上是减函数,y=f(u)在N上是减函数,则y=f[g(x)]在M上也是增函数。即:同增异减。 注意:内层函数u=g(x)的值域是外层函数y=f(u)的定义域的子集。 例1、讨论函数的单调性 (1)(2) 解:① 又是减函数 ∴函数的增区间是(-∞,2],减区间是[2,+∞)。 ②x∈(-1,3) 令 ∴x∈(-1,1]上,u是递增的,x∈[1,3)上,u是递减的。 ∵是增函数 ∴函数在(-1,1]上单调递增,在(1,3)上单调递减。 注意:要求定义域 练习:求下列函数的单调区间。 1、(1)减区间,增区间; (2)增区间(-∞,-3),减区间(1,+∞); (3)减区间,增区间;

高一指数函数对数函数测试题及答案精编版

高一指数函数对数函数 测试题及答案精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

指数函数和对数函数测试题 一、选择题。 1、已知集合A={y|x y 2log =,x >1},B={y|y=( 21)x ,x >1},则A ∩B=() A.{y|0<y <21}B.{y|0<y <1}C.{y|2 1<y <1}D.φ 2、已知集合M={x|x <3}N={x|1log 2>x }则M ∩N 为() φ.{x|0<x <3}C.{x|1<x <3}D.{x|2<x <3} 3、若函数f(x)=a (x-2)+3(a >0且a ≠1),则f(x)一定过点() A.无法确定 B.(0,3) C.(1,3) D.(2,4) 4、若a=π2log ,b=67log ,c=8.02log ,则() >b >>a >>a >>c >a 5、若函数)(log b x a y +=(a >0且a ≠1)的图象过(-1,0)和(0,1)两点,则a ,b 分别为() =2,b==2,b==2,b==2,b=2 6、函数y=f(x)的图象是函数f(x)=e x +2的图象关于原点对称,则f(x)的表达式为() (x)=(x)=-e x +(x)=(x)=-e -x +2 7、设函数f(x)=x a log (a >0且a ≠1)且f(9)=2,则f -1(2 9log )等于() 2422229log 、若函数f(x)=a 2log log 32++x x b (a ,b ∈R ),f(2009 1)=4,则f(2009)=() 、下列函数中,在其定义域内既是奇函数,又是增函数的是() =-x 2log (x >0)=x 2+x(x ∈R)=3x (x ∈R)=x 3(x ∈R) 10、若f(x)=(2a-1)x 是增函数,则a 的取值范围为() <21B.2 1<a <>≥1 11、若f(x)=|x|(x ∈R),则下列函数说法正确的是() (x)为奇函数(x)奇偶性无法确定 (x)为非奇非偶(x)是偶函数 12、f(x)定义域D={x ∈z|0≤x ≤3},且f(x)=-2x 2+6x 的值域为()A.[0,29]B.[29,+∞]C.[-∞,+2 9]D.[0,4]

判断函数单调性的常见方法

判断函数单调性的常见方法 一、函数单调性的定义: 一般的,设函数y=f(X)的定义域为A,I?A,如对于区间内任意两个值X1、X2, 1)、当X1X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。 二、常见方法: Ⅰ、定义法:定义域判断函数单调性的步骤 ①取值: 在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1

=(x1-x2)(x12+x22+x1x2+1) =(x1-x2)[﹙x1+1/2x2﹚2+1+3/4x22] ∵x1、x2?(-∞,+∞),x10 故f(x1)-f(x2)<0,即f(x1)

复合函数的单调性完全解析与练习(终审稿)

复合函数的单调性完全 解析与练习 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

课题:函数的单调性(二) 复合函数单调性 北京二十二中刘青 教学目标 1.掌握有关复合函数单调区间的四个引理. 2.会求复合函数的单调区间. 3.必须明确复合函数单调区间是定义域的子集. 教学重点与难点 1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间. 2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集. 教学过程设计 师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义. 生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若AB ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 师:很好.下面我们再复习一下所学过的函数的单调区间. (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.) (教师板书,可适当略写.) 例求下列函数的单调区间. 1.一次函数y=kx+b(k ≠0). 解当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间. 2.反比例函数y=x k (k ≠0). 解当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间. 3.二次函数y=ax 2+bx+c(a ≠0). 解当a >0时(-∞,-a b 2)是这个函数的单调减区间,(-a b 2,+∞)是它的单调增区间; 当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b 2,+∞)是它的单调减区间; 4.指数函数y=ax(a >0,a ≠1). 解当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间. 5.对数函数y=log a x(a >0,a ≠1). 解当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间. 师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析. 师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何

《指数函数对数函数》练习题(附答案)

指数函数及其性质 1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2. 函数且叫做指数函数 图象过定点,即当时,. 在上是增函数在上是减函数 变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.

对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质: 函数且叫做对数函数 图象过定点,即当时,. 在上是增函数在上是减函数 变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.

指数函数习题 一、选择题 1.定义运算a ?b =??? ?? a (a ≤ b )b (a >b ) ,则函数f (x )=1?2x 的图象大致为( ) 2.函数f (x )=x 2 -bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x )的大小关系 是( ) A .f (b x )≤f (c x ) B .f (b x )≥f (c x ) C .f (b x )>f (c x ) D .大小关系随x 的不同而不同 3.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2) 4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x -2x -1)的定义域是B ,若A ?B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a >5D .a ≥ 5 5.已知函数f (x )=????? (3-a )x -3,x ≤7, a x -6 ,x >7. 若数列{a n }满足a n =f (n )(n ∈N * ),且{a n }是递 增数列,则实数a 的取值范围是( ) A .[94,3) B .(9 4,3) C .(2,3) D .(1,3) 6.已知a >0且a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围 是( ) A .(0,12]∪[2,+∞) B .[1 4,1)∪(1,4] C .[12,1)∪(1,2] D .(0,1 4)∪[4,+∞) 二、填空题 7.函数y =a x (a >0,且a ≠1)在[1,2]上的最大值比最小值大a 2,则a 的值是________. 8.若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 9.(2011·滨州模拟)定义:区间[x 1,x 2](x 1

函数单调性方法和各种题型

(一)判断函数单调性的基本方法 Ⅰ、定义法: 定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明 Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性 Ⅲ、图像法: 说明:⑴单调区间是定义域的子集 ⑵定义x 1、x 2 的任意性 ⑶代数:自变量与函数值同大或同小→单调增函数 自变量与函数相对→单调减函数 例3:y=|x2+2x-3| 练习:

(二) 函数单调性的应用 Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论: (1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。 (2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。 例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题: 1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在 [a,b]上的最小值是 ( ) 2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是 ( ) 3、( )有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4 -44 -00 4 4、](()()的值域为 时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、????? ? ??????????? ?? 5、求函数y=-x-6+ 的值域 x -1

复合函数的单调性例讲

复 合 函 数 的 单 调 性 例 讲 山西忻州五寨一中 摄爱忠 高考主要考查:①求复合函数的单调区间;②讨论含参复合函数的单调性或求参数范围问题. ①“中间变量”是形成问题转化的桥梁. ②函数思想是解决问题的关键. 复合函数定义: 1. 设)(u f y =定义域为A,)(x g u =的值域为B,若A B ?,则y 关于x 的函数)]([x g f y =叫做函 数 f 与 g 的复合函数,u 叫中间变量. 外函数:)(u f y =; 内函数:)(x g u = 复合函数的单调性:同增异减. 2. 若)(x g u = )(u f y = 则)]([x g f y = 增函数 增函数 增函数 减函数 减函数 增函数 增函数 减函数 减函数 减函数 增函数 减函数 3.求解复合函数的单调性的步骤如下: (1)求复合函数定义域; (2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); (3)判断每个常见函数的单调性; (4)将中间变量的取值范围转化为自变量的取值范围; (5)求出复合函数的单调性。 题型1:内外函数都只有一种单调性的复合型. 例 题1: ◇已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )

(A).(0,1) (B).(1,2) (C).(0,2) (D).[2,+∞) 解:设y= log a u ,u=2-ax ,∵a 是底数,所以a>0, ∵ 函数y=log a u 在u ∈[0,1]上是减函数,而u=2-ax 在区间x ∈[0,1]上是减函数, ∴ y= log a u 是u ∈(0, +∞)上的增函数,故a>1,还要使2-ax>0在区间上总成立, 令g(x)= 2-ax ,由{g(0)=2-a ·0>0 g(1)=2-a ·1>0 ,解得a<2,∴1-x ,得 00知函数的定义域为),1()3, (∞+-?--∞∈x , 因y= log 0.5u 在u ∈(0,+∞)上是减函数,而u= x 2 +4x+4在x ∈(-∞,-3)上是减函数, 在(-1,+ ∞)上是增函数,根据复合规律知, 函数y=log 0.5(x 2 +4x+4) 在x ∈(-∞,-3)上是增函数;在x ∈(-1,+ ∞)上是减函数. 变式训练: ◇讨论函数3 4252+-? ? ? ??=x x y 的单调性。 解:函数定义域为R. 令u=x 2 -4x+3,y=0.8u 。 指数函数u y ?? ? ??=52在u ∈(-∞,+∞)上是减函数, u=x 2 -4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数, ∴ 函数3 4252+-? ? ? ??=x x y 在(-∞,2]上是增函数,在[2,+∞)上是减函数。 这里没有第四步,因为中间变量允许的取值范围是R ,无需转化为自变量的取值范围。 题型3:外函数有两种单调性内函数有一种单调性的复合型. 例 题3:

对数函数精选练习题(带答案)

对数函数精选练习题(带答案) 1.函数y = log 23 (2x -1)的定义域是( ) A .[1,2] B .[1,2) C.????12,1 D.??? ?1 2,1 答案 D 解析 要使函数解析式有意义,须有log 23 (2x -1)≥0,所以0<2x -1≤1,所以1 2

高一数学中函数的单调性4种求法

高一数学中函数的单调性非常重要,分析函数的单调性方法有:定义法,图像法,性质法,复合法.下边结合例题加以说明: 1.定义法 例题已知函数y=x^3-x在(0,a]上是减函数,在[a,+)上是增函数,求a的值。 解分析函数在R+上的单调性 任取x1>x2>0 Y1-Y2=(X1^3-X2^3)-(X1-X2)=(X1-X2)(X1^2+X1X2+X2^2)-(X1-X2) =(X1-X2)(X1^2+X1X2+X2^2-1) 令y1-y2>0 所以 X1^2+X1X2+X2^2-1>0 因为X1^2+X1X2+X2^2-1>X2^2+X2X2+X2^2-1=3X2^2-1 当3X2^2-1>=0时即X2^2>=1/3 X2>=根号3/3时 y1-y2>0 函数是递增的 同理当3X1^2-1<=0时即X1<=根号3/3时 y1-y2<0 函数是递减的 故函数在R+上的增区间为[根号3/3,+)减区间为(0,根号3/3) 因此 a=根号3/3 一般情况下,用定义求函数的单调区间就是求出使y1-y2>0(<0)的x1,x2的取值范围,要变换不等式,求出x1和x2的范围,就可求出函数的单调区间。 2.图像法 例题求y=x+3/x-1的单调区间 解函数定义域为(-,1)并(1,+) Y=X+3/X-1=X-1+4/X-1=1+4/X-1 由图像可知函数在(-,1)和(1,+0)上递减。 函数的图像是解决这类问题的关键。 3.性质法 性质:增+增=增减+减=减

y=f(x)与y=kf(x) 当k>0 有相同的单调性当k<0有相反的单调性 y=f(x)(y>0)与y=k/f(x) 当k>0 有相反的单调性,当k<0 有相同的单调性 例题求y=x^3+x的单调区间。 解因为y=x是增函数,当x>=0时,y=x^3是递增的,当x<0时,y=x^3是递增的,所以y=x^3是R上的增函数。 由性质可知,函数y=x^3+x的单调区间为R. 4.复合法 u=p(x) y=f(u)复合后的函数为:y=f(p(x))它们的单调性为:同增异减。 例题求y=根号(x-1)(x+1)的单调区间。 解令u=(x-1)(x+1) 则y=根号u 当x>=1时 u=(x-1)(x+1)递增 当x<=-1时 u=(x-1)(x+1)递减 Y=根号u递增 所以原函数的单调增区间为[1,+) 减区间为(-,-1]

最新《指数函数和对数函数》单元测试测试题(含参考答案)

2019年高中数学单元测试试题 指数函数和对数函数 (含答案) 学校: __________ 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题 1.若函数f(x)=21 2 log ,0,log (),0x x x x >?? ?-f(-a),则实数a 的取值范围是( ) (A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)(2010天津理8) 2.若点(),a b 在lg y x =图象上,1a ≠,则下列点也在此图象上的是( ) (A )1,b a ?? ??? (B )()10,1a b - (C )10,1b a ?? + ??? (D ))2,(2b a (2011安徽文5) 3.对实数a 与b ,定义新运算“?”:,1, , 1.a a b a b b a b -≤??=? ->? 设函数 ()()22()2,.f x x x x x R =-?-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则 实数c 的取值范围是( )(2011年高考天津卷理科8) A .(]3,21, 2? ?-∞-?- ??? B .(]3,21,4? ?-∞-?-- ???

C .11,,44???? -∞?+∞ ? ????? D. 4 . 已 知 0, a a >≠,则 l a a 等于 ( ) A .2 B . 1 2 C . D .与a 的具体数值有关 5.若函数()|21|x f x =-,当a b c <<时,有()()()f a f c f b >>,则下列各式中正确的是( ) A.22a c > B.22a b > C.222a c +< D.2 2a c -< 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 6.方程lg(42)lg 2lg3x x +=+的解x = . 7.函数x y a log =和)1,0(log 1≠>=a a x y a 的图象关于 对称. 8.3)72.0(-与3)75.0(-的大小关系为_____________ 9.比较下列各组值的大小; (1)3 .02 2,3.0; (2)5 25 2529.1,8.3,1.4- . 10.函数)0(1 21 )(≠+-= x a x f x 是奇函数,则a = . 311,,44???? --?+∞ ?? ?????

相关主题
文本预览
相关文档 最新文档