当前位置:文档之家› 八年级初二数学勾股定理练习题含答案

八年级初二数学勾股定理练习题含答案

八年级初二数学勾股定理练习题含答案
八年级初二数学勾股定理练习题含答案

八年级初二数学勾股定理练习题含答案

一、选择题

1.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=6,DC=2,点P是AB上的动点,则PC+PD的最小值为()

A.8 B.10 C.12 D.14

2.如图,在△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板ADE如图放置,连接BE,EC.下列判

断:①△ABE≌△DCE;②BE=EC;③BE⊥EC;④EC=3DE.其中正确的有( )

A.1个B.2个C.3个D.4个

3.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()

A.(2

)2013B.(

2

)2014C.(

1

2

)2013D.(

1

2

)2014

4.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D 的边长为( )

A .3cm

B .14cm

C .5cm

D .4cm 5.如果直角三角形的三条边为3、4、a ,则a 的取值可以有( ) A .0个

B .1个

C .2个

D .3个

6.如图,△ABC 中,AB=10,BC=12,AC=213,则△ABC 的面积是( ).

A .36

B .1013

C .60

D .1213 7.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( ) A .4

B .16

C .34

D .4或34

8.如图,BD 为ABCD 的对角线,45,DBC DE BC ?

∠=⊥于点E ,BF ⊥DC 于点F ,DE 、BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①1

2

CE BE =

;②A BHE ∠=∠;③AB=BH;④BHD BDG ∠=∠;⑤222BH BG AG +=;其中正确的结论有( )

A .①②③

B .②③⑤

C .①⑤

D .③④ 9.下列各组数据,是三角形的三边长能构成直角三角形的是( )

A .2,3,4

B .4,5,6

C .2223,4,5

D .6,8,10

10.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为( ) A .7.5平方千米

B .15平方千米

C .75平方千米

D .750平方千米

二、填空题

11.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,

BD CD ⊥,则AD BC +等于_________.

12.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.

13.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)

14.在ABC ?中,90BAC ∠=?,以BC 为斜边作等腰直角BCD ?,连接DA ,若

22AB =,42AC =,则DA 的长为______.

15.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________

16.如图,正方体的底面边长分别为2cm 和3cm ,高为5cm .若一只蚂蚁从P 点开始经过四个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为_____cm .

17.如图,在矩形ABCD中,AD>AB,将矩形ABCD折叠,使点C与点A重合,折痕为

MN,连接CN.若△CDN的面积与△CMN的面积比为1:3,则

2

2

MN

BM

的值为

______________.

18.如图所示,四边形ABCD是长方形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.

19.如图,把平面内一条数轴x绕点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:已知点P是平面斜坐标系中任意一点,过点P作y轴的平行线交x轴于点A,过点P作x轴的平行线交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标.在平面斜坐标系中,若θ=45°,点P的斜坐标为(1,22),点G的斜坐标为(7,﹣22),连接PG,则线段PG的长度是_____.

20.四个全等的直角三角形按图示方式围成正方行ABCD,过各较长直角边的中点作垂线,围成面积为4的小正方形EFGH,已知AM为Rt△ABM的较长直角边,AM7EF,则正方形ABCD的面积为_______.

三、解答题

21.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处. (1)求BF 的长; (2)求CE 的长.

22.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,

(1)求a ,b ,c 的值;

(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.

23.Rt ABC ?中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .

24.已知ABC ?中,AB AC =.

(1)如图1,在ADE ?中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:

BD CE =

(2)如图2,在ADE ?中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,

CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;

(3)如图3,在BCD ?中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求

AD

AB

的值.

25.如图,己知Rt ABC ?,90ACB ∠=?,30BAC ∠=?,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .

(1)直接写出BC =__________,AC =__________; (2)求证:ABD ?是等边三角形;

(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;

(4)P 是直线AC 上的一点,且1

3

CP AC =

,连接PE ,直接写出PE 的长. 26.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠?,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .

(1)求证:CED ADB ∠=∠; (2)若=8AB ,=6CE . 求BC 的长 .

27.如图,点A 是射线OE :y =x (x ≥0)上的一个动点,过点A 作x 轴的垂线,垂足为B ,过点B 作OA 的平行线交∠AOB 的平分线于点C .

(1)若OA =2,求点B 的坐标;

(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .

(3)①若点A 的坐标为(2,2),射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由. ②在(3)①的条件下,在平面内另有三点P 122),P 2(2,2),P 3

(2,22),请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)

28.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.

(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 . (2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.

29.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.

(1)求∠EDF= (填度数);

(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;

(3)①若AB=6,G是AB的中点,求△BFG的面积;

②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.

30.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.

(1)求证:∠ABE=∠CAD;

(2)如图2,以AD为边向左作等边△ADG,连接BG.

ⅰ)试判断四边形AGBE的形状,并说明理由;

ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.B

解析:B

【分析】

过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=2,BD=6,得到BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.

【详解】

解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.

此时DP+CP=DP+PC′=DC′的值最小.

∵DC=2,BD=6,

∴BC=8,

连接BC′,由对称性可知∠C′BA=∠CBA=45°,

∴∠CBC′=90°,

∴BC′⊥BC,∠BCC′=∠BC′C=45°,

∴BC=BC′=8,

根据勾股定理可得DC′=2222

'+=+=.

8610

BC BD

故选:B.

【点睛】

此题考查了轴对称﹣线路最短的问题,确定动点P为何位置时 PC+PD的值最小是解题的关键.

2.C

解析:C

【分析】

根据AC=2AB,点D是AC的中点求出AB=CD,再根据△ADE是等腰直角三角形求出

AE=DE,并求出∠BAE=∠CDE=135°,然后利用“边角边”证明△ABE和△DCE全等,从而判断出①小题正确;根据全等三角形对应边相等可得BE=EC,从而判断出②小题正确;根据全等三角形对应角相等可得∠AEB=∠DEC,然后推出∠BEC=∠AED,从而判断出③小题正确;

2倍,用DE表示出AD,然后得到AB、AC,再根据勾股定理用DE与EC表示出BC,整理即可得解,从而判断出④小题错误.

【详解】

解:∵AC=2AB,点D是AC的中点,

∴CD=

1

2

AC=AB , ∵△ADE 是等腰直角三角形, ∴AE=DE ,

∠BAE=90°+45°=135°,∠CDE=180°-45°=135°, ∴∠BAE=∠CDE , 在△ABE 和△DCE 中,

AB CD BAE CDE AE DE =??

∠=∠??=?

, ∴△ABE ≌△DCE (SAS ),故①小题正确; ∴BE=EC ,∠AEB=∠DEC ,故②小题正确; ∵∠AEB+∠BED=90°, ∴∠DEC+∠BED=90°, ∴BE ⊥EC ,故③小题正确; ∵△ADE 是等腰直角三角形, ∴

DE ,

∵AC=2AB ,点D 是AC 的中点, ∴

DE ,

DE ,

在Rt △ABC 中,BC 2=AB 2+AC 2=

DE )2+(

DE )2=10DE 2, ∵BE=EC ,BE ⊥EC , ∴BC 2=BE 2+EC 2=2EC 2, ∴2EC 2=10DE 2,

解得

,故④小题错误, 综上所述,判断正确的有①②③共3个. 故选:C . 【点睛】

本题考查了全等三角形的判定与性质,等腰直角三角形的性质,准确识图,根据△ADE 是等腰直角三角形推出AE=DE ,∠BAE=∠CDE=135°是解题的关键,也是解决本题的突破口.

3.C

解析:C 【分析】

根据等腰直角三角形的性质可得出S 2+S 2=S 1,写出部分S n 的值,根据数的变化找出变化规

律“S n =(

12)n?3

”,依此规律即可得出结论. 【详解】

解:在图中标上字母E ,如图所示.

∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形, ∴DE 2+CE 2=CD 2,DE=CE , ∴S 2+S 2=S 1.

观察,发现规律:S 1=22=4,S 2=12S 1=2,S 3=12S 2=1,S 4=12S 3=1

2

,…, ∴S n =(

12

)n?3

. 当n=2016时,S 2016=(12)2016?3=(12

)2013. 故选:C . 【点睛】

本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是

找出规律“S n =(

12

)n?3

”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n 的值,根据数值的变化找出变化规律是关键.

4.B

解析:B 【解析】 【分析】

先求出S A 、S B 、S C 的值,再根据勾股定理的几何意义求出D 的面积,从而求出正方形D 的边长. 【详解】

解∵S A =6×6=36cm 2,S B =5×5=25cm 2,Sc=5×5=25cm 2, 又∵1010A B C D S S S S +++=? , ∴36+25+25+S D =100, ∴S D =14,

∴正方形D 14 故选:B. 【点睛】

本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.

5.C

解析:C 【解析】 【分析】

根据勾股定理求解即可,注意要确认a 是直角边还是斜边. 【详解】

解:当a 是直角三角形的斜边时,22345a =+= ; 当a 为直角三角形的直角边时,22437a =-=. 故选C . 【点睛】

本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.

6.A

解析:A 【分析】

作AD BC ⊥于点D ,设BD x =,得222AB BD AD -=,222AC CD AD -=,结合题意,经解方程计算得BD ,再通过勾股定理计算得AD ,即可完成求解. 【详解】

如图,作AD BC ⊥于点D

设BD x =,则12CD BC x x =-=- ∴222AB BD AD -=,222AC CD AD -= ∴2222AB BD AC CD -=- ∵AB=10,AC=213∴(()2

2

2

2

1021312x x -=--

∴8x = ∴22221086AD AB BD =

-=-=

∴△ABC 的面积11

1263622

BC AD =?=??= 故选:A . 【点睛】

本题考察了直角三角形、勾股定理、一元一次方程的知识,解题的关键是熟练掌握勾股定理的性质,从而完成求解.

7.D

解析:D 【解析】

试题解析:当3和5

当5. 故选D .

8.B

解析:B 【分析】

根据直角三角形的意义和性质可以得到解答. 【详解】

解:由题意,90BHE HBE C HBE A C ∠+∠=∠+∠=?∠=∠, ∴A BHE C ∠=∠=∠,②正确;

∵∠DBC=45°,DE ⊥BC ,∴∠EDB=∠DBC=45°,∴BE=DE ∴Rt BEH Rt DEC ?,∴BH=CD=AB ,③正确; ∵AB CD BF CD ⊥,,∴AB ⊥CD ,

∴222AB BG AG +=即 222BH BG AG +=,⑤正确, ∵没有依据支持①④成立,∴②③⑤正确 故选B . 【点睛】

本题考查直角三角形的意义和性质,灵活应用有关知识求解是解题关键.

9.D

解析:D 【分析】

根据勾股定理的逆定理对各选项进行判断即可. 【详解】

解:A 、∵22+32=13≠42,∴不能构成直角三角形,故本选项不符合题意; B 、∵42+52=41≠62,∴不能构成直角三角形,故本选项不符合题意;

C 、∵222222(3)(4)337(5)+=≠,∴不能构成直角三角形,故本选项不符合题意;

D 、∵62+82=100=102,∴能构成直角三角形,故本选项符合题意. 故选:D . 【点睛】

本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.

10.A

解析:A 【解析】

分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.

详解:∵52+122=132,

∴三条边长分别为5里,12里,13里,构成了直角三角形, ∴这块沙田面积为:1

2

×5×500×12×500=7500000(平方米)=7.5(平方千米). 故选A .

点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.

二、填空题

11.3 【分析】

由//AD BC ,BD 平分ABC ∠,易证得ABD ?是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=?,则可求得BC 的值,继而求得AD BC +的值. 【详解】

解:∵//AD BC ,AB DC =, ∴C ABC ∠=∠,ADB DBC ∠=∠, ∵BD 平分ABC ∠,

∴2ABC DBC ∠=∠,ABD DBC ∠=∠, ∴ABD ADB ∠=∠, ∴1AD AB ==, ∴2C DBC ∠=∠, ∵BD CD ⊥, ∴90BDC ∠=?, ∵三角形内角和为180°, ∴90DBC C ∠+∠=?, ∴260C DBC ∠=∠=?, ∴2212BC CD ==?=, ∴123AD BC +=+=. 故答案为:3. 【点睛】

本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.

12. 【分析】

延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=?,在Rt ABE ?中,利用含30角的直

角三角形的性质求出28BE AB ==,根据勾股定理求出AE =.同理,在Rt DEC ?中

求出283CE CD ==,2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ??=-四边形,计算即可求解. 【详解】

解:如图,延长CA 、DB 交于点E ,

∵四边形ABDC 中,120ABD ∠=?,AB AC ⊥,BD CD ⊥, ∴60C ∠=°, ∴30E ∠=?, 在Rt ABE ?中,

4AB =,30E ∠=?,

∴28BE AB ==,

2243AE BE AB ∴=-=. 在Rt DEC ?中,

30E ∠=?,43CD =,

283CE CD ∴==,

2212DE CE CD ∴=-=,

∴1

443832

ABE S ?=??=,

1

43122432

CDE S ?=??=,

24383=163CDE ABE ABDC S S S ??∴=-=-四边形. 故答案为:163.

【点睛】

本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键. 13.【分析】

这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出. 【详解】

解:如图,一条直角边(即木棍的高)长20尺,

另一条直角边长7×3=21(尺),

22

2021

=29(尺).

答:葛藤长29尺.

故答案为:29.

【点睛】

本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.

14.6或2.

【分析】

由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:

①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;

②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.

【详解】

解:分两种情况讨论:

①当D点在BC上方时,如图1所示,

把△ABD绕点D逆时针旋转90°,得到△DCE,

则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°

在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,

∴∠ABD+∠ACD=360°-180°=180°,

∴∠ACD+∠ECD=180°,

∴A、C、E三点共线.

∴222

在等腰Rt△ADE中,AD2+DE2=AE2,

即2AD2=(2)2,解得AD=6

②当D点在BC下方时,如图2所示,

把△BAD绕点D顺时针旋转90°得到△CED,

则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,

所以∠EAD=∠AED=45°,

∴∠BAD=90°+45°=135°,即∠CED=135°,

∴∠CED+∠AED=180°,即A、E、C三点共线.

∴AE=AC-CE=42-22=22

在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.

故答案为:6或2.

【点睛】

本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.15.

【解析】

【分析】

延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.

【详解】

如图,延长AD、BC相交于E,

∵∠A=60°,∠B=∠ADC=90°,

∴∠E=30°

∴AE=2AB ,CE=2CD ∵AB=3,AD=4, ∴AE=6, DE=2 设CD=x,则CE=2x ,DE=x

即x=2

x=

即CD=

故答案为:

【点睛】

本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE 和直角△CDE ,是解题的关键. 16.55 【解析】 【分析】

要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答. 【详解】 展开图如图所示:

由题意,在Rt △APQ 中,PD=10cm ,DQ=5cm ,

∴蚂蚁爬行的最短路径长2222105PD QD +=+5cm ), 故答案为:5 【点睛】

本题考查了平面展开﹣最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题. 17.12

【解析】

如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有: MA=MC ,NA=NC ,∠AMN=∠CMN.

因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN. 所以∠AMN=∠ANM,所以AM=AN. 所以AM=AN=CM=CN.

因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3. 设DN=x ,则CG=x ,AM=AN=CM=CN=3x , 由勾股定理可得()

2

2322x x x -=,

所以MN 2

=()

()2

2

22312x

x x x +-=,BM 2=()()

2

2

232x x

x -=.

所以22

2

212MN x BM x ==12. 枚本题应填12.

点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解.

18.

78 【解析】

试题分析:根据矩形性质得AB=DC=6,BC=AD=8,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理可计算出BE 的长即可. 试题解析:∵四边形ABCD 为矩形, ∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°, ∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E , ∴∠DAC=∠D′AC, ∵AD∥BC,∴∠DAC=∠ACB, ∴∠D′AC=∠ACB,∴AE=EC, 设BE=x ,则EC=4﹣x ,AE=4﹣x , 在Rt△ABE 中,∵AB 2+BE 2=AE 2,

∴32+x2=(4﹣x)2,解得x=7

8

即BE的长为7

8

19.25

【分析】

如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N,先证明△ANP≌△MNG(AAS),再根据勾股定理求出PN的值,即可得到线段PG的长度.

【详解】

如图,作PA∥y轴交X轴于A,PH⊥x轴于H.GM∥y轴交x轴于M,连接PG交x轴于N.

∵P(1,2),G(7.﹣2),

∴OA=1,PA=GM=2,OM=7,AM=6,

∵PA∥GM,

∴∠PAN=∠GMN,

∵∠ANP=∠MNG,

∴△ANP≌△MNG(AAS),

∴AN=MN=3,PN=NG,

∵∠PAH=45°,

∴PH=AH=2,

∴HN=1,

∴2222

215

PN PH NH

=+=+=

∴PG=2PN=5.

故答案为5

【点睛】

本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.

相关主题
文本预览
相关文档 最新文档