当前位置:文档之家› 变频恒压供水系统 毕业设计

变频恒压供水系统 毕业设计

变频恒压供水系统    毕业设计
变频恒压供水系统    毕业设计

综合实训报告

实训项目:

系部:电气工程系

专业:

班级:

学号:

姓名:

同组成员:

指导教师:

日期:

摘要

随着社会的发展,恒压供水越来越重要。本系统以PLC与变频器控制水泵工作,根据压力给定的理想值信号及管网水压的反馈信号进行比较,变频器根据比较结果调节水泵的转速,达到控制管网水压的目的。文中重点叙述了变频节能原理,恒压供水原理及PID控制方式。并提供控制系统硬件和控制软件,经现场模拟调试成功,实现运行可靠、节能、低噪,维护简单等效果。恒压供水是指在供水网系中用水量发生变化时,出口压力保持不变的供水方式。系统由可编程控制器、变频器、水泵电机组、压力变送器等构成。共三台电机,其中由一台变频器拖动2台电动机的起动、运行与调速,1台电机备用。控制系统中采用德国SIEMENS公司的S7-300可编程控制器来控制水泵电机的投入台数及运行方式;同时利用其中的数字PID控制器,由FB41将压力给定值与测量值的偏差进行处理,实时控制变频器的输出频率,进而改变水泵电动机的转速来改变水泵出水口流量,实现管网压力的自动调节,使管网压力稳定在设定值附近。此方法具有短路保护、过载保护功能,工作稳定可靠,大大延长了电机的使用寿命

关键词:恒压供水;PLC控制;闭环PID

目录

摘要 (1)

一:引言…………………………………………………………………………………………….. 二:变频恒压供水控制系统简介……………………………………………………...

1.恒压供水系统的目的和意义……………………………………………………..

2.恒压供水系统的特点……………………………………………………………….. 三:变频恒压供水控制系统理论分析……………………………………………...

1.变频恒压供水控制系统构成…………………………………………………….

2.变频恒压供水控制系统理论模型……………………………………………. 四:变频恒压供水控制系统设计与选型………………………………………...

1.变频恒压供水系统设计……………………………………………………………

2.变频恒压供水系统器件选型…………………………………………………..

1)可编程逻辑控制器(plc)简介……………………………………

2)变频器简介………………………………………………………………….

3)变频器与plc的连接…………………………………………………..

4)压力传感器的简介……………………………………………………..

3.变频恒压供水系统主电路设计…………………………………………

4.变频恒压供水系统控制电路设计…………………………………..

1)控制系统主程序设计…………………………………………………..

5. PID设计………………………………………………………………………………

1)PID控制…………………………………………………………………….

五:变频恒压供水控制系统调试……………………………………………………六:总结………………………………………………………………………………………….. 七:研究愿望……………………………………………………………………………………….. 参考文献…………………………………………………………………………………………………附件……………………………………………………………………………………………………….. 致谢词………………………………………………………………………………………………..

一:引言

随着社会经济的飞速发展,城市建设规模的不断扩大,人口的增多以及人们生活水平的不断提高,对城市供水的数量、质量、稳定性提出了越来越高的要求。而我们国家是个水资源和电能短缺的国家,长期以来在市政供水、小区供水,尤其县城、乡镇供水等方面技术一直比较落后,自动化程度低。而其中的老水厂自动控制系统配置相对落后,机组的控制主要依赖值班人员的手工操作。控制过程繁琐,而且手动控制无法对供水管网的压力和水位变化及时做出恰当的反应。在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象。传统的解决办法是采用高位水箱、水塔和各种气压罐进行蓄水加压,依赖挡板和阀门的阻力调节水流量。这种靠水的势能或气压供水方式具有占地面积大、投资高、水泵电机启动频繁、耗电多、管网水压不稳、爆管现象频繁、漏失严重等缺点;不仅生活用水容易受到二次污染,而且水泵电机的频繁开启使设备故障率高,检修、维护也存在困难,而且像水塔这样传统的供水系统,在维护和升级系统方面,是非常昂贵的。因此,如何利用有效的水源和电能保证各行各业正常供水,己是迫在眉睫。

同时随着现代电力电子技术、交流变频调速技术、信息技术、计算机技术和智能控制技术的迅速发展并日趋完善,变频调速技术在供水领域得以运用,实现了水泵电机无级调速,能够极大地改善给水管网的供水环境。所有这些现代自动化控制技术的发展与应用,无疑为现代化高性能的生活供水提供了可能。利用PLC控制技术和变频调速技术开发的全自动恒供水系统,管道内水压恒定,既可以满足供水要求,避免出现供水事故,还可节约电能。

变频恒压供水系统是利用变频器、PLC等器件的有机结合,构成控制系统,调节水泵的输出流量,取代水塔、水箱、气压罐等,实现恒压供水。通过对水泵的智能变频调速控制不仅能实现节能降耗,而且有利于实现供水的自动控制,远程监测,实现生产的自动化。

对供水系统进行的控制,归根结底是为了满足用户对水的压力的需求。本文介绍的恒压供水系统是采用可编程序控制器进行逻辑控制,采用变频器进行压力调节。变频器、可编程序控制器作为系统控制的核心部件,时刻跟踪管网压力与给定压力的偏差变化,经PID运算,通过可编程序控制器控制变频与工频切换,自动控制水泵投入的台数和电机转速,实现闭环自动调节恒压变量供水,在保持恒

压下达到控制流量的目的。

本文首先对供水系统的特性和变频调速的原理进行介绍,在此基础上,提出了本文的主要研究内容和研究方法。对变频调速恒压供水系统的构成和工作过程、控制系统的硬件设计进行研究,通过学习德国SIEMENS公司的S7-300的硬件及其编程语言,做出控制用的相关程序。

二:变频恒压供水控制系统简介

1.恒压供水系统的目的和意义

泵站担负着工农业和生活用水的重要任务,运行中需要大量消耗能量,提高泵站效率;降低能耗,对国民经济有重大意义。我国泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等原因,至使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。目前,大量的动能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当大的比例。因此,研究提水系统的能量模型,找出能够节能的控制策略方法是目前较为重要的一件事。

以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术与一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便的实现供水系统的集中管理与监控;同时系统具有良好节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。

2.恒压供水系统的特点

变频频恒压供水系统在水量增加时,变频器频率升高,水泵转速加快,供水量相应增大;用水量减少时,变频器频率降低,水泵转速减慢,供水量亦相应减小,保证了供水效率用户对水压和水量的要求,同时达到了提高供水品质和供水效率的目的;采用该设备不需建造高位水箱,水塔,水质无二次污染,是一种理想的现代化建筑供水设备。

变频恒压供水系统的主要特点:

①:均配有稳压泵或稳压罐稳压,在用水量小到一定值时,主泵可停止运转,减少水泵电机的机械磨损并且节约电能。与传统供水方式相比变频恒压供水能节能30%-60%。

②:结构紧凑,占地面积小,安装快,投资省,运行稳定,无污染,效率高。

③:配置灵活,自动化程度高,功能齐全,灵活可靠。

④:运行合理,由于一天内的平均转速下降,轴上的平均扭矩和磨损减少,水泵的寿命将大为提高。

⑤:由于能对水泵实现软停和软起,消除了启动电流对电网的冲击。

⑥:采用单片机,程序灵活多变,精度高,可靠性强,反映速度块,操作简便,省时省力。

1.变频恒压供水控制系统构成

变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵连成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。因此,供水系统变频的实质是异步电动机的变频调速。异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。

图1-1

水压由压力传感器的信号4-20mA送入变频器内部的PID模块,与用户设定的压力值进行比较,并通过变频器内置PID运算将结果转换为频率调节信号,以调整水泵电机的电源频率,从而实现控制水泵转速。由于变频器内部自带的PID 调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试更为简单、方便。

变频恒压控制系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上。

图1-2

从图1-2中可以看出,在系统运行过程中,如果实际供水压力低于设定压力,控制系统将得到正的压力差,这个差值经过计算和转换,计算出变频器输出频率的增加值,该值就是为了减小实际供水压力与设定压力的差值,将这个增量和变频器当前的输出值相加,得出的值即为变频器当前应该输出的频率。该频率使水泵机组转速增大,从而使实际供水压力提高,在运行过程中该过程将被重复,直到实际供水压力和设定压力相等为止。如果运行过程中实际供水压力高于设定压力,情况刚好相反,变频器的输出频率将会降低,水泵的转速减小,实际供水压力因此而减小。同样,最后调节的结果是实际供水压力和设定压力相等。

四:变频恒压供水控制系统设计与选型

1.变频恒压供水系统设计

变频恒压供水系统由控制柜,压力传感器,异步电动机及水泵组成,由此构成一个压力负反馈闭环控制系统。压力传感器将管道中的水压值变换成电信号(4~20mA),送入系统内置数字PID控制器进行比较,其偏差值经控制运算后,去控制变频器的输出频率,通过上位机对当前压力信号的反应,再由PLC控制三台水泵电机在工频电网与变频器输出之间切换,改变三台水泵的运转状态和转速,实现压力调节。

控制部分是以德国SIEMENS可编程序控制巡检综合判定,控制输出三个逻辑过程。电气部分包括对水泵电机,变频器的启器S7-300为核心,实现信号采集,动、停止,以及故障检测,指示灯的控制,S7-300据有丰富的指令系统,并且依托STEP7-V5.3良好的编程界面,很方便程序编制和现场调试。S7-300属于模块式PLC,主要由机架、CPU 模块、信号模块、功能模块、接口模块、通信处理器、电源模块和编程设备组成。

传动装置用了富士变频器,适用于异步电机无级调速控制。该变频器的输出控制方式为恒压频比以及IGBT大功率晶体管模块。其优点之一是具有高的切换频率,可输出低谐波分量的正弦波,在低速时电机有更大的输出转矩,降低电机的损耗和噪音,减少了电机运行时的温升。变频器可将输出频率在控制范围内连续可调,控制精度为0.1Hz,从而达到电机依据负载的变化连续平滑调速,减轻了电机的运转抖动。由于变频调速实现异步电机软起动,降低电网的损耗提高了电机运行时的cosφ中,以致于可以省去为改善功率因数的电容补偿以及相应控制设备。

传感器选用了设计中需要测量管道出口处的压力值,故采用远传压力表。可就地显示压力值,还可以将信号送到控制器。

外围设备主要包括执行设备,如水泵、接触器、按钮、选择开关、电流互感器等设备,由于外围设备种类较、型号较杂,且不是本设计的技术难点,故对其选型说明简述至此。

2.器件的选型及介绍

1):可编程逻辑控制器(plc)简介

S7-300属于模块式PLC,主要由机架、CPU 模块、信号模块、功能模块、接口模块、通信处理器、电源模块和编程设备组成。 PLC 采用循环执行用户程序的方式。OB1 是用于循环处理的组织块(主程序),它可以调用别的逻辑块,或被中断程序(组织块)中断。在起动完成后,不断地循环调用OB1,在OB1 中可以调用其它逻辑块(FB, SFB, FC 或SFC)。循环程序处理过程可以被某些事件中断。在循环程序处理过程中,CPU 并不直接访问I/O 模块中的输入地址区和输出地址区,而是访问CPU 内部的输入/输出过程映像区。批量输入、批量输出。

S7-300PLC是模块式的PLC,本设计主要用得的有以下部分:

①中央处理单元(CPU)

各种CPU有不同的性能,例如有的CPU集成有数字量和模拟量输入/输出点,有的CPU集成有PROFIBUS-DP等通信接口。CPU前面板上有状态故障指示灯、模式开关、24V电源端子、电池盒与存储器模块盒。

②信号模块(SM)

信号模块是数字量输入/输出模块和模拟量输入/输出模块的总称,它们使不同的过程信号电压或电流与PLC内部的电信号电平匹配。信号模块主要有数字量输入模块SM321和数字量输出模块SM322,模拟量输入模块SM331和模拟量输出模块SM332。模拟量输入模块可以输入热电阻、热电偶、DC4~20mA和DC0~10V等多种不同类型和不同量程的模拟信号。每个模块上有一个背板总线连接器,现场的过程连接到前连接起的端子上。本设计主要用到的是模拟量输入模块SM331和模拟量输出模块SM332。

③功能模块(FM)

功能模块主要用于对实时性和存储容量要求高的控制任务,例如计数器模块、快速/慢速进给驱动位置控制模块、电子凸轮控制器模块、步进电动机定位模块、伺服电动机定位模块、定位和连续路径控制模块、闭环控制模块、工业标识系统的接口模块、称重模块、位置输入模块、超声波位置解码器等。

水位上限

水位下限

变频器报警

消铃按钮

试验按钮

1号泵工频运行

1号泵变频运行2号泵工频运行2号泵变频运行3号泵工频运行变频器报警高低液位报警报警声1号泵过载

2号泵过载

3号泵过载

图4.1 PLC I/O 点及地址分配图

PLC的接线如图附录A所示,根据控制系统的要求,控制系统应具备的输入/输出点数,名称及地址编号如下表4.2所示。

2.变频器简介

1)变频器的基本结构与分类

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。变频器包括控制电路、整流电路、中间直流电路及逆变电路组成。其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。

变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。

2)变频器的选型

(1):控制方式

控制方式是决定变频器使用性能的关键所在。目前市场上低压通用变频器品牌很多,包括欧、美、日及国产的共约5O多种。选用变频器时不要认为档次越高越好,其实只要按负载的特性,满足使用要求就可,以便做到量才使用、经济实惠。

(2):变频器容量的选择

变频器的容量直接关系到变频调速系统的运行可靠性,因此,合理的容量将保证最优的投资。变频器的容量选择在实际操作中存在很多误区,这里给出了三种基本的容量选择方法,它们之间互为补充。

①从电流的角度:

大多数变频器容量可从三个角度表述:额定电流、可用电动机功率和额定容量。其中后两项,变频器生产厂家由本国或本公司生产的标准电动机给出,或随变频器输出电压而降低,都很难确切表达变频器的能力。

选择变频器时,只有变频器的额定电流是一个反映半导体变频装置负载能力的关键量。负载电流不超过变频器额定电流是选择变频器容量的基本原则。需要

着重指出的是,确定变频器容量前应仔细了解设备的工艺情况及电动机参数,例如潜水电泵、绕线转子电动机的额定电流要大于普通笼形异步电动机额定电流,冶金工业常用的辊道用电动机不仅额定电流大很多,同时它允许短时处于堵转工作状态,且辊道传动大多是多电动机传动。应保证在无故障状态下负载总电流均不允许超过变频器的额定电流。

②从效率的角度:

系统效率等于变频器效率与电动机效率的乘积,只有两者都处在较高的效率下工作时,则系统效率才较高。从效率角度出发,在选用变频器功率时,要注意以下几点:

变频器功率值与电动机功率值相当时最合适,以利变频器在高的效率值下运转。

在变频器的功率分级与电动机功率分级不相同时,则变频器的功率要尽可能接近电动机的功率,但应略大于电动机的功率。

当电动机属频繁起动、制动工作或处于重载起动且较频繁工作时,可选取大一级的变频器,以利用变频器长期、安全地运行。

经测试,电动机实际功率确实有富余,可以考虑选用功率小于电动机功率的变频器,但要注意瞬时峰值电流是否会造成过电流保护动作。

当变频器与电动机功率不相同时,则必须相应调整节能程序的设置,以利达到较高的节能效果。

3).变频器与PLC的连接

图4.3-1 变频器

变频器与PLC的连接如图4.3-2所示,其中变频器各端子功能如下:

R,S,T端子为主电路的电源输入端子,连接三相电源,不需考虑连接相序;U,S,W 端子为变频器输出连接端子,连接三相电机水泵,如电机转动方向不对,则可交换其中的任意两相;G端子为接地端子;端子11为模拟输入信号的公共端子;端子12为设定电压输入端,输入PID控制的反馈信号,以此来设定频率;FWD 端子为正转运行/停止命令端子,端子FWD-CM间:闭合(ON),正转运行;断开(OFF),减速停止,此端子有PLC输出点控制;接点输入公共端CM为接点输入信号的公共端子;X1为选择输入1端子,作为报警复位命令信号端子;Y1、Y2为晶体管输出1端子与晶体管输出2端子,为水位上限与下限报警端子;晶体管输出公共端CME,为晶体管输出信号的公共端子,端子CM和11在变频器内部相互绝缘;可选信号输出继电器端子Y5A,Y5C,为变频器报警输出端子。

图4.3-2 PLC与变频器的连接

4).传感器的简介

传感器的作用是将压力、温度等非电量的物理信号转换成电量信号,以便后续电路进行处理。在此系统中,传感器将供水管中的压力转换成电量信号后,传送到PLC的特殊功能模块,进行数据处理后传给变频器控制电动机。

传感器由敏感芯体和信号调理电路组成,当压力作用于传感器时,敏感芯体内硅片上的惠斯登电桥的输出电压发生变化,信号调理电路将输出的电压信号作放大处理,同时进行温度补偿、非线性补偿,使传感器的电性能满足技术指标的要求。并且压力传感器用于检测管网中的水压,常装设在泵站的出水口,压力传感器和压力变送器是将水管中的水压变化转变为1~5V或4~20mA的模拟量信号,作为模拟输入模块(A/D模块)的输入,在选择时,为了防止传输过程中的干扰与损耗。

在压力测量中,常有绝对压力、表压力、负压力或真空度之分。绝对压力是指被测介质作用在单位面积上的全部压力,用P

A

表示。用来测量绝对压力的仪

表称为绝对压力表。地面上的空气柱所产生的平均压力称为大气压力,用P

表示。用来测量大气压力的仪表叫气压表。绝对压力与大气压力之差称为表压力,

用P

I 表示。即 P

I=

P

A

-P

由于工程上需测量的往往是物体超出大气压力之外所受的压力,因而所使用

的压力仪表测量的值称为表压力。显然当绝对压力值P

A 小于大气压力值P

时,

表压力为负值,所测值称为负压力或称真空压,它的绝对值称为真空度。压力在国际单位制中的单位是牛顿/平方米,通常称为帕斯卡或简称帕(P

a

),工业上常

采用千帕(kP

a )或兆帕(MP

a

)作为压力的单位。

设计中需要测量管道出口处的压力值,故采用远传压力表。可就地显示压力值,还可以将信号送到控制器。

3.变频恒压供水系统系统主电路的设计

①供水系统的主电路图

结合实际情况,本论文的恒压供水系统的主电路如图4. 3所示。系统共有三台电机,分别为Ml、M2、M3。其中Ml、M2均可以在工频或变频两种方式下运行,而M3只能工频运行。每台电机都通过两个接触器与工频电源和变频器输出电源相联,变频器输入电源前面接入一个自动空气开关,来实现电机、变频器的过流过载保护。空气开关的容量依据大电机的额定电流来确定。对于有变频/工频两种工作状态的电动机Ml、M2,还需要在工频电源下面接入两个同样的自动空气开关,来实现电机的过流过载保护,空气开关的容量依据电机的额定电流来确定。接触器KM1、KM3、KM5分别控制M1、M2、M3的工频运行,KM2、KM4控制M1、M2的变频运行。所有接触器的选择都要依据电动机的容量适当选择。FR1、FR2、FR3为三台水泵电机过载保护用的热继电器,QS1、QS2分别为变频器和水泵电机的主电路隔离开关,FU为主电路的熔断器,是作为主电路短路保护用的。VF为通用变频器。

图4.3 供水系统主电路图

变频器主电路电源输入端子(R、S、T)经过空气开关与三相电源连接,变频器主电路输出端子(U、V、W)经接触器接至三相电动机上,当旋转方向预设定不一致时,需要调换输出端子(U、V、W)的任意两相。特别是对于有变频/工频两种状态的电动机,一定要保证在工频电源拖动和变频输出电源拖动两种情况下电机旋向的一致性,否则在变频/工频的切换过程中会产生很大的转换电流,致使转换无法成功。在变频器起动、运行和停止操作中,必须用触摸面板的运行和停止键或者是外控端FWD(REV)来操作,不得以主电路的通断来进行。

4.变频恒压供水系统控制电路设计

图4.4为本系统的控制电路图。控制电路中有独立的自动控制部分和手动控制部分,具有方便的手动和自动切换功能,由控制电路中的转换开关SA来实现。SB1、 SB3、SB5分别为1号泵电机、2号泵电机、3号泵电机的启动按钮。SB2、SB4、 SB6分别为1、2、3号泵电机的停止按钮。HL1、 HL3、HL5分别为三个泵的工频运行指示灯,HL2、HL4为1,2号泵电机的变频运行指示灯,HL6、HL7分别为水位下限和变频器故障报警指示灯,HA为故障电铃。

图4.4控制系统电路图

变频恒压供水控制系统

变频恒压供水控制系统 发表时间:2019-01-08T16:21:17.107Z 来源:《电力设备》2018年第24期作者:蒋正锋[导读] (四川理工技师学院四川成都 611130) 1、系统构成 整个系统由一台PLC,一台变频器,水泵机组(3台),一个压力传感器,低压电器及一些辅助部件构成。 2、系统硬件设计 2.1.1 PLC选型 本系统选用FX2N-32MR型PLC。 2.1.2 接线及I/O分配 2.3 变频器选型及接线 2.3.1 变频器选型 根据设计的要求,本系统选用FR-A740系列变频器。 2.3.2变频器的接线 变频器端子 PLC端子功能 STF Y7 电机正转 FU X2 增泵、减泵 OL X3 增泵、减泵 2.6系统主电路设计 系统主电路接线 3 系统的软件设计 (1)自动运行部分 LD M8002 SET M0 LD X015 CJ P0 LD M0 AND X000 RST M0 SET M2 SET M7 SET M8 1)启动1#泵 按下启动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频启动1#水泵。 LD M2 AND X002 RST M2 SET M1 SET M4 2)启动1#,2#泵: 接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频启动第2#水泵。 LD M1 AND M4 AND X003 RST M1 RST M4 SET M2 3)启动1#泵: 接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 LD M1 AND M3 AND M6 AND X003 RST M6 RST M3 SET M4 4)启动1#,2#泵: 输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频启动。 LD M1 AND M4 AND X003 RST M4 RST M1 SET M2 5)启动1#泵: 接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

各种变频器恒压供水参数

安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F4.01=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10公斤)压力 设定值40,则设定压力为4公斤 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F17= 下限频率,休眠启动模式下为休眠频率 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。

恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1 变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2 恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (4) 2.1 设计任务及要求 (5) 2.2 恒压供水系统主电路设计 (6) 2.3 系统工作过程 (7) 3 器件的选型及介绍 (9) 3.1 变频器简介 (9) 3.1.1 变频器的基本结构与分类 (9) 3.1.2 变频器的控制方式 (9) 3.2 变频器选型 (10) 3.2.1 变频器的控制方式 (10) 3.2.2 变频器容量的选择 (11) 3.2.3 变频器主电路外围设备选择 (13) 3.3 可编程控制器(PLC) (15) 3.3.1 PLC的定义及特点 (15) 3.3.2 PLC的工作原理 (16) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (18) 4.1 PLC的I/O接线图 (18) 4.2 PLC程序 (18) 4.3 变频器参数的设置 (22) 4.3.1 参数复位 (22) 4.3.2 电机参数设置 (22) 总结 (23) 参考文献 (24)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1为供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频恒压供水系统

供水系统方案图

变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,

一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图2.3中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号: ①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 2011320401 学生阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计容 (4) 二、设计要求 (4) 三、设计容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC

变频器恒压供水接线

第一篇 一、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红) 二、开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF 和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反

馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如 3.1V)。按停车键STOP,变频器减速停车。 三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。 第二篇 一、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。 采用泵出口变压力控制系统,则可解决以上的不足,即泵出口的设定压力随用水量的变化而变化,使管道最末端的出口水压恒定在其所需的流出水 头。 ABB公司的ACS510系列变频器是专为风机、水泵控制系统设计的,其中参数“给定增量8103、8104和8105”可完成泵出口变压力控制功能。 二、ACS510中的变压力控制部分参数设置 在多台并联泵供水系统中,随着泵的运行数量的增加,流量会成倍的增大,管道阻力会迅速增高。如果随着流量的变化,增减恒压控制系统的设定压力,做到小流量小压力,大流量大压力,则可以最大限度的较少管道阻力对管道出口压力的影响,并且提高了节能比例。ABB公司的ACS510系列变频器就提供了上述功能。 在ACS510中,参数8103、8104、8105是给定增量参数,他们的作用是每多

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.doczj.com/doc/7815196011.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.doczj.com/doc/7815196011.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

变频器恒压供水课程设计

目录 1变频器恒压供水系统简介 ................................................................... 错误!未定义书签。 1.1变频恒压供水系统节能原理 .................................................... 错误!未定义书签。 1.2变频恒压控制理论模型 ............................................................ 错误!未定义书签。 1.3恒压供水控制系统构成 ............................................................ 错误!未定义书签。 1.4恒压供水系统特点 .................................................................... 错误!未定义书签。 1.5恒压供水设备的主要应用场合 ................................................ 错误!未定义书签。2变频恒压供水系统设计 ....................................................................... 错误!未定义书签。 2.1设计任务及要求 ........................................................................ 错误!未定义书签。 2.2系统主电路设计 ........................................................................ 错误!未定义书签。 2.3系统工作过程 ............................................................................ 错误!未定义书签。 2.3.1减泵过程 ....................................................................... 错误!未定义书签。 2.3.2加泵过程 ....................................................................... 错误!未定义书签。 3 器件介绍及选型 .................................................................................. 错误!未定义书签。 3.1变频器介绍 ................................................................................ 错误!未定义书签。 3.2变频器的种类 ............................................................................ 错误!未定义书签。 3.3变频器选型 ................................................................................ 错误!未定义书签。 3.3.1变频器的控制方式 ....................................................... 错误!未定义书签。 3.3.2变频器容量的选择 ......................................................... 错误!未定义书签。 3.3.2变频器主电路外围设备选择 ......................................... 错误!未定义书签。 3.4可编程逻辑控制器(PLC)..................................................... 错误!未定义书签。 3.4.1 PLC的工作原理 ........................................................... 错误!未定义书签。 3.4.2 PLC及压力传感器的选择 ........................................... 错误!未定义书签。4PLC编程及变频器参数设置............................................................ 错误!未定义书签。 4.1 PLC的I/O接线图 ............................................................... 错误!未定义书签。 4.2 PLC .......................................................................................... 错误!未定义书签。 4.3 变频器参数的设置 ................................................................. 错误!未定义书签。总结 .......................................................................................................... 错误!未定义书签。参考文献 .................................................................................................. 错误!未定义书签。

变频恒压供水系统组成及工作原理

变频恒压供水系统组成及工作原理变频恒压供水最简单的方式:一台变频器,一个电接点压力表。变频器是电子元件,没有机械运动;水泵总的转速还是跟水量成比例的。另外,供水系统对水压没精度要求,况且压力波动不会超过0.02MPa(设定0.3MPa时)。变频器在恒压供水系统中的应用变频恒压供水主要有分为:恒压变流量和变压变流量两大类。 一、变频恒压供水系统组成 系统为变频恒压的供水系统,分为冷水、热水两大供水系统,系统为1拖1的恒压供水,两台电机为互备,可选择使用1#泵或2#泵运行,KM3、 KM8为手动工频运行选择,作为变频的维修系统备用,KM2 ,KM3、 KM7,KM8为机械互锁的接触器,保证选择变频运行和工频运行的正确切换。 变频恒压供水的基本原理:以压力传感器和变频器组成闭环系统,根据系统管网的压力来调节电机的转速,实现高峰用户的水压恒定,和低峰时的变频的休眠功能,得到恒压供水和节能的目的。 二、系统硬件参数 热水系统: 电机参数: Pe=15kw Ue=380v Ie=26.8A Ne=1490rpm 变频器型号: 6SE64430-2AD31-8DA0 Pe=18.5kw Ie=38A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5Mpa 冷水系统: 电机参数: Pe=22kw Ue=380v Ie=39.4A Ne=2940rpm 变频器型号: 6SE64430-2AD33-7EA0 Pe=30.5kw Ie=62A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5MPa 三、PID闭环控制功能原理及调试方法 变频器的内置PID功能,利用装在水泵附近的主出水管上的压力传感器,感受到的压力转化为4-20mA电信号作为反馈信号。根据变频恒压的层高设定压力值作为给定值,变频器内置调节器作为压力调节器,调节器将来自压力传感器的压力反馈信号与出口压力给定值比较运算,其结果作为频率指令输送给变频器,调节水泵的转速使出口压保持一定。即当用水量增加,水压降低时,调节器使变

变频恒压供水系统

变频恒压供水系统文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

供水系统方案图 变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系 统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号:

①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵)进行控制。 ②变频器:它是对水泵进行转速控制的单元。变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。 ③电控设备:它是由一组接触器、保护继电器、转换开关等电气元件组成。用于在供水控制器的控制下完成对水泵的切换、手/自动切换等。 (4)人机界面 人机界面是人与机器进行信息交流的场所。通过人机界面,使用者可以更改设定压力,修改一些系统设定以满足不同工艺的需求,同时使用者也可以从人机界面上得知系统的一些运行情况及设备的工作状态。人机界面还可以对系统的运行过程进行监示,对报警进行显示。 (5)通讯接口

变频恒压供水系统课程设计说明书

课 程 设 计 2015 年 6 月 21 日 题 目 恒压供水控制系统设计 学 院 物流工程学院 专 业 物流工程 班 级 物流xz1202 姓 名 尹国泰 指导教师 于蒙

课程设计任务书 学生姓名:尹国泰专业班级:物流xz1202 指导教师:于蒙工作单位:物流工程学院 题目:变频恒压供水控制系统设计 初始条件: 1)PLC型号:西门子公司S7系列,S7-300 2)编程环境:SIMATIC Manager /Step7 V5.5 3)根据控制要求分配PLC I/O地址,画出PLC与控制对象的接线图,设计控制流程,按照模块化的方式设计程序,既可以采用LAD编程,也可以采用STL编程,还可以采用组合方式编程。 4)编写的需要输入PLC,调试通过。 要求完成的主要任务: 系统控制要求对三泵生活/消防双恒压供水系统的基本要求是: 1)生活供水时,系统应低恒压值运行,消防供水时系统高恒压值运行; 2)三台泵根据恒压的需要,采取“先开后停”的原则接入和退出; 3)在用水量小的情况下,如果一台泵连续运行时间超过3小时,则要切换到下系统“倒泵功能”,避免某一台泵工作时间过长; 4)三台泵在起动时要有软起动功能; 5)要有完善的报警功能; 6)对泵的操作要有手动控制功能,手动只在应急或检修时临时使用。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

本科生课程设计成绩评定表 指导教师签字: 2015年06 月16 日

基于S7-300-PLC控制的恒压供水系统的设计 摘要 随着经济与技术的发展,对PLC的应用不断扩大到各个领域,从生产制造到日常应用,逐渐形成了一系列以PLC为核心的系统。将PLC应用到恒压供水控制系统中,可以实现恒压供水系统的自动控制,降低整套系统的运行及维护费用,并且提高整套系统的安全性和可靠性。PLC在恒压供水控制系统中的应用,具有巨大的经济和社会价值。在此我们以PLC控制技术为核心,采用了德国西门子公司出产的SIMATIC S7-300系列的PLC,并在此基础上结合传感器技术,论述了恒压供水控制系统的软硬件设计方案及其控制原理,实现了恒压供水系统在生活供水时的低恒压运行和消防供水时的高恒压运行之间的自动转换,以及紧急情况或检修时的手动控制。通过软件的仿真运行,说明了所设计的恒压供水控制系统运行可靠,能够满足实际需要。 关键词:PLC应用;恒压供水;S7-300;运行转换

变频恒压供水原理说明

变频恒压供水原理说明 变频恒压供水设备利用专门为风机、泵类、空气压缩机等流量和压力控制特点而研制的专用变频调速器。利用变频器的一拖三功能,而不采用昂贵的PLC就可以自动控制泵组的运行与退出台数,而且内置PID功能与我司开发的专门处理恒压供水的控制板,可以方便地与远传压力表连用,同而完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。为客户节省成本,具有较高的经济性和实用性。 一、变频恒压供水特点: 1、恒压供水能自动24小时维持恒定压力,并根据压力信号自动启动备用泵,无级调整压力,供水质量好,与传统供水比较,不会造成管网破裂及水龙头共振现象。 2、动平滑,减少电机水泵的冲击,延长了电机及水泵的使用寿命,避免了传统供水中的水锤现象。 3、采用变频恒压供水保护功能齐全,运行可靠,具有欠压、过压、过流、过热等保护功能。 4、系统配置可实现全自动定时供水,彻底实现无人值守自动供水.控制系统具有故障报警和显示功能,并可进行工变频转换,应急供水。 5、系统根据用户用水量的变化来调节水泵转速,使水泵始终工作在高效区,当系统零流量时,机组进入休眠状态,水泵停止,流量增加后才进行工作,节电效果明显,比恒速水泵节电23%-55%。 6、变频恒压供水设备不设楼顶水池,既减少建筑物的造价,又克服了水源二次污染,气压波动大,水泵启动频繁和建造水塔一次性投资大,施工周期长,费用高等缺点。 7、整套设备只需一组控制柜和水泵机组,安装非常方便,占地面积少。 8、本设备采用全自动控制,操作人员只需转换电控柜开关,就可以实现用户所需工况,操作简单。 二、工作原理: 变频恒压供水系统采用一电位器设定压力(也可采用面板内部设定压力),采用一个压力传感器(反馈为4~20mA)检测管网中压力,压力传感器将信号送入变频器PID回路,PID回路处理之后,送出一个水量增加或减少信号,控制马达转速。如在一定延时时间内,压力还是不足或过大,则通过变频器作工频/变频切换起动另一台水泵,使实际管网压力与设定压力相一致。另外,随着用水量的减少,变频器自动减少输出频率,达到了节能的目的。 三、变频恒压供水系统控制图(以一台变频器控制一台马达为例): 例:使用远传压力表,量程0-10kg,反馈4-20mA,要求5kg压力供水,上限6kg,下限4kg,面板起动停止,电位器给定目标值。 四、适用范围:

变频恒压供水的应用方案

变频恒压供水的应用方案 一、前言 随着变频调速技术的发展和人们对生活饮用水品质要求的不断提高,变频供水设备已广泛应用于多层住宅小区生活及高层建筑生活消防供水系统。变频调速供水设备一般具有设备投资少,系统运行稳定可靠,占地面积小,节电节水,自动化程度高,操作控制方便等特点。但在实际应用中若选型及控制不当,不但达不到节能目的,反而“费电”。以下结合我们多年来的实践经验,对几种变频供水系统的应用及其控制方法进行介绍,供同行及用户在设计、改造、选型时参考。 二、一拖二变频供水方式(见图1) 适用一般小区恒压供水,特点:是无需附加供水控制盒,成本低。利用变频器本身内置的恒压PID 控制功能。就能达到2 台水泵循环启停功能。 三、带小流量循环软启动变频供水设备(如3+1 供水模式,见图2) 该类型设备在实际应用中较多,系统由水泵机组、循环软启动变频柜、压力仪表、管路系统等构成。变频柜由变频调速器,供水盒(PLC+AD 模块+DA 模块),低压电器等构成。系统一般选择同型号水泵2~3 台,以3 台泵为例,系统的工作情况如下: 平时1 台泵变频供水,当1 台泵供水不足时,先开的泵切换为工频运行,变频柜再软启动第2 台泵,若流量还不够,第2 台泵切换为工频运行,变频柜再软启动第3 台泵。若用水量减少,按启泵顺序依次停止工频泵,直到最后1 台泵变频恒压供水。 另外系统具有定时换泵功能,若某台泵连续运行超过24h 变频柜可自动停止该泵切换到下一台泵继续变频运行。换泵时间由程序设

定,可按要求随时调整。这样可均衡各泵的运行时间,延长整体泵组的寿命,防止个别水泵因长时间不工作而锈死。 当变频供水系统在小流量或零流量的情况下,比如在夜间用水低谷时,系统内的用水量很小,此时水泵在低流量下运行,会造成水泵效率大大降低,不能达到节能的目的,水泵功率越大用电越多。例如对300~1000 户的多层住宅小区或600 户左右的小高层住宅楼群(12 层以内)的生活用水系统,生活主泵功率一般在15kW 左右,系统的零流量频率fo 一般为25~35Hz 故在夜间小流量时,采用主泵变频供水效率较低。 这就涉用供水系统在小流量或零流量时的节电问题,一般可以采取4 种方案:a 变频主泵+工频辅泵;b 变频主泵+工频辅泵+气压罐; c 变频主泵+气压罐; d 变频主泵+变频辅泵。从节能、投资角度看第4 种方案更为适宜,该方案即在原变频主泵基础上,再配备1~2 台小泵专用在夜间或平时小流量时变频供水,一般选择小泵流量为3~6m3/h,居民区户数越多,流量可适当选择大些。小泵功率一般为1.5~3kW,小泵的扬程按主泵的扬程或略低扬程即可。 四、深水井变频供水设备

变频调速恒压供水系统设计

摘要 随着改革开放的不断深入,我国中小城市的城市建设及其经济迅猛发展,人民的生活水平不断提高;同时,城市需水量日益加大,对城市供水系统提出了更高的要求。供水的可靠性、稳定性、经济节能性直接影响到城区的建设和经济的发展,也影响到城区居民的正常工作和生活。本文根据城区供水管网改造工程设计了一套由PLC、变频器、远传压力表、多台水泵机组、计算机等主要设备构成的全自动变频恒压供水及其远程监控系统,具有自动工频/变频恒压运行、可实现远程自动控制和现场手动控制等功能。论文分析了采取变频调速方式实现恒压供水相对于传统的阀门控制恒压供水方式的节能机理。通过对变频器内置PID模块参数的预置,利用远传压力表的水压反馈量,构成闭环系统,根据用水量的变化,采取PID调节方式,在全流量范围内利用变频泵的连续调节和工频泵的分级调节相结合,实现恒压供水且有效节能。论文论述了采用多泵并联供水方案的合理性,分析了多泵供水方式的各种供水状态及转换条件,分析了电机由变频转工频运行方式的切换过程及存在的问题。给出了实现有效状态循环转换控制的电气设计方案和PLC控制程序设计方案。系统有效地解决了传统供水方式中存在的问题,增强了系统的可靠性。并与计算机实现了有机的结合,提升了系统的总体性能。 关键词:PLC;变频调速;恒压供水;变频工频切换 Abstract With the continuous deepening of reforming and opening up, the construction and economy of small and medium-sized cities in China have developed rapidly. People's living standards have improved constantly. The water supply system is demanded more as city water consum ption increasing. The urban construction and economic development and also people’s daily work and life are impacted directly by the reliability, stability and the economical of energy conservation of the water supply system.An autom atic conversion and voltage constant Water Supply and remote monitoring system, which consist of the PLC, the converter, the remote transition pressure gauges, the multi-pumps unit, the computer and so on. It is of automatic line-frequency /conversion function, remote and local automatic control. In this paper, the mechanism of energy

恒压供水课程设计

目录 1引言 (1) 2系统总体方案设计 (3) 2.1系统硬件配置及组成原理 (3) 2.2系统变量定义及地址分配表 (4) 3系统硬件设计 (5) 3.1控制系统原理接线图设计 (5) 3.2系统可靠性设计 (5) 4控制系统软件设计 (8) 4.1控制程序设计思路 (8) 4.2PLC控制程序设计 (9) 5上位机监控系统设计 (10) 5.1监控系统具有的功能及方案 (10) 5.2PLC与上位机监控软件的通讯方案及硬件连接方法 (10) 5.3上位机监控系统组态设计 (10) 5.4实际达到的效果 (11) 6触摸屏监控系统设计 (14) 6.1触摸屏监控系统功能介绍 (14) 6.2触摸屏监控系统的总方案 (14) 6.3PLC与触摸屏的通讯方案及硬件连接方法 (14) 6.4触摸屏监控系统组态设计 (14) 7系统调试及结果分析 (21) 结束语 (23) 附录A (25) 附录B (32)

1、引言 自动化系统集成是以大中型plc及其网络技术应用为主线,涵盖plc 工控系统集成的相关技术,是以应用为目地,理论与应用紧密结合,广泛应用于工控领域的实用技术。在学习自动化系统集成相关专业课程以后,需要通过综合实践环节强化各科专业知识综合应用能力工程意识,动手能力,创新能力。 自动化系统集成专业方向的课程设计是通过指导设计一个小型自动化系统集成的课题,完成满足控制要求的plc控制系统集成,控制系统硬件设计,plc控制程序设计,监控系统设计,运行调试,并撰写课程设计报告。使学生的理论基础和动手能力得到进一步巩固,使学生对自动化系统集成的过程有一个全面的了解,提高专业知识的综合应用能力和工程实践能力。 1.1 要求达到的目的: 1 了解自动化系统集成的全过程; 2 掌握控制系统电气系统图,原理图的设计; 3 能够根据设计的原理图完成电气接线; 4 能够根据控制要求完成该软件的设计及调试; 5 能够根据监控要求完成监控系统设计及调试; 6 能够完成控制系统综合调试。 1.2 设计内容及目标: 1分析恒压供水控制系统的要求,根据使用环境、控制要求列出控制系统需要的输入输出。选择可编程控制器的产品系列及型号(包括CPU 模块和扩展模块)、变频器的型号以及触摸屏的型号,完成控制系统集成。 2根据恒压供水控制系统的要求,设计并绘制控制系统组成图、电气控制原理图(包括主电路、控制电路图及PLC外部接线图)。 3根据系统电气控制原理图完成电气接线,并检查硬件系统是否符合控制要求和规范化要求。 4 根据恒压供水控制系统要求设计PLC控制程序,在STEP7编程软件上完成系统组态,并编写控制程序,将控制程序下载到PLC中进行调试,运行、调试、修改、完善,直至控制程序满足控制要求。 5 用组态软件设计恒压供水系统的监控系统,在组态监控界面上显示设备运行状态,并模拟显示设备的动作,调试,直至满足要求。 6 用威纶触摸屏设计现场监控系统,调试,直至满足要求。 7 通过对被控对象系统的硬件设计、PLC控制程序设计、监控程序

相关主题
文本预览
相关文档 最新文档