当前位置:文档之家› #地球物理勘探方法简介和应用范围

#地球物理勘探方法简介和应用范围

#地球物理勘探方法简介和应用范围
#地球物理勘探方法简介和应用范围

公司目前拥有较为齐全的物探设备和手段方法,主要的设备系统有:弹性波勘探和测试系统、弹性(电磁)波CT系统、电法勘探系统、CSAMT电磁勘探系统、探地雷达系统、综合测井系统、钻孔数字录像及电视制作编辑系统等。可以开展涵盖水电及相似行业领域的多种物探方法及其科研工作,如:工程地球物理勘探设备的研制和开发、工程地球物理模型的建立及正反演研究、物探处理软件开发及数据处理,平硐或井间地震波和电磁波CT探测、地面或水上多种地震波探测、地面或水上多种电法勘探、CSAMT电磁探测、地质雷达探测、放射性测量和同位素追踪、综合测井、钻孔彩色数字录像、工程电视制作编辑等;依托这些技术方法和能力可以解决水电、火电、核电、国防、水文、环境、文物、公路铁路航空交通、城市建设、大型厂矿建设等相似领域的诸如坝址、桥址、厂址、港口、码头、线路等工程的多种地球物理问题的勘探或检测,如:综合地球物理问题探测,覆盖层探测,隐伏构造破碎带探测,喀斯特(岩溶)探测,岩体风化带和卸荷带范围探测,软弱夹层探测,滑坡体探测,堤坝隐患探测,隧道施工超前预报,地下水探测,环境放射性检测,建基岩体质量检测,灌浆效果检测(包括为优化灌浆设计、指导灌浆施工提供依据,检测灌浆效果),混凝土质量检测(包括大体积混凝土、结构混凝土、碾压混凝土质量检测),洞室混凝土衬砌质量检测,洞室松弛圈检测,锚杆锚固质量检测,防渗墙质量检测,堆石(土)体密度和地基承载力检测,钢衬和混凝土接触状况检测,堆石坝面板质量检测,水文地质参数测试,岩土物理和力学参数测试,工程建设全过程、地质场景电视录像编辑制作等。

已故著名地球物理学家赵九章先生是这样形容地球物理学——“上穷碧落下黄泉、两处茫茫都不见”。地球物理勘探的事业任重而道远,充满挑战,无论过去、现在、还是未来,我们都将会在地球物理勘探领域开拓创新,愿意以我们规范的物探质量,诚信的服务态度,挑战地球物理探测技术极限,探索地下奥秘!球物理探测方法简介及使用范围

地球物理学是用物理学的原理和方法,对地球的各种物理场分布及其变化进行观测,探索地球本体及近地空间的介质结构、物质组成、形成和演化,研究和其相关的各种自然现象及其变化规律。在此基础上为探测地球内部结构和构造、寻找能源、资源和环境监测提供理论、方法和技术,为灾害预报提供重要依据。

M D 模型空间数据空间地球物理探测空间变换示意图

地球物理学的研究内容总体上可分为使用地球物理和理论地球物理两大类。使用地球物理(又称勘探地球物理)主要包括能源勘探、金属和非金属勘探、环境和工程探测等。勘探地球物理学利用地球物理学发展起来的方法进行找矿、找油、工程和环境监测以及构造研究等,方法手段包括地震勘探、电法勘探、重力勘探、磁法勘探、地球物理测井和放射性勘探等,通过先进的地球物理测量仪器,测量来自地下的地球物理场信息,对测得的信息进行分析、处理、反演、解释,进而推测地下的结构构造和矿产分布。勘探地球物理学是石油、金属和非金属矿床、地下水资源及大型工程基址等的勘察及探测的主要学科。

从数学角度讲,地球物理勘

探的过程可以抽象成从模型空

间通过某种映射关系,映射成可

以感知的数据空间,再通过逆映

射变换到模型空间,其映射关系

见右图。这种映射关系遵循地球

物理学的两大模型原理:滤波器

模型原理和场效应模型原理。因

此地球物理数据处理:一是基于

信号分析理论的信号处理技术,

主要目的是去杂、增益、提取有效信号;二是基于物理场效应理论的反演技术。

地球物理反演,就是在模型空间寻找一组参数向量,这组向量通过某种映射关系,能再现数据空间的观测数据,因此在一定的假设条件下,反演问题可以表示为某种误差泛函的极小化问题

min ‖G cal (M)-D obs ‖2

也就是地球物理反演是利用模型参数和模型正演来获取合成数据,再通过合成数据和观测数据的匹配估算出最佳M 参数。由此可见,地球物理反演实质上是正演和反演相互验证的过程。上式也表明:地球物理反演的核心问题包括参数模型的建立、模型正演及极小问题的求解。从数学的角度看,可能关心的是极小问题解的存在性、唯一性及稳定性;从地球物理学上讲,可能关心的是模型正演的物理机制;而从使用来看,可能更关心建立的参数模型是否满足地质要求。

工程地球物理探测属于使用地球物理的一个分支,相对资源勘探,研究对象主要针对地球浅表介质,利用的是物理场近场,研究介质也更加复杂。方法手段主要包括地震或声波勘探、电(磁)法勘探及电磁波勘探。从观测方法看,又分为地面(包括水上)和地下方法,如间、井间,硐、硐间的探测就属于地下方法。目前工程地球物理探测广泛使用的主要为以下技术方法。

●电法勘探 研究地层电学性质及电场、电磁场变化规律,根据研究对象的电性差异,经仪器测量电场分布,进而研究电场的分布规律,以了解地下深处地质体的状况,从而达到勘探结果。

电法勘探的方法

电法勘探分为传导类电法和感应类电磁法,主要有:电测深法、K 剖面法、电剖面法、高密度电法、激发极化法、自然电场法、充电法、可控源音频大地电磁测深法、瞬变电磁法。

a、电测深法 在同一测点上逐次扩大电极距使探测深度逐渐加深,观测测点处在垂直方向由浅到深的电阻率变化,并依据目的体和周边介质电阻率的差异,探测地下介质分布特征的一种电法勘探方法。

b、K 剖面法 反射系数K 剖面法是以电磁场和波动场为理论基础的一种电法勘探方法,它从现场数据采集到解释方法理论上突破了常规的视电阻率量板法的思路,建立了一整套的数值解释处理方法。早期的K 剖面解释中只使用了一次微分K 、二次微分K 等几个基本的参数,且大部分只能进行单支曲线的求解。经过多年来的完善,当前使用的K 剖面法已发展成利用曲线的一次微分K 、二次微分K 及相关参数推导出直接和岩体的孔隙率相关的广义充填系数v K ,以及和软弱界面相关的广义界面系数v J 。利用这些参数更能较好地反映岩土体中包含不同电阻率地质体及构造体的相对概念,这对解决岩溶、构造破碎带、滑坡体物质分区及滑面探测等工程地质问题更为有效。它的优点在于利用了相对精度提高的似真电阻率z ρ为基础的v K 参数来解决地质异常问题,而传统的电法勘探是直接以视电阻率s ρ来解决地质问题的,因此,大大提高了勘探精度。

c、电剖面法 将某一装置极距保持不变,沿测线观测地下一定深度内大地电阻率沿水平方向的变化,依据目的体和周边介质的电阻率差异,探测地下

介质特征的一种电法勘探方法。

d、高密度电法电测深和电剖面方法的组合,其观测点密度高,可同时探测水平和垂直方向上电性变化的一种电法勘探方法。

e、激发极化法依据目的体和周边介质的激发极化效应差异,探测地下介质分布特征的一种电法勘探方法。

f、自然电场法通过观测地下介质的电化学作用、地下水中微粒子的过滤作用、岩体水中盐的扩散和吸附作用等产生的自然电场规律和特点,了解水文工程地质问题的一种电法勘探方法。

g、充电法通过向被探测目的体供电,提高被探测目的体和周边介质的电位差并形成充电效应,探测目的体分布特征的一种电法勘探方法。

h、可控源音频大地电磁测深法(CSAMT) 根据不同频率电磁波具有不同穿透深度的特点,利用人工可控源产生音频电磁信号,探测地面电磁场的频率响应从而获得不同深度介质电阻率分布信息和目的体分布特征的一种电法勘探方法。

i、瞬变电磁法(TEM)利用不接地回线或接地电极向地下发送脉冲电磁波,测量由该脉冲电磁场感应的地下涡流而产生的二次电磁场,探测地下介质特征的一种电法勘探方法。

电法勘探各方法的主要使用范围

a、电测深法或K剖面法可用于探测覆盖层厚度和下伏基岩面起伏形态,进行地层分层和风化分带,探测地下水位埋深等,也可用于探测构造破碎带、岩性分界面、喀斯特、洞穴、堤坝隐患等:还可用于测试岩土体电阻率。b、电剖面法可用于解决非水平板状或球状电性异常体探测问题,也可用于探测构造破碎带、岩性分界面、喀斯特和洞穴等。

c、高密度电法可用于探测构造破碎带、岩性分界面;喀斯特、洞穴、堤防和防渗墙隐患等;也可用于探测覆盖层厚度,进行地层分层和风化分带、岩性分层等。

d、自然电场法可用于探测地下水流向,进行堤防和防渗墙探测,也可用于探查地下金属管道、桥梁、输电线路铁塔的腐蚀情况等。

e、充电法可用于测试地下水流速流向,也可用于探测黏土或水充填的喀斯特洞穴、含水断层破碎带等低阻地质体的分布情况。

f、激发极化法可用于地下水探测,圈定含水的古河道、古洪积扇、喀斯特、构造破碎带等,确定含水层的埋深,评价含水层的富水程度。

g、可控源音频大地电磁测深法可用于探测隐伏断层破碎带、覆盖层厚度、地下古河道、喀斯特、洞穴等,也可用于堤防和防渗墙隐患探测,地下水和地热资源探测等。

h、瞬变电磁法可用于探测覆盖层、构造破碎带、喀斯特、洞穴等;也可进行地层分层、风化分带,地下水和地热水资源调查,圈定和监测地下水污染情况,探测堤防和防渗墙隐患等。

●探地雷达法(GPR)属电磁波勘探类,是利用高频电磁波以宽频带短脉冲形式,由地面发射天线定向送入地下,经存在电性差异的地下地层或目标体反射返回地面,被发射天线附近的接收天线接收。电磁波在介质中传播时,其路径、电磁场强度和波形将随所通过的介质的电性及状态而变化。当发射和接收天线以固定间距沿测线同时移动时,就可以得到反映测线地下介质界面分布情况的地质雷达图像。完整致密、性质相对均一的介质,反射波较弱;当存在岩溶破碎带时,这部分区域和周围介质之间的介电差异增大,反射波增强。

探地雷达法主要使用范围:

a、雷达剖面法可用于浅层覆盖层分层,探测喀斯特、构造破碎带、滑坡和塌陷等地质灾害、堤坝隐患和地下管线等,进行隧道施工掌子面超前预报。

也可用于检测公路施工质量、地下洞室围岩和混凝土衬砌结合部状况、混凝土内部缺陷等。

b、雷达透射法可用于孔间探测及其他二度体空间探测。

c、雷达宽角法可用于估算介质的电磁波传播速度或确定反射界面的深度。

d、孔中雷达可探测钻孔周边一定范围内的地质异常或进行地层分层,孔间雷达也可较精确地探测孔间的地质异常体。

●地震波勘探依据的物性基础是岩体的弹性,通俗的讲就是岩体的波阻抗差异。地震波勘探采用人工激发弹性波,沿测线的不同位置用地震勘探仪器检测大地的振动,检测的信号以数字形式存储,以便通过计算机处理来提高信噪比,提取有意义的信息,并以易于地质解释的形式显示其结果。地震波在介质中

传播时,其旅行时、路径、振动强度和波形将随所通过介质的弹性性质及几何形态的不同而变化,利用这些变化规律,根据接收到的波的旅行时间和速度资料,可推断波的传播路径和介质的结构,而根据波的振幅、频率及地层速度等参数,则有可能推断岩石的性质,从而达到勘探的目的。

地震波的传播路径所遵循的规律和几何光学极其相似。波在传播过程中,当遇到弹性分界面时,将产生反射和折射,接收利用其中不同的波,就构成不同的地震勘探方法;当利用直接穿越地质目标体的地震波时就形成透射波勘探。这些主要是利用地震纵波,地震波在地层传播过程中,还会产生不同类型的转换波,如:横波、瑞雷波,相应的形成地震横波、瑞雷波勘探。

地震波勘探的方法

a、浅层地震反射波法利用地震波的反射原理,对浅层具有波阻抗差异的地层或构造进行探测的一种地震勘探方法,简称浅层反射波法。地震映像法也属此类。反射波法是在离震源较近(相当于零偏移距)的若干测点上,测定地震波从震源到不同弹性的地层分界面上反射回到地面的旅行时间,当地层倾角不大时,反射波的全部路径几乎是垂直地面的,因此,在测线的不同位置上法线反射时间的变化就反映了地下地层的构造形态。实际的观测中根据勘探目的和物探条件,为达到相干,增益抑噪,会派生出多种地震反射波勘探方法,但最终的结果都是把共反射点的波形叠加、归位、偏移到零偏移距上。

b、浅层地震折射波法利用地震波的折射原理,对浅层具有波速差异的地层或构造进行探测的一种地震勘探方法。地震折射波勘探的前提条件是下层介质的波速必须大于上层介质的波速,当地震波以临界角入射到界面时,以下层介质波速沿界面滑行,通过滑行界面附近质点的振动带动上层介质的振动,将地震波返回地面,这种波称为首波或折射波。此一通过地面人工激震,地震波从上层介质入射——下层介质顶界面滑行——上层介质出射至地面,通过仪器采集信号进行分析处理的过程,就是折射地震波勘探。首波到达不同观测点的时间包含着速度界面的深度和速度的信息,虽然它得不到象反射波法那样多的资料和那样高精度的构造图,但它的界面速度数据却比反射波法容易给出岩性解释。

c、瑞雷波法利用瑞雷波在层状介质中的几何频散特性进行分层的一种地

震勘探方法,按激振方式分为稳态和瞬态。

地震勘探主要使用范围:

a、浅层折射波法可探测地层厚度及其分层、基岩面起伏形态及风化带厚度、隐伏构造破碎带、松散层中的地下水位以及滑坡体厚度等,对探测岩体卸荷和洞室围岩松弛范围亦很有价值,也可测试岩土体纵波速度,不宜探测高速屏蔽层下部的地层。

b、浅层反射波法不受地层速度逆转限制,可探测高速层下部地层,划分沉积地层层次和探测有明显断距的断层,可探测地层厚度及其分层、基岩面起伏形态及风化层厚度、隐伏断层构造等,探测松散层中的地下水位以及滑坡体厚度,也可测试岩土体纵波速度。水上可采取地震映像成像,在浅部松散含水地层探测时,可使用具有较强分层能力的横波反射法。

c、瑞雷波法是一种颇具发展潜力的地震勘探方法,可进行浅部覆盖层分层,饱和砂土液化判定,地基加固效果评价,在测定岩土体密度,地基承载力等地基力学参数测试方面也作了许多有意义的工作。

d、垂直反射法利用弹性波的反射原理,采用极小等偏移距的观测方式对目的体进行探测,根据反射信息的相位、振幅、频率等变化特征进行分析和解释的一种弹性波勘探方法。在工程质量检测中使用较广。

●弹性波测试利用弹性波运动学和动力学特征对岩土体或混凝土进行波速测试或缺陷探测的方法。弹性波测试实际上就是弹性波勘探法在岩土体或混凝土质量检测中的运用,分声波法和地震波法两种,声波法包括单孔声波、穿透声波、表面声波、声波反射、脉冲回波法;地震波法包括地震测井、穿透地震波测试、连续地震波测试等。

弹性波测试主要使用范围:

a、单孔声波可用于测试岩体或混凝土纵波、横波速度和相关力学参数,探测不良地质结构、岩体风化带和卸荷带,测试洞室围岩松弛圈厚度,检测建基岩体质量及灌浆效果等。

b、穿透声波可用于测试孔间或其他二度体空间的岩土体或混凝土波速,探测不良地质体、岩体风化和卸荷带,测试洞室围岩松弛圈厚度,评价混凝土强度,检测建基岩体质量及灌浆效果等。

c、表面声波可用于大体积混凝土、基岩露头、探槽、竖井及洞室的声波

测试,评价混凝土强度和岩体质量。

d、声波反射可用于检测隧洞混凝土衬砌质量及回填密实度,检测大体积混凝土及其他弹性体浅部缺陷。

e、脉冲回波可用于检测地下洞室明衬钢管和混凝土接触状况,也可用于检测混凝土衬砌厚度和内部缺陷。

f、地震测井可用于测试地层波速,确定裂隙和破碎带位置。

g、地震穿透波速测试可用于测试岩土体纵波、横波速度,也可圈定大的构造破碎带、喀斯特等速度异常带,检测建基岩体质量和灌浆效果等。

h、地震连续波速测试可用于洞室、基岩露头、探槽、竖井等岩体纵波、横波速度测试,也可检测建基岩体质量,探测风化带和卸荷带。

●层析成像利用弹性波或电磁波的透射原理,对被测区域进行断面扫描,重建介质的波速或能量吸收图像的方法;分地震波CT、声波CT、电磁波CT。层析成像(CT)就是对物体进行逐层剖析成像,若一张物体的切片图像是两个空间变量(x,y)的函数,称之为图像函数,记作f(x,y),用不同方向的入射波“照射”物体,测到的波场信息至少是入射波方向θ和观测点位置ρ两个变量的函数称之为投影函数,记作u(ρ,θ)。1971年,奥地利数学家J·Radon 证明:已知所有入射角θ的投影函数u(ρ,θ),可以恢复唯一的图像函数(x,y)。这个定理就是层析成像的理论基础——Radon变换。

层析成像(CT)主要使用范围:

a、声波CT 适用于岩体和混凝土体的声波速度或衰减系数成像,主要用于不良地质体探测,灌浆效果检测,建基岩体质量检测,混凝土粱柱及坝体质量检测等。

b、地震波CT适用于岩土体地震波速度成像,可进行岩体质量分级,圈定构造破碎带、裂隙密集带、喀斯特及洞穴等速度异常地质体。

c、电磁波CT适用于岩土体电磁波吸收系数成像,可探测喀斯特等具有一定电性差异的地质体,圈定构造破碎带和风化带等。

●水声勘探利用声波反射原理专门探测水底地形地貌和进行水下地层分层的一种勘探方法。发射探头向水底发射声波脉冲,接收探头接收来自水底和地层分界面的反射波,当测船航行时可获得连续的地层剖面记录,根据该记录可

探测水底地形并进行水底地层分层。可探测水库、河道、湖泊和浅海深水区的水下地形,探测坝址、桥基、港口工程水下地层剖面。

●综合测井采用两种或两种以上的地球物理测井技术,以测量钻孔中介质的物理特性的综合探测方法。主要方法有电测井、声波测井、地震测井、放射性测井、电磁波或雷达测井、井中流体测量、磁化率测井、孔壁超声成像、钻孔电视观察、温度测井、井径测量、井斜测量等。

综合测井的方法

a、电测井利用地层和目的层之间的电性差异,电化学的渗透过虑和扩散吸收特性进行地质单元划分。

b、声波测井利用地层的声速、声幅不同进行声波纵波速度或横波速度测试和地质单元划分。

c、地震波测井利用地层的地震波速、波幅不同进行地震波纵波速度或横测试波速度和地质单元划分。

d、放射性自然γ测井利用岩层放射γ射线的强度不同进行地质单元划分,γ-γ测井是利用岩层对人工γ射线的散射作用进行地质单元划分。

e、电磁波或雷达测井利用岩层和目的层之间对电磁波吸收的不同进行地质单元划分。

f、井中流体测量利用钻孔流量计或人工投放溶质(盐或放射性同位素),测试钻孔中的流体运动速度(井轴方向或水平方向)来寻找含水层,确定钻孔中含水层之间的水力联系,测量含水层渗流速度。

g、磁化率测井来测量钻孔剖面视磁化率,经校正及转换后可得到钻孔剖面岩、矿石的磁化率。

h、超声成像利用井壁地层或目的层反射特性的差异,获得钻孔孔壁的展视图片;地层对超声波的反射特性是由波阻抗决定的,在图片上可得到孔壁不同介质的波阻抗反映。

i、钻孔电视观察是用录像的方法来观察孔壁岩体情况。

综合测井主要使用范围:

a、电测井主要用于划分地层,区分岩性,确定软弱夹层、裂隙和破碎带位置及厚度,确定含水层的位置、厚度,划分咸淡水分界面,也可用于测试岩层电阻率。

b、声波测井主要用于划分地层,区分岩性,确定裂隙和破碎带位置及厚度,也可利用测试的声波速度和其它参数,计算地层岩土体的力学参数和孔隙度。

c、地震测井主要用于划分地层,区分岩性,确定破碎带的位置及厚度,也可进行地层波速测试。

d、自然γ和γ-γ测井、磁化率测井均可用于划分地层,区分岩性,确定软弱夹层、裂隙和破碎带,γ-γ测井还可以测试岩层密度和孔隙度。

e、电磁波或雷达测井可用于划分地层和破碎带,也可用于探查近孔壁的不良地质体。

f、孔壁超声成像主要用于确定钻孔中岩层、裂隙、破碎带、软弱夹层的位置及大致产状,也可用于检查灌浆质量、混凝土浇筑质量,粗测钻孔直径。

g、钻孔电视观察主要用于划分地层,区分岩性,确定岩层节理、裂隙、破碎带、软弱夹层的位置和产状,观察钻孔揭露的喀斯特洞穴的情况,也可用于检查灌浆质量、混凝土浇筑质量,及观察井下物体等。

h、井中流体测量可用于确定含水层位置及厚度,测试地下水在钻孔中的运动状态和涌水量。在有利条件下,可估算地下水渗透速度等。

i、温度测井可用于测试含水层位置及地下水运动状态,还可测试灌浆和水泥固井时水泥回返高度。

j、井径测量可用于测试钻孔的井径变化

k、井斜测量可用于测试钻孔的倾斜方位和顶角。

●放射性测量利用介质的天然或人工放射性特性进行勘探的方法,包括自然γ测量、α射线测量、环境氡浓度测量和同位素追踪。同位素追踪是采用人工放射性同位素标记天然流场或人工流场中的地下水流,用示踪或稀释原理来测试地下水流向、流速的一种放射性测量方法。

放射性测量主要使用范围:

a、γ测量可通过测量地表γ场的分布来寻找隐伏断层破碎带和地下储水构造,辅助地质填图和环境放射性检测等。

b、α射线测量可通过测量覆盖层中空气或土样的氡浓度来查明水文工程地质问题,可以解决的工程地质问题和γ测量相同。

c、环境土壤氡浓度测量可用于调查地基土的氡浓度背景值。

d、环境空气氡浓度测量可用于地下建筑物和室内的空气检测、监测,评价氡及其子体对环境的影响。

e、同位素追踪可用于测试地下水流速、流向、渗透系数,了解地下水的变化规律。

更多相关资料已经精细整理,请到

下载,希望能帮助你。

地球物理勘探与工程物探

地球物理勘探与工程物探 一、地球物理勘探分类 (一)地球物理学 地球物理学是运用物理学的原理和方法来研究地球的学问,是一门横跨物理学和地质学的边缘、交叉科学。地球物理学所研究的对象极为广泛,上达数百公里高空的游离层,下至地球深处,包括重力、电场、地磁、地震和放射性等物性特征,都属于其研究的领域和对象。 (二)地球物理勘探 将研究地球的各种物理方法用来寻找地下矿藏,或者用来探测岩体的赋存状况,以满足工程建设的需求,就产生了应用地球物理学,或称为地球物理勘探,简称物探。地球物理勘探是以地下岩体的物理性质的差异为基础,通过探测地表或地下地球物理场、分析其变化规律,来确定被探测地质体在地下赋存的空间范围(大小、形状、埋深等)和物理性质,达到寻找矿产资源或解决水文、工程、环境问题为目的的一类探测方法。 (三)地球物理勘探分类 (1)按探测对象、应用领域的不同,物探可分为: ①石油物探 ②煤田物探 ③金属非金属物探 ④放射性物探 ⑤水文物探 ⑥工程物探 ⑦环境物探 (2)按工作环境的不同,物探可分为: ①地面物探 ②航空物探 ③海洋物探 ④地下物探 二、地球物理勘探方法 根据所探测对象(如岩溶、构造、矿体等各类目的体以及地层等)的物理性质的不同,可将地球物理勘探分为重力勘探、磁法勘探、电法勘探、放射性勘探、地震勘探、地球物理测井和地热勘探等多种方法。 (一)重力勘探 重力勘探是研究由地下岩层与其相邻层之间、各类地质体与围岩之间的密度差而引起的重力场的变化(即“重力异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。重力异常是由密度不均匀引起的重力场的变化,并迭加在地球的正常重力场上。 重力观测方法主要有动力法和静力法两种。 ⑴动力法是观测物体的运动,直接测定的量是时间。 ⑵静力法是观测物体的平衡,直接测定的量是线位移或角位移。静力法只能用于重力的相对测

井下物探管理办法

井下物探管理办法

文档仅供参考 附件7: 矿井物探管理办法 为规范矿井物探工作,提高地质、水文地质预测预报准确率,全面落实“物探先行,钻探跟进”的防治水要求,制定本办 法。 一、适用范围 各区域公司及矿井公司、各生产(基建)矿井。 二、地面物探管理 1、矿井地面物探工程立项、方法选择、观测系统确定必须参 考《汾西矿区地面物探总体规划》。 2、地面物探工程计划必须上报集团公司审查同意。 3、地面物探项目的招投标必须符合集团公司相关规定,参加 招标的单位必须具有乙级(含乙级)以上物探资质。 4、地面物探项目招标前必须编制工程设计并报集团公司组织 审查,未经集团公司审查不予审查报告。审查后确定的设计做为 招投标和施工的技术依据,设计变更必须经建设方、监理方同 意。 5、大中型物探项目(2km2及以上)必须聘请具有物探监理 资质的单位进行监理。小型物探项目,矿井必须参与项目开工、 试验、竣工验收全过程监督管理,并有详细的监管工作日志。 6、集团公司负责物探工程设计、报告的审查并批复。 7、地面物探项目设计、施工方法、质量管理、报告编制等必 须符合国家相关规程、规范要求。

三、井下物探管理 1、各矿井必须成立3人以上(包括3人)的物探技术小组,指定专职的物探技术人员,确保物探工作正常开展。同时按照集团公司要求派出物探技术人员学习培训,并按周积极开展内部自主培训,不断提高矿井的物探技术水平。 2、各矿井必须配备超前探测水情和构造的物探仪器,以及探测回采工作面地质异常的无线电波透视仪。 3、区域公司可根据实际情况以公司组建物探队伍,保证所属矿井物探工作正常开展。 4、各区域公司、矿井应制定物探仪器保管、维护、使用和交接管理制度,定期对物探仪器进行维护,仪器每两年须送到厂家对技术指标检校或大修。 5、所有开拓、掘进工作面必须使用电法仪器循环探测,要求探测全覆盖。物探范围内如过空巷,应重新探测。 6、为实现物探与钻探相匹配,使用大功率瞬变电磁仪,相邻两次探测间距不大于100米;使用小功率瞬变电磁仪的矿井,相邻两次探测间距不大于75米。 对可能存在地质构造的区段应使用地震类物探仪器探测。 7、受小窑采空区积水及富水构造影响严重矿井(柳湾、水峪、高阳、正文、正旺、正帮、正佳、正珠等)的采掘工作面,应采用瞬变电磁法、直流电法、地质探测仪法多种手段综合验证探查小窑采空区范围及其赋水性。

什么是地球物理勘探

什么是地球物理勘探 人类居住的地球,表层是由岩石圈组成的地壳,石油和天然气就埋藏于地壳的岩石中,埋藏可深达数千米,眼看不到,手摸不着,所以,要找到油气首先需要搞清地下岩石情况以及岩石的物理性质。 岩石物理性质是指岩石的导电性、磁性、密度、地震波传播等特性。地下岩石情况不同,岩石的物理性质也随之而变化。我们把以岩石间物理性质差异为基础,以物理方法为手段的油气勘探技术,称为地球物理勘探技术,简称物探技术。 通过观测不同岩石引起的重力差异来了解地下地层的岩性和起伏状态的方法,称为重力勘探。油气生成于沉积盆地,应用重力勘探可以确定沉积盆地范围。 通过观测不同岩石的磁性差异,来了解地下岩石情况的方法,称为磁力勘探。在沉积盆地中,往往会分布着各种磁性地质体,磁力勘探可以圈定其范围,确定其性质。 通过观测不同岩石的导电性差异来了解地下地层岩石情况的方法,称为电法勘探,与油气有关的沉积岩往往导电性良好(电阻率低),应用电法勘探可以寻找和确定这类地层。 通过观测用人工方法(如爆炸)激发的地震波在不同岩石中的速度变化及其他特征来了解地下岩石情况的方法,称为地震勘探。 在以上这四种方法中,重力、磁力、电法三种方法联合起来应用往往可以找出可能有油气的盆地在哪里,盆地中哪里是隆起,哪里是坳陷,哪里是可能最有利的构造等等。这种工作是在找油的开始阶段做的,一般叫做普查。 地震勘探是地球物理勘探最主要的一种勘探方法,具有勘探精度高,能更清晰地确定油气构造形态、埋藏深度、岩石性质等优点,成为油气勘探的主要手段,并被广泛应用。 什么是地球物理测井 井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘 学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机 信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层 的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田

地球物理勘探方法

地球物理探矿法 一、地球物理探矿法的基本原理 物探的基本特点是研究地球物理场或某些物理现象。如地磁场、地电场、放射性场等,而不是直接研究岩石或矿石,它与地质学方法有着本质上的不同。通过场的研究可以了解掩盖区的地质构造和产状。它的理论基础是物理学或地球物理学,系把物理学上的理论(地电学、地磁学等)应用于地质找矿。因此具有下列特点和工作前提: (一)物探的特点 1.必须实行两个转化才能完成找矿任务。先将地质问题转化成地球物理探矿的问题,才能使用物探方法去观测。在观测取得数据之后(所得异常),只能推断具有某种或某些物理性质的地质体,然后通过综合研究,并根据地质体与物理现象间存在的特定关系,把物探的结果转化为地质的语言和图示,从而去推断矿产的埋藏情况与成矿有关的地质问题,最后通过探矿工程验证,肯定其地质效果。 2.物探异常具有多解性。产生物探异常的原因,往往是多种多样的。这是由于不同的地质体可以有相同的物理场,故造成物探异常推断的多解性。如磁铁矿、磁黄铁矿、超基性岩,都可以引起磁异常。所以工作中采用单一的物探方法,往往不易得到较肯定的地质结论。一般情况应合理地综合运用几种物探方法,并与地质研究紧密结合,才能得到较为肯定的结论。 3.每种物探方法都有要求严格的应用条件和使用范围。因为矿床地质、地球物理特征及自然地理条件因地而异,从而影响物探方法的有效性。 (二)物探工作的前提 在确定物探任务时,除地质研究的需要外,还必须具备物探工作前提,才能达

到预期的目的。物探工作的前提主要有下列几方面: 1.物性差异,即被调查研究的地质体与周围地质体之间,要有某种物理性质上的差异。 2.被调查的地质体要具有一定的规模和合适的深度,用现有的技术方法能发现它所 引起的异常。若规模很小、埋藏又深的矿体,则不能发现其异常;有时虽然地质体埋藏较深,但规模很大,也可能发现异常。故找矿效果应根据具体情况而定。 3.能区分异常,即从各种干扰因素的异常中,区分所调查的地质体的异常。如铬铁矿和纯橄榄岩都可引起重力异常,蛇纹石化等岩性变化也可引起异常,能否从干扰异常中找出矿异常,是方法应用的重要条件之一。 二、地球物理探矿法的应用及其地质效果 (一)应用物探找矿的有利条件与不利条件 1.物探找矿有利条件:地形平坦,因物理场是以水平面做基面,越平坦越好;矿体形态规则;具有相当的规模,矿物成分较稳定;干扰因素少;有较详细的地质资料。最好附近有勘探矿区或开采矿山,有已知的地质资料便于对比。 2.物探找矿的不利条件:物性差异不明显或物理性质不稳定的地质体;寻找的地质体或矿体过小过深,地质条件复杂;干扰因素多,不易区分矿与非矿异常等。 (二)物探方法的种类、应用条件及地质效果简要列于表4—5。 物探方法的选择,一般是依据工作区的下列三方面情况,结合各种物探方法的特点进行选择:一是地质特点,即矿体产出部位、矿石类型(是决定物探方法的依据)、矿体的形态和产状(是确定测网大小、测线方向、电极距离大小与排列方式等决定因素);二是地球物理特性,即岩矿物性参数,利用物性统计参数分析地质构

环境地球物理勘查技术与方法探究

环境地球物理勘查技术与方法探究 在工业化进程中,经济的发展伴随着地球环境的恶化,成为各个技术领域面临的问题。环境问题的解决一方面靠积极的预防,更要对已经产生的环境污染及危害进行治理,而作为一种环境监测方法,地球物理勘查技术的应用为环境监测与治理提供了技术支持。本文就环境地球物理勘查技术与方法进行探讨,希望会对我国的环境建设起到一定作用。 标签:环境保护地球物理勘查 0前言 科技的不断发展带来各项技术水平的不断提高,在环境治理方面也具备了一定的技术支撑。环境地球物理方法充分的发挥着环境科学与物理技术的两项优势,无论是进行大区域的环境物理变化,还是区域性的环境污染都具备了实用性及实效性的优势,为我国的环境监测以及保护提供科学的技术参考。 1对地下水污染的勘查技术 工业的发展与人类各种生活垃圾的出现,直接影响到了地下水源的质量,地下水污染问题也受到各个学术界的关注。地下水的主要污染源还是工业企业的污水排放以及工业垃圾没有进行进一步处理,其中还包括城市生活中所产生的大量垃圾,对垃圾的填埋直接影响了地下水质。地下水的质量直接与我们的生活用水息息相关,如果地下水一直受到污染,会使我们的生活水平直线下降,所以,对地下水污染的治理与预防是各个领域都在研究的问题。而在对地下水污染进行防治的过程中,首先要了解地下污染源的所在地点、污染的严重程度、地下水的流向以及污染源的分布等因素,才能在治理当中制定相应的方案。 1.1对垃圾填埋场的渗漏检测 大型的垃圾填埋场会对本地区的土质以及水质产生一定的影响,垃圾渗滤液在渗入地下后会使地层中介质的物理性能发生改变。通过对地球物理仪器设备的应用,可以检测出垃圾渗滤液导致的介质变化,进而分析出渗漏的范围以及地下水的污染程度,这种方法方便快捷,不需要进行大量的采样和打钻。 而针对不同的垃圾填埋状况以及工作目的,应该选用不同的工作方法。常用的方法有雷达法、电磁法、放射性法等,可以用来进行污染治理的前后对比当中。而对小范围内的垃圾填埋产生的影响做检测的话,可以采用激发极化法、探地雷达法等。在进行不同物理检测方法选择时,应该根据实地需要选择可行性的对策,具体为使污染体育背景之间具有明显的物性差别,也就是根据仪器的检测数据能够明显的得到相应的结论,使检测结果更科学。 1.2对地下运输管道的检测

地球物理勘探方法及应用范围

M D 模型空间数据空间地球物理探测空间变换示意图 球物理探测方法简介及应用范围 地球物理学是用物理学的原理和方法,对地球的各种物理场分布及其变化进行观测,探索地球本体及近地空间的介质结构、物质组成、形成和演化,研究与其相关的各种自然现象及其变化规律。在此基础上为探测地球内部结构与构造、寻找能源、资源和环境监测提供理论、方法和技术,为灾害预报提供重要依据。 地球物理学的研究内容总体上可分为应用地球物理和理论地球物理两大类。应用地球物理(又称勘探地球物理)主要包括能源勘探、金属与非金属勘探、环境与项目探测等。勘探地球物理学利用地球物理学发展起来的方法进行找矿、找油、项目和环境监测以及构造研究等,方法手段包括地震勘探、电法勘探、重力勘探、磁法勘探、地球物理测井和放射性勘探等,通过先进的地球物理测量仪器,测量来自地下的地球物理场信息,对测得的信息进行分析、处理、反演、解释,进而推测地下的结构构造和矿产分布。勘探地球物理学是石油、金属与非金属矿床、地下水资源及大型项目基址等的勘察及探测的主要学科。 从数学角度讲,地球物理勘 探的过程可以抽象成从模型空 间通过某种映射关系,映射成可 以感知的数据空间,再通过逆映 射变换到模型空间,其映射关系 见右图。这种映射关系遵循地球 物理学的两大模型原理:滤波器 模型原理和场效应模型原理。因 此地球物理数据处理:一是基于 信号分析理论的信号处理技术, 主要目的是去杂、增益、提取有效信号;二是基于物理场效应理论的反演技术。 地球物理反演,就是在模型空间寻找一组参数向量,这组向量通过某种映射关系,能再现数据空间的观测数据,因此在一定的假设条件下,反演问题可以表示为某种误差泛函的极小化问题 min ‖G cal (M)-D obs ‖2 也就是地球物理反演是利用模型参数和模型正演来获取合成数据,再通过合成数据与观测数据的匹配估算出最佳M 参数。由此可见,地球物理反演实质上是正

地球物理勘探部分知识点

????????????????? ????????????????????????????????????????????????????????????????????????????????????????????梯度法电位法充电法激电测深法各类剖面法激发极化法多级测深法偶极测深三级测深法对称四级测深法电测深偶极剖面法复合对称四级剖面法对称四级剖面法联合剖面法电剖面电阻率法充电法电位法天然场法直流电法法)无线电波透视法(阴影变频法(交流激电法)甚低频法(长波法)电磁法低频点测法 天然场法交流电法电法勘探???????????声波法横波法纵波法面波法反射波法 折射波法地震勘探 测量均匀大地的电阻率,原则上可以采用任意形式的电极排列来进行,即在地表任意两点(A 、B)供电,然后在任意两点(M 、N)测量其间的电位差,根据 (5.2.10)式便可求出M 、N 两点的电位. AB 在MN 间产生的电位差由上式解出大地电阻率,大地电阻率的 计算公式为 上式即为在均匀大地的地表采用任意电极装置(或电极排列)测量电阻率的基本公式。 其中K 为电极装置系数。 电法勘探的基本概念 电法勘探是以研究地壳中各种岩石、矿石电学性质之间的差异为基础,利用电场或电磁场(天然或人工)空间和时间分布规律来解决地质构造或寻找有用矿产的)11(2BM AM I U M -=πρ)11(2BN AN I U N -=πρ)1111(2BN BM AN AM I U MN +--=?πρI U K MN ?=ρBN BM AN AM K 11112+--=π

一类地球物理勘探方法,通称为电法。 场源 稳定电流场:点电源电场、两异极性点电源电场、偶极子源电场。 变化电流场:电磁场 装置类型:对称四极、三极、偶极 视电阻率均匀介质电阻率计算公式 实际上大地介质常不满足均匀介质条件,地形往往起伏不平,地下介质也不均匀,各种岩石相互重叠,断层裂隙纵横交错,或者有矿体充填其中,这时由上式得到的电阻率值在一般情况下既不是围岩电阻率,也不是矿体电阻率,我们称之为视电阻率。用ρs 表示 视电阻率与真电阻率在概念上有本质的不同,决定视电阻率值大小的因素有: 1) 不均匀体的电阻率及围岩电阻率; 2) 不均匀地质体的分布状态(形状大小、深浅及产状等); 3) 供电电极和测量电极间的相互位置; 4) 工作装置和地质体的相对位置 电测深 电测深法是根据岩石和矿石导电性的差异,在地面上不断改变供电电极和测置电极的位置,观测和研究所供直流电场在地下介质中的分布,了解测点电阻率I U K MN ?= ρ

地球物理勘探考点汇总

地球物理勘探知识点 一、名词解释 1.动校正:校正因炮检距不等而存在的正常时差的影响。 2.时距曲线:若测线是沿一条线进行的,则测线上各观测点坐标与波至时间的关系图称为时距曲线。 3.多次覆盖:指采用一定的观测系统获得对地下每个反射点多次重复观测的采集地震波讯号的方法。 4.电阻率剖面法:当保持供电电极距AB不动时,电极系探测深度一定,移动电极系时就可以反应一定深度范围内的地下电阻率的变化情况,这种方法称之为电阻率剖面法。 5.电法勘探:是以岩石、矿石的导电性、电化学活动性、介电性和导磁性的差异为物质基础,使用专用的仪器设备观测和研究地壳周围物理场的变化和分布规律,进而达到解决地质问题的目的的一组地球物理勘查方法。 6.转换波:与入射波波形不同的反射波和透射波。 7.高密度电法:是集电测深和剖面法于一体的一种多装置,多极距的组合方法。 8.槽波地震勘探:是在井下煤层开采工作面内进行的,地震测线接受点和激发点沿煤巷布设,直接探测煤层内地质构造或其他地质异常体的勘探方法。 9.温纳四极装置:一种三电位电极装置,一次组合,可以获得三种电极排列的测量参数。 10.横波:质点振动方向与传播方向垂直。 11.地电断面:根据地下地质体电阻率的差异而划分界限的断面。 12.视电阻率:在电场有效作用范围内各种地质体电阻率综合反映。 13.正常时差:各观测点有不同的炮检距,因而有不同的旅行时,他们相对于自激自收时的差称为正常时差。 14.静校正:设法消除地表因素影响的校正过程。 15.观测系统:测线上激发点和接收点的相对位置关系。 16.同类波:与入射波波形相同的反射波和透射波。 17.纵波:质点振动方向与传播方向一致。 18.电测深:电测深法是根据岩石和矿石导电性的差异,在地面上不断改变供电电极和测量电极的位置,观测和研究所供直流电场在地下介质中的分布,了解测点电阻率沿深度的变化,达到测深、找矿和解决其他地质问题的目的。 19.瞬变电磁法:是利用不接地回线或电极向地下发送脉冲式一次电磁场,用线圈或接地电极观测由该脉冲电磁场感应的地下涡流产生的二次电磁场的空间和时间分布,从而来解决有关地质问题的时间域电磁法。 20.水平叠加:又称为共反射点叠加或共中心点叠加,就是把不同激发点、不同接收点上接收到的来自于同一反射点的地震记录进行叠加。 二、填空题 1.地震勘探的三个主要步骤是采集、处理、解释 2.地震勘探的横波有SV波、SH波 3.联合剖面法曲线中的正交点和反交点分别反映低阻和高阻特征 4.常用电阻率法测量方法有:电阻率测深法、电阻率剖面法、高密度电阻率法 5.观测系统图示方法有视距平面法、普通平面法、综合平面法 6.从实用性出发,地震波可分为有效波和干扰波

物探方法简介

物探方法简介 一、瞬变电磁法简介 1、瞬变电磁法技术原理 瞬变电磁法(Transient ElectromagneticsMethod, TEM)是以地壳中岩(矿)石的导电性与导磁性差异为主要物质基础,根据电磁感应原理,利用不接地回线或接地线源向地下发送一次脉冲磁场,在一次脉冲磁场的间隙期间,利用线圈或接地电极观测二次涡流场,并研究该场的空间与时间分布规律, 来寻找地下矿产资源或解决其它地质问题的一支时间域电磁法。下图即为瞬变电磁法原理的图解。 2、瞬变电磁法应用领域 瞬变电磁法施工简便、低阻探测能力强、精度高、探测深度大(地面1000m、井下150m),井下、井上均可施工。具有许多传统直流电法不可比拟的优点,可应用于: ◆地下水探测。瞬变电磁法可用于找水、咸淡水区分、地下电性

分层、圈定地下充水溶洞; ◆寻找金属矿床; ◆煤层顶底板富水性探测、巷道迎头超前探、圈定煤层采空(塌陷)区; ◆陡倾角、断层、岩脉等地质构造探测。 二、高密度电法简介 其原理与普通电阻率法相同,不同的是在观测中设置了高密度的观测点,工作装置组合实现了密点距陈列布设电极,是一种阵列勘探方法,现场测量时只需将全部电极(几十至上百根)置于测点上,然后利用程控电极转换开关和微机工程电测仪便可实现数据的快速和自动采集,增加了空间供电和采样的密度,提高了纵、横向分辨能力和工作效率。 在众多直流电阻率方法中,高密度电阻率法以其工作效率高、反映的地电信息量大、工作成本低、测量简便等突出优势,在物探领域中发挥着越来越重要的作用。主要应用于: ◆寻找地下水、管线探测、岩土工程勘察; ◆煤矿采空区调查,煤矿井下富水性探测; ◆水库大坝的坝体稳定性评价、坝基渗漏勘查、堤坝裂缝检测、建筑地基勘探; ◆涵洞和溶洞位置勘查、岩溶塌陷和地裂缝探测 三、矿井直流电法简介 主要应用于井下,其原理与地面直流电法相似,不同之处为:矿井直流电法属全空间电法勘探、采用本安防爆设备,它以岩石的电性

勘探地球物理学基础--习题解答

《勘探地球物理学基础》习题解答 第一章 磁法勘探习题与解答(共8题) 1、什么是地磁要素?它们之间的换算关系是怎样的? 解答:地磁场T 是矢量,研究中令x 轴指向地理北,y 轴指向地理东,z 轴铅直向下。地磁场 T 分解为:北向分量为X ,东向分量为Y ,铅直分量为Z 。 T 在xoy 面内的投影为水平分量H ,H 的方向即磁北方向,H 与x 的夹角(即磁北与地理北的夹角)为磁偏角D (东偏为正),T 与H 的夹角为磁倾角I (下倾为正)。X 、Y 、Z ,H 、D 、I ,T 统称为地磁要素。它们之间的关系如图1-1。 图1-1 地磁要素之间的关系示意图 各要素间以及与总场的关系如下: 222222T H Z X Y Z =+=++, c o s X H D =, sin Y H D =? cos H T I =?, s i n Z T I =?, t a n /I Z H =, a r c t a n (/I Z H = tan /D Y X =, a r c t a n (/D Y X = 2、地磁场随时间变化有哪些主要特点? 解答:地磁场随时间的变化主要有以下两种类型:(1)地球内部场源缓慢变化引起的长期变化;(2)地球外部场源引起的短期变化。 其中长期变化有以下两个特点: 磁矩减弱:地心偶极子磁矩正在衰减,导致地磁场强度衰减(速率约为10~

20nT/a)。 磁场漂移:非偶极子的场正在向西漂移。(且是全球性的,但快慢不同,平均约0.2o/a)。 短期变化有以下两个特点: 平静变化:按一定的周期连续出现,平缓而有规律,称为平静变化。地磁场的平静变化主要指地磁日变。 扰动变化:偶然发生、短暂而复杂、强弱不定、持续一定的时间后就消失,称为扰动变化。地磁场的扰动变化又分为磁暴和地磁脉动两类。 3、地磁场随空间、时间变化的特征,对磁法勘探有何意义? 解答:在实际磁法勘探中,一般工作周期较短,主要关心的是地磁场的短期变化,即地磁日变化、磁暴以及地磁脉动。 在高精度磁测中,地磁日变化是一种严重干扰,一般在地面磁测、航空磁测过程中设有专用仪器进行地磁日变观测,以便进行相应的校正,称为日变改正。但在海上磁测时,为了提高测量精度必须提出相应的措施,消除其日变干扰场。 在强磁暴期间,应该暂停野外磁测工作,避免那些严重的地磁扰动覆盖在地质体异常之上。 地磁脉动可以在具有高电导率的地壳层中产生感应大地电磁场,可以作为磁测的激发场。通过测量其大地电流,可以确定地壳层的电导率及其厚度等,以解决某些地质、地球物理问题。 4、了解各类岩石的磁性特征对磁法勘探的有什么意义? 解答:磁法勘探是以地壳中不同岩(矿)石间的磁性差异为基础,通过观测和研究天然磁场及人工磁场的变化规律,用以查明地质构造和寻找有用矿产的地球物理勘探方法。因此,在磁法勘探前必须了解各类岩(矿)石的磁性参数,以分析总结工作区是否具备磁法勘探的工作前提,为工作方法的选择提供依据;另外,了解工作区各类岩(矿)石的磁性差异、差异大小、分布规律以及成因也是磁法勘探工作的布置和磁测成果资料的解释的重要依据。

我对地球物理勘察技术的认识

我对地球物理勘察技术的认识 1 地球物理勘探的实质 地球物理勘探是通过观察和研究各种地球物理场的变化来解决地质问题的一种勘查方法。它是以各种岩石和矿石的密度、磁性、电性、弹性、放射性等物理性质的差异为研究基础用不同的物探方法和物探仪器,探测天然的或人工的地球物理场的变化;通过分析、研究所获得地球物理资料,推断、解释地质构造和矿产分布情况。 2 地球物理勘探工作内容 利用相适应的仪器测量、接收工作区域的各种物理信息,应用有效的处理从中提取出需要的信息,并根据岩(矿)体或构造和围岩的物性差异,结合地质条件进行分析,做出地质解释,推断探测对象在地下赋存的位置、大小范围和产状,以及反映相应物性特征的物理量等,作出相应的解释推断的图件。地球物理勘探是地质调查和地学研究不可缺少的一种手段和方法。 3 地球物理勘探的方法 随着现代科学技术的蓬勃发展,根据其所研究地球物理场的不同,物探方法通常可分为以下几大类:(1)以介质弹性差异为基础,研究波场变化规律的地震勘探和声波探测;(2)以介质电性差异为基础,研究天然或人工电场(或电磁场)的变化规律的电法勘探;(3)以介质密度差异为基础,研究重力场变化规律的重力勘探;(4)以介质磁性差异为基础,研究地磁场变化规律的磁法勘探;(5)以介质中放射性元素种类及含量差异为基础,研究幅射场变化特征的核地球物理勘探;(6)以地下热能分布和介质导热性为基础,研究地温场变化的地热勘探等。 地震勘探是近代发展最快的物探方法之一。它的原理是利用人工激发的地震波在弹性不同的地层内的传播规律来勘探地下的地质情况。在地面某处激发的地震

波在向地下传播时,遇到不同弹性地层就会产生反射波或折射波返回地面,用专门得仪器可以记录这些波,分析所得记录的特点,如波的传播时间、振动形状等,通过专门的计算或一起处理,能较准确的确定这些界面的深度和形态,判断地层的岩性,是勘探含油气构造,甚至是直接找油的主要物探方法,也可以用于勘探煤田,盐岩矿床,个别的层状金属矿床以及解决水文地质、工程地质等问题。 电法勘探是根据岩石和矿石电学性质(如电性、电化学活动性、电磁感应特性和电性差异)来找矿和研究地质构造的一种地球物理勘探方法。它是通过观测人工的、天然的电场或交变的电磁场,分析、解释这些场的特点规律达到找矿勘探的目的。电法勘探分为两大类,直流电法,包括电阻率法、充电法、自然电场法、直流激发极化法等;交流电法,包括交流激发极化法、电磁法、大地电磁场法、无线电波透视法和微波法。 重力勘探是利用组成地壳的各种岩体、矿体间的密度差异所引起的地表重力加速度值得变化而进行地球物理勘探的一种方法。以牛顿万有引力为基础。只要勘探地质体与周围岩体有一定的密度差异,就可以用精密的重力测量仪器找出重力异常,然后结合当地的地质和其他物探资料,对重力异常进行定性解释和定量解释,便可以推断覆盖层以下密度不同的矿体与岩层的埋藏情况,进而找出隐状矿体存在的位置和地质构造情况。 磁法勘探是常用的地球物理勘探方法之一,自然界的岩石和矿石具有不同的磁性,可以 产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现磁异常。利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探,她包括地面、航空、海洋磁法勘探及井中磁法勘探等。磁法勘探主要用来寻找和勘探有关矿产;进行地质填图;研究与尤其油漆有关的地质构造及大地都造等。我国建国以来大多数铁矿区、多金属矿区及油气田等都进行了大量的磁法勘探。效果显著。

物探专业术语

物探专业术语

物探专业术语 1、观测系统 测线上激发点和接收点的相对位置关系。 为了得到能够系统地追踪目的层有效波的地震记录,在野外资料采集时必须适当地安排和选择激发点与接收点的相互位置,即要选择合理的观测系统。 2、二维地震勘探 沿着地表的一条直线进行勘测,就能够研究该测线下面不同地层界面的形状和位置,这种勘测方法称为二维地震勘探,相应的观测系统称为2D观测系统。 3、三维地震勘探 如果在地表的某一平面内连续地进行观测,就能够最佳地研究该平面下不同地震界面的形状和位置,这种勘测方法称为三维地震勘探,相应的观测系统称为3D观测系统。 4、多次覆盖 对界面上某一点进行观测称为采样或覆盖。若对每个点只观测一次,称为单次覆盖,如观测多次,则称为多次覆盖。 5、覆盖次数 对界面上某一点进行观测的次数。 覆盖次数的设计:假如目的层反射波能量强,连续性好,能够可靠地追踪,那么每个反射点只需要勘测一次就足够了。但是实际情况

并非如此,有效反射波总是与各种干扰波重叠干涉。当勘探深度增大时,由于多次波和散射波相对加强,信噪比变得更低,单次覆盖效果不佳,因此现在广泛采用多次覆盖系统。基本思路:用一组单次覆盖系统,其中每一种都可以沿侧线连续追踪同一反射界面,当资料处理合适时,反射层应该位于每个地震剖面的相同地段。 6、炸药震源 炸药震源是脉冲震源。炸药在外界的影响下迅速放出气体和高热,形成高压气团而急剧膨胀,在很短的瞬间将冲击力作用于周围物体,即形成所谓的冲击波。在爆炸中心,物体被粉碎、破坏或产生非弹性形变。在破坏带及非弹性形变带外,形成岩石的弹性变带,此时冲击波变成弹性波传播出去。常用的炸药是硝氨炸药。经验表明,炸药激发的地震振动是衰减很快的似正弦脉冲,脉冲的前缘很陡,能量高度集中。在均匀介质中爆炸时形成中心对称的膨胀型震源,主要产生纵波。 7、可控震源 这是50年代问世的一种新型震源,因为它产生一个延续时间从几秒到几十秒,频率随时间变化的正弦振动,故称为连续振动震源;又因为扫描的频率范围及振动的延续长度都可以事先控制和改变,故称可控震源。 8、时序 在地震勘探数据采集过程中,因为是多通道同时记录,记录数据是以时间为顺序的,所以保存在磁带介质上的数据也是按时间顺序

浅谈地球物理勘探的勘探方法

浅谈地球物理勘探的勘探方法 白亚东 宁夏地球物理地球化学勘查院宁夏750004 摘要:“地球物理勘探”,英文名为geophysical prospecting,也称“物探”。地球物理勘探常利用的岩石物理性质分密度、磁导率、电导率、弹性、热导率和放射性,与此相应的勘探方法分重力勘探、磁法勘探、电法勘探、地震勘探、地温法勘探和核法勘探。 关键词:地球物理勘探;物理性质;勘探方法 一、地球物理勘探的定义。 “地球物理勘探”,英文名为geophysical prospecting,也称“物探”。地球物理勘探是利用地球物理的原理,根据各种岩石之间的密度、磁性、电性、弹性及放射性等物理性质的差异,选用不同的物理方法和物探仪器,测量工程区的地球物理场的变化,以了解其水文地质和工程地质条件的勘探和测试方法。由于地球物理勘探具有设备轻便、勘察速度快、投入人力财力小等特点,它在工程建设和环境保护等方面有较广泛的应用。 二、地球物理勘探的勘探方法。 地球物理勘探常利用的岩石物理性质具有密度、磁导率、电导率、弹性、热导率和放射性。勘探方法包括重力勘探、磁法勘探、电法勘探、地震勘探、地温法勘探和核法勘探。 (一)重力勘探。

重力勘探是利用专门仪器并按照特定方式观测岩层间的密度差异,进而研究地下地质问题,是利用组成地壳的各种岩体、矿体间的密度差异所引起的地表的重力加速度值的变化而进行地质勘探的一种方法,用以提供构造和矿产等地质信息。 重力勘探是以牛顿万有引力定律为基础,在接近较大密度的物体时,其引力增大,反之引力减小。在地表上引起的重力变化就是重力异常,勘探地质体与其周围岩体有一定的密度差异,就可以用精密的重力测量仪器找出重力异常。异常的规模、形状和强度取决于具有密度差的物体大小、形状和深度。然后,结合工作地区的地质和其他物探资料,对重力异常进行定性解释和定量解释,便可以推断覆盖层以下密度不同的矿体与岩层埋藏情况,进而找出隐伏矿体存在的位置和地质构造情况。 能源工业、国防工业和测绘工业是重力勘探的主要应用领域。目前国内重力勘探队伍主要集中在地矿部门和石油部门,国外的重力勘探主要应用在盆地、盆地深层和井中重力测井方面。 (二)磁法勘探。 磁法勘探是一种常用的地球物理勘探方法。自然界中的岩石和矿石具有不同的磁性并能够产生不同的磁场,它使地球磁场在局部地区发生变化,出现地磁异常,利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探。 磁法勘探主要用来寻找和勘探有关矿产(铁矿、铅锌矿、铜锦矿等),测定和分析研究各种磁异常,找出磁异常与地下岩石、

关于地球物理勘查技术重要应用分析

关于地球物理勘查技术重要应用分析 摘要:地球物理勘查技术包含内容诸多,其包括航空放射性技术、航空重力技术、航空电磁法、航空磁法、深地震主动源剖面法、地面电磁法、天然地震流动 台阵观测法、井中物探技术以及金属矿地震技术等,鉴于现实情况的考虑,本文 基于“代表性、针对性和透彻性”的论述原则,以括航空放射性技术为研究对象实 施分析。 关键词:地球物理;勘查技术;重要应用;分析 1导言 地球物理勘查技术的应用涉及的领域十分广泛,其不但能够准确的调查和现 实地球地质构造的分布情况,还能在地质工程中,对出现的病害问题进行详细的 检测分析,帮助工作人员在处理问题的过程中提供准确的信息依据,备受众多领 域工作人员的青睐,为很多重要的社会建设活动提供了便利条件。由此,在社会 的发展进程中,地球物理勘查技术的应用将愈加广泛,为我国社会和经济的持续 发展都做出了重要的贡献。 2地球物理勘查技术的基本特点 (1)直接性寻找矿产资源以及地层,以矿体为勘察对象,比如:利用磁法勘探磁铁矿,利用重力法进行盐岩的勘探工作,以及运用激电法对硫化物矿体进行 探测工作等。(2)间接性寻找矿产资源以及地层,在这一工作中以控矿地质体 为勘探对象,比如:在寻找矽卡岩型铁多金属矿时可以采用磁法进行勘探工作, 在寻找钾盐资源时可以采用重力法进行勘探工作,在对油气资源进行探测时可以 采用地震法进行勘探工作。(3)地球物理勘查资料解释的多解性。对于不同的 地质体来说,常常存在很多相似的异常,比如:磁铁矿与基性火山岩容易引起强 磁异常,铜多金属矿与黄铁矿、石墨容易形成激电异常等。(4)地球物理勘查 成果的等效性。在一定的埋藏条件下,地质较小、物性差异大与地质体规模较大、物性差异小的地质体也可以形成相似异常的结果,从而对异常解释形成一定的影响。 3关于地球物理勘查技术的分析 3.1重力勘测 在地球物理勘探技术中,重力测量技术较为普遍,重力仪的重力测量技术精 度主要用于矿体,并对密度差重力变化的形成进行了分析和探讨,这是一种运用 起来较为便捷的矿产勘查方法,同时也可以对地质进行研究。在应用方面,重力 勘测技术多应用于岩浆岩体、沉盆基地、划分断裂等基础物质上,重力勘测技术 还为与金属相关的花岗岩石提供了重要的依据。 3.2磁法勘探 在对矿石和自然界岩石进行磁力勘查时需要用到磁法勘探技术,可以合理地 分析和检测磁场的变化。同时,磁勘探技术也是研究地质问题和勘探资源的重要 手段。通过对相关研究的分析发现,磁性勘探技术是目前最简单的一种勘探方法,它具有成本低、携带方便、工作效率高、勘探结构准确等优点,尤其是在有色金 属的勘探中。此外,在飞机的运行中,飞机磁力仪对航空磁力测量,能在短时间 内实现大范围大范围的区域磁扫描,为飞机的正常运行提供一定的保障。 3.3电法勘探 电法勘探技术是根据矿石与岩石之间的电性差异对矿产的勘查进行分析与找寻。电法勘查技术主要可以分为以下三个方法。(1)直流电阻率法。这一方法

地球物理勘探概论考题

1、视电阻率:若进行测量的地段地下岩石电性分布不均匀时,上式计算出的电阻率称为视电 阻率,它不是岩石的 真电阻率,是地下岩石电性不均匀体的综合反映,通常以rs表示 2、纵向电导:是指电流沿水平方向流过某一电性层时,该层对电流导通能力的大小。 3、各向异性系数:岩石的电阻率具有明显的方向性,即沿层理方向和垂直层理方向岩石的导电性不同,称为岩石电阻率的各向异性。岩石电阻率的各向异性可用各向异性系数λ来表示 4、视极化率:当地形不平或地下不均时,按式η=△U2/△U计算出来的参数称为视极化率。 5、衰减时:把开始的电位差△U2作为1,当△U2变为(30%,50%,60%)时所需的时间称为衰减时S 6、含水因素:测深曲线的衰减时与横轴在一起所包围的面积 7、勘探体积 :长为两个点电源之间距离AB,宽为(1/2)AB,深也为(1/2)AB的勘探长方体 8、扩散电位:两种不同离子或离子相同而活度不同的溶液,其界面上由于离子的扩散速度不同,而形成的电位。 9、卡尼亚电阻率:在非均匀介质条件下,以实测阻抗计算出的量称为卡尼亚视电阻率.它的数学表达式为:ρa=Z2(ωμ)(3)ρa—卡尼尔电阻率(Ω·m) 10、趋肤深度:电场沿Z轴方向前进1/b距离时,振幅衰减为1/e倍。习惯上将距离δ=1/b 称为电磁波的趋肤深度 11、振动图:某点振幅随时间的变化曲线称为振动图 12、波剖面图:某时刻各点振幅的变化称为波剖面 13、视速度:沿射线方向Ds传播的波称为射线速度,是波的真速度V。而位于测线上的观测者看来,似乎波前沿着测线Dx,以速度V*传播,是波的视速度 14均方根速度:在水平层状介质中,取各层层速度对垂直传播时间的均方根值就是均方根速度15、动校正:反射波的传播时间与检波器距离爆炸点的距离远近有关,并与反射界面的倾角、埋深和覆盖层波速有关,由此产生的时差称为正常时差,需要进行正常时差校正,称为动校正。 16、静校正:对由于地表不同检波点的高程和地表低速层的厚度、速度变化等的影响所产生时差的校正称为静校正,它包括井深校正、地形校正、低速带校正。 17、瑞雷面波:在自由表面上产生的沿自由表面传播的面波。地震勘探中的面波指瑞利波。 18、同相轴:同一波相同相位的连线称为同相轴 19、时间剖面 :是地震资料经数字处理后的主要成果。纵轴为t0时间,横轴为CDP点在地面的位置排列,两个CDP 之间的距离为道间距的一半。 20、布格异常:通常,将中间层校正与高度校正合并进行,称为“布格校正”,其重力异常称为“布格异常”。 21、剩余磁化强度 :岩石受地磁场磁化而具有的磁化强度(Mi)。 22、感应磁化强度 :岩、矿石生成时受当时地磁场磁化保留下来的磁化强度(Mr)。 23、品质因素:地震波的吸收可以用品质因素描述。Q定义:在一个周期(或一个波长距离)内,振动损耗能量DE与总能量E之比的倒数。 24、观测系统:表示激发点与接收点之间相互位置,以及排列和排列之间的相互位置关系 25、正常时差:任一接收点反射波传播时间与它的t0时间之差,称为正常时差。 26、地电断面:是按电阻率差异来划分的断面,由不同电性层所构成的断面称为地电断面。 27、信噪比 :有效波振幅与干扰波振幅的比值称为信噪比。 28、纵向分辨率:同一接收点接收的薄层顶、底两个反射波的时差。 29、菲涅尔带:表示地震勘探中的横向分辨率,当地质体的尺寸大于菲涅尔带半径r时地震勘探中可以分辨该地质体,小于r则不能分辨。

地球物理勘探方法综述

TECHNOLOGY WIND 1前言 地球物理勘探是主要有重力法、磁力法、电法、地震法等,它是区域勘探的重要方法之一。尤其是在地面地质无法进行的情况下,对覆盖区域和海洋区域进行勘探尤为有效的方法。它是用物理原理对地下矿产、地质构造进行勘探的一种方法。其作用主要是确定基岩的性质和起伏情况、沉积盖层的厚度和构造的分布特征,是一种间接的勘探方法。 2常用勘探方法 为了获得更好的解释结果,一般采用多种物探方法,然后与地质调查和地质理论相结合,最后进行综合分析判断。研究地下岩石的情况首先要分析岩石的导电性、磁性、密度、地震波传播等物理性质,地下岩石不同物理性质也不同。各种岩矿的物理性质都表现为不同的物理现象,例如磁性不同的岩石,对同一磁铁的作用力不同;密度不同的岩石,重力不同;导电性能不同的岩石在相同的电压作用下,电流分布不同;相同的振动波在不同岩石中传播速度不同。我们现在常用的方法有重力勘探、磁法勘探、电法勘探、地震勘探等。 2.1重力勘探 1)原理:重力勘探是测量由密度差异引起重力异常的地质体,确定异常地质体的空间分布特征,从而对研究区域的地质构造和矿产分布情况作出判断的一种物探方法。地质体与围岩的密度存在一定差别、有足够大的体积、具有有利的埋藏条件、干扰水平低时可以采用重力勘探法。 2)重力勘探的意义:重力勘探法广泛用于勘探石油、天然气和煤;并查明区域构造,确定基底起伏,勘察盐丘、背斜等局部构造;勘探铁、铬、铜、多金属及其他金属矿产;查明与成矿有关的构造和岩体,进行间接找矿;也常用于寻找较大的、地表或者近地表的高密度矿体,并计算矿体的储量;可以探测岩溶,追索断裂破碎带等。我国早在1945年就成立了第一支重力勘探队;1975年任丘古潜山油田的发现,重力勘探做出了巨大的贡献。重力勘探法在查明区域构造特征方面,具有效率高、成本低的特点。 2.2磁法勘探 1)原理:通过探测不同岩石的磁性差异,来了解地下岩石情况的方法,称为磁法勘探。在沉积盆地中,往往会分布着各种磁性地质体,磁法勘探可以圈定磁性地质体的范围,并确定该地质体的性质。地球周围的空间存在着磁场,我们可以认为地球是一个均匀磁化球体,如果地壳某处的磁偏角和磁倾角与北京值不符合时,那么该处可能有带磁性的物质。在油气田区,如果烃类物质向地面渗漏就会形成还原环境,把岩石土壤中的氧化铁还原成磁铁矿,这时就会产出磁异常,利用专门的的仪器可以测出磁异常从而可以发现油气。 2)磁法勘探的意义:通过磁法勘探可以直接寻找磁铁矿床,普查与磁铁矿共生的弱磁性矿床和砂矿床;勘探铝土矿、锰矿、褐铁矿和菱铁矿等弱磁性沉积矿床;勘探油气田和煤田构造,研究磁性基底控制的含油气构造,圈定沉积盖层中的局部构造。 2.3电法勘探 1)原理:电法勘探是以岩石和矿物间的电性差异为基础,通过研究天然电磁场和人工电磁场的空间分布规律进行地质勘探的一种物探方法。当在地下两点供应直流电,地下就会立即形成一个电场,如果地下的导电性是均匀的,那么电流的分布也就是规则的。当然大多数情况下地下的物质分布都是非均质的,这时候的电场就会发生扭曲,电流线分 布就不是规则的,我们通过对电流线的分析,可以判断地下的各种情况。电法勘探的方法有人工场法、天然场法;按地质目标分类有金属与非金属矿电法、石油与天然气电法、水文与工程电法、煤田电法;按电磁场的时间特性分类有直流电法、交流电法、过渡过程法;按产生异常电磁场的原因分类有传导类电法、感应类电法。 2)电法勘探的意义:电法勘探使用的参数较多,应用范围较广,主要用于找水、找油气、找金属和非金属矿产、勘察地下深部地质构造等有关问题,以及各种工程建设中的基础问题。 2.4地震勘探 1)原理:人工方法引起的地震波在地层内进行传播,由于不同的地层其弹性不同,我们利用地震波在不同地层中的传播规律来勘探地下的情况,这就是地震法。我们人工或非人工震源,在地面某处激发产生地震波,当地震波在地下进行传播时,它会遇到不同的地层,在地震波传播到不同地层的分界面时会产生反射或折射,就像我们在平静的池塘中仍一块石头一样,当石头仍进池塘里会产生“水波”,“水波”向四面八方传播开来,当传到水池边上或遇到障碍物时“水波”就会反回来,这就是波的反射。当地震波到达不同地层的分界面时就像遇到障碍物的“水波”一样反回来,我们可以用专门的仪器接收这些反射波或者折射波,最后对这些波的传播时间、振动形状等特点进行分析,来判断地层的岩性。当地震波的传播速度较快时,可能是致密坚硬的岩石,当地震波在某一岩层中的传播速度较慢时,可能是疏松的岩石。利用地震波在地层中的传播特征还可以判断地下深处的构造特征,如背斜、断层、隆起、沉积盖层分布情况等等地质问题。爆炸震源是地震勘探中广泛采用的非人工震源。2)地震勘探的意义:利用地震勘探勘察油气田区域地质构造,地质测深及工程地质勘察,在资源勘探中,地震勘探是油气勘探的最有效方法。自该方法诞生后,已从模拟发展到数字,从最初的一维发展到现在的三维甚至四维,地震勘探法不仅可用于勘探比较复杂地区的油气藏,并且正向着油气开发领域渗透和拓展,它在油气勘探与开发中的地位正日益提高。 3结论 油气勘探技术的更新和油气勘探理论的发展分不开的,自从陆相生油论诞生后,我国的油气勘探理论和技术是突飞猛进。新中国成立初期,我国的石油工业主要依靠前苏联的技术装备,但是现在,我们已经可以在沙漠、戈壁、海洋、沼泽、各种复杂的山地等条件艰苦、地形复杂的地区进行勘探和开发石油和天然气。地球物理勘探属于油气勘探技术的一种,其原理都是利用各种技术手段获取地下的信息,并对最终的解释成果进行综合分析研究,来判断地表以下的各种地质情况。自然地理条件不同选择的勘探方法不同,对仪器的选择也不同,无论是哪一种勘探法都显示出地球物理勘探的优越性和其潜在的价值。无论是哪一种勘探仪器,都向着轻便、高精度、智能化的方向发展。 地球物理勘探方法综述 李国荣 (延安职业技术学院,陕西延安716000) [摘要]地球物理勘探方法是利用物理学原理,以岩石和矿物等介质的物理性质差异为物质基础,通过对地球物理场空间与时间分布规律的 观测和分析,运用现代技术,记录岩石物理现象的变化,进而掌握地下岩矿的性质及分布规律,达到寻找油气的目的。[关键词]地球物理勘探;电法勘探;地震勘探[参考文献] [1]顾功叙.地球物理勘探基础.北京:地质出版社,1990. [2]吴功建.地球物理方法在地质和找矿中的应用.北京:地质出版社,1988.[3]张厚福.石油地质学.北京:石油工业出版社,1999. [4]孙新铭,王正东.油气田勘探.北京:石油工业出版社,2010. 科技前沿 9

相关主题
文本预览
相关文档 最新文档