当前位置:文档之家› 一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结(全章齐全)
一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结

定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式.这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.

注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.

基本解法

①直接开平方法:

对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。

②配方法:

(1)现将已知方程化为一般形式;

(2)化二次项系数为1;

(3)常数项移到右边;

(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;

(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.

③公式法:

(1)把一元二次方程化为一般式。

(2)确定a,b,c的值。

(3)代入中计算其值,判断方程是否有实数根。

(4)若代入求根公式求值,否则,原方程无实数根。

【小试牛刀】

方程ax2+bx+c=0的根为

④因式分解法

·因式分解法解一元二次方程的依据:

如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。

·步骤:

(1)将方程化为一元二次方程的一般形式。

(2)把方程的左边分解为两个一次因式的积,右边等于0。

(3)令每一个因式都为零,得到两个一元一次方程。

(4)解出这两个一元一次方程的解,即可得到原方程的两个根。

根的判别情况

判别式:

b2-4ac的值x1、x2的关系根的具体值

一元二次方程两根与系数的关系:

高一必修五数学数列全章知识点(完整版)

高一数学数列知识总结 知识网络

二、知识梳理 ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) 三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0 1m m a a 的项数m 使得m s 取最小值。在解含绝对值

的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项. (2)利用公式法求数列的通项:①???≥-==-) 2()111n S S n S a n n n (;②{}n a 等差、等比数列{}n a 公式. (3)应用迭加(迭乘、迭代)法求数列的通项: ①)(1n f a a n n +=+;②).(1n f a a n n =+ (4)造等差、等比数列求通项: ① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12. 第一节通项公式常用方法 题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322-+=n n S n ; ⑵12+=n n S . 总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:???≥-==-) 2() 1(11n S S n S a n n n 若1a 适 合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ?=+“;⑵迭加法、迭乘法公式: ① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 11 22332211a a a a a a a a a a a a n n n n n n n ??????= ----- . 题型3 构造等比数列求通项 例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式. 总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:

数列知识点归纳及

数列知识点归纳及例题分析

《数列》知识点归纳及例题分析 一、数列的概念: 1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: (1)0,-3,8,-15,24,....... (2)21,211,2111,21111,...... (3), (17) 9 ,107,1,23 2.n a 与n S 的关系:???≥-==-)2(,) 1(,11n S S n a a n n n 注意:①强调2,1≥=n n 分开,注意下标;②n a 与n S 之间的互化(求通项) 例2:已知数列}{n a 的前n 项和???≥+==2 ,11 ,32n n n S n ,求n a . 3.数列的函数性质: (1)单调性的判定与证明:①定义法;②函数单调性法 (2)最大(小)项问题:①单调性法;②图像法 (3)数列的周期性:(注意与函数周期性的联系) 例3:已知数列}{n a 满足?? ??? <<-≤≤=+121,12210,21n n n n n a a a a a ,531 =a ,求2017a . 二、等差数列与等比数列 1.等比数列与等差数列基本性质对比(类比的思想,比较相同之处和不同之处) 等差数列 等比数列 定义 1n n a a d +-=(d 是常数1,2,3n =,…) 1 n n a q a +=(q 是常数,且0≠q ,1,2,3n =,…) 通项 公式 ()11n a a n d =+- ()n m a a n m d =+- 11n n a a q -= 推广:n m n m a a q -= 求和 公式 () 112 n n n S na d -=+=()12n n a a + ()111 (1)1(1)11n n n na q S a q a a q q q q =?? =-?-=≠? --? 中项 公式 2 n k n k a a A -++=(*,,0n k N n k ∈>>) k n k n a a G +-±=(*,,0n k N n k ∈>>)

最新一元二次方程知识点总结

一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次 方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关 于未知数x 的二次多项式,等式右边是零,其中2 ax 叫做二 次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系 数;c 叫做常数项。 3.一元二次方程的解法 (1)直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平 方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平 方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 (2)配方法:配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看 做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项 的系数的一半的平方,最后配成完全平方公式 (3)公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方 法。一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的 系数为b ,常数项的系数为c (4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单 易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的 是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形 式 4.一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元 二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“?” 来表示,即ac b 42 -=? I 当△>0时,一元二次方程有2个不相等的实数根;

数列全章知识点总结

数列知识点题型方法总复习 一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函 数,数列的通项公式也就是相应函数的解析式。如 (1)已知* 2 () 156 n n a n N n = ∈+,则在数列{}n a 的最大项为__(125); (2)数列}{n a 的通项为1 +=bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为___(n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数 列}{n a 满足)(* 1N n a a n n ∈>+,则该函数的图象是(A ) A B C D 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。如设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = 210n +;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ 8 33 d <≤ 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2n n n S na d -=+。如(1)数列 {}n a 中,*11(2,)2 n n a a n n N -=+≥∈,32n a =,前n 项和15 2n S =-,则13a =-,10n =; (2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答:2* 2* 12(6,) 1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 4.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2 a b A +=。 提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、 d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率 为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数 列。

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

实际问题与一元二次方程题型归纳总结材料

实际问题与一元二次方程题型归纳总结 一、列一元二次方程解应用题的一般步骤: 与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。 (1)审:审清题意,弄清已知量与未知量; (2)找:找出等量关系; (3)设:设未知数,有直接和间接两种设法,因题而异; (4)列:列出一元二次方程; (5)解:求出所列方程的解; (6)验:检验方程的解是否正确,是否符合题意; (7)答:作答。 二、典型题型 1、数字问题 例1、有两个连续整数,它们的平方和为25,求这两个数。 例2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。 练习:1、两个连续的整数的积是156,求这两个数。 2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A. 25 B. 36 C. 25或36 D. -25或-36

2、传播问题:公式:(a+x)n =M 其中a 为传染源(一般a=1),n 为传染轮数,M 为最后得病总人数 例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感? 3、相互问题(循环、握手、互赠礼品等)问题 循环问题:又可分为单循环问题21n(n-1),双循环问题n(n-1)和复杂循环问题2 12n(n-3) 例4、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛? (2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛? 例5、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人

高中数学数列知识点总结精华版

一、数列 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列 2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =. 3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n n a a a ,其中12+=n n a a 是数列{}n a 的递推公式. 4.数列的前n 项和与通项的公式 ①n n a a a S +++= 21; ②???≥-==-)2()1(11n S S n S a n n n . 5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列. ①递增数列:对于任何+∈N n ,均有n n a a >+1. ②递减数列:对于任何+∈N n ,均有n n a a <+1. ③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,. ⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 1、已知*2()156 n n a n N n =∈+,则在数列{}n a 的最大项为(答:125); 2、数列}{n a 的通项为1 +=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为(答:n a <1+n a ); 3、已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-); 4、一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式) (1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()(答:A )

一元二次方程根的分布情况归纳总结

一元二次方程02 =++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>??? - ?? ()0 20 b k a a f k ?>??? - >???>?? ()0

高一单招数学数列全章知识点(完整版)

数列知识梳理 一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) 三、在等差数列{n a }中,有关S n 的最值问题: (1)当1a >0,d<0时,满足?? ?≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0 1m m a a 的项数m 使得m s 取最小值。在解含绝对值的数列最值问题时,注意 转化思想的应用。 四.数列通项的常用方法:

(1)利用观察法求数列的通项. (2)利用公式法求数列的通项:① ? ? ? ≥ - = = - )2 ( )1 1 1 n S S n S a n n n (;②{} n a等差、等比数列{}n a公式. 1、已知{a n}满足a n+1=a n+2,而且a1=1。求a n。 例1已知 n S为数列{}n a的前n项和,求下列数列{}n a的通项公式: ⑴1 3 22- + =n n S n ;⑵1 2+ =n n S. (3)应用迭加(迭乘、迭代)法求数列的通项: ①) ( 1 n f a a n n + = + ;②). ( 1 n f a a n n = + 数列求和的常用方法 一公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、等差数列求和公式:d n n na a a n S n n2 )1 ( 2 ) ( 1 1 - + = + = 2、等比数列求和公式: ?? ? ? ? ≠ - - = - - = = )1 ( 1 1 ) 1( )1 ( 1 1 1 q q q a a q q a q na S n n n 二.裂项相消法:适用于 ? ? ? ? ? ? +1 n n a a c 其中{ n a}是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。 例2 求数列 )1 (n 1 + n 的前n项和 ***这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1) 1 1 1 )1 ( 1 + - = + = n n n n a n

数列知识点总结及题型归纳总结

数列知识点总结及题型归纳总结

高三总复习----数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数 列; 数列中的每个数都叫这个数列的项。记作n a ,在数 列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 1 4131211,,,,… 数列①的通项公式是n a = n (n ≤7,n N + ∈), 数列②的通项公式是n a = 1n (n N + ∈)。 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表 示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=? ; ③不是每个数列都有通项公式。例如,1,1.4,

1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一 个序号集合到另一个数集的映射。从函数观点看,数列实质上是定义域为正整数集N + (或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分: 有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常 数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系: 1 1(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和3 22+=n s n ,求数列}{n a 的通

(完整版)一元二次方程归纳总结

一元二次方程归纳总结 1、一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。 2、一元二次方程的解法 (1)直接开平方法 (也可以使用因式分解法) ①2 (0)x a a =≥ 解为:x = ②2 ()(0)x a b b +=≥ 解为:x a += ③2 ()(0)ax b c c +=≥ 解为:ax b += ④2 2() ()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+ (2)因式分解法:提公因式分,平方公式,平方差,十字相乘法 (3)公式法:一元二次方程2 0 (0)ax bx c a ++=≠,用配方法将其变形为:222 4()24b b ac x a a -+= ①当2 40b ac ?=-> 时,右端是正数.因此,方程有两个不相等的实根:1,22b x a -=② 当2 40b ac ?=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =- ③ 当2 40b ac ?=-<时,右端是负数.因此,方程没有实根。 注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。 备注:公式法解方程的步骤: ①把方程化成一般形式:一元二次方程的一般式:2 0 (0)ax bx c a ++=≠,并确定出a 、b 、c ②求出2 4b ac ?=-,并判断方程解的情况。 ③代公式:1,2x = 3、一元二次方程的根与系数的关系 法1:一元二次方程2 0 (0)ax bx c a ++=≠的两个根为: 1222b b x x a a -+-== 所以:12b x x a += +=-, 221222()422(2)4b b b ac c x x a a a a a -+----?=?===

数列全章知识点总结

数列知识点题型法总复习 一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应函数的解析式。如 (1)已知* 2 () 156 n n a n N n =∈ + ,则在数列{}n a的最大项为__( 1 25 ); (2)数列} { n a的通项为 1 + = bn an a n ,其中b a,均为正数,则 n a与 1+ n a的大小关系为___( n a< 1+ n a); (3)已知数列{} n a中,2 n a n n λ =+,且{} n a是递增数列,数λ的取值围(3 λ>-);(4)一给定函数) (x f y=的图象在下列图中,并且对任意)1,0( 1 ∈ a,由关系式) ( 1n n a f a= + 得到的数列} { n a满足) (* 1 N n a a n n ∈ > + ,则该函数的图象是(A) A B C D 二.等差数列的有关概念: 1.等差数列的判断法:定义法 1 ( n n a a d d + -=为常数)或 11 (2) n n n n a a a a n +- -=-≥。如设{} n a是等差 数列,求证:以b n= n a a a n + + +Λ 2 1* n N ∈为通项公式的数列{} n b为等差数列。 2.等差数列的通项: 1 (1) n a a n d =+-或() n m a a n m d =+-。如(1)等差数列{} n a中, 10 30 a=, 20 50 a=, 则通项 n a=210 n+;(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取 值围是______ 8 3 3 d <≤ 3.等差数列的前n和:1 () 2 n n n a a S + =, 1 (1) 2 n n n S na d - =+。如(1)数列{} n a中, * 1 1 (2,) 2 n n a a n n N - =+≥∈, 3 2 n a=,前n项和 15 2 n S=-,则 1 3 a=-,10 n=; (2)已知数列{} n a的前n项和2 12 n S n n =-,求数列{||} n a的前n项和 n T (答: 2* 2* 12(6,) 1272(6,) n n n n n N T n n n n N ?-≤∈ ? =? -+>∈ ?? ). 4.等差中项:若,, a A b成等差数列,则A叫做a与b的等差中项,且 2 a b A + =。 提醒:(1)等差数列的通项公式及前n和公式中,涉及到5个元素:1a、d、n、n a及n S,其中1a、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2 a d a d a a d a d --++…(公差为d);偶数个数成等差,可设为…,3,,,3 a d a d a d a d --++,…(公差为2d) 三.等差数列的性质: 1.当公差0 d≠时,等差数列的通项公式 11 (1) n a a n d dn a d =+-=+-是关于n的一次函数,且斜率 为公差d;前n和2 11 (1) () 222 n n n d d S na d n a n - =+=+-是关于n的二次函数且常数项为0. 2.若公差0 d>,则为递增等差数列,若公差0 d<,则为递减等差数列,若公差0 d=,则为常数

(完整版)一元二次方程知识点总结和例题——复习

知识点总结:一元二次方程 知识框架 知识点、概念总结 1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。 2.一元二次方程有四个特点: (1)含有一个未知数; (2)且未知数次数最高次数是2; (3)是整式方程。要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。如果能整理为 ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。 (4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0) 3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,?都能化成如下形式ax2+bx+c=0(a≠0)。 一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。4.一元二次方程的解法 (1)直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x= +2) (的一元二次方程。根据平方根的定义可知,a x+是b的平方根,当0 ≥ b时,b a x± = +,b a x± - =,当b<0时,方程没有实数根。 (2)配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式 2 2 2) ( 2b a b ab a+ = + ±,把公式中的a看做未知数x,并用x代替,则有 2 2 2) ( 2b x b bx x± = + ±。 配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p ±√q;如果q<0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0 (0 2≠ = + +a c bx ax的求根公式: )0 4 ( 2 4 2 2 ≥ - - ± - =ac b a ac b b x (4)因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 5.一元二次方程根的判别式 根的判别式:一元二次方程)0 (0 2≠ = + +a c bx ax中,ac b4 2-叫做一元二次方程)0 (0 2≠ = + +a c bx ax的根的判别式,通常用“?”来表示,即ac b4 2- = ? 6.一元二次方程根与系数的关系 如果方程)0 (0 2≠ = + +a c bx ax的两个实数根是 2 1 x x,,那么a b x x- = + 2 1 , a c x x= 2 1 。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 7.分式方程

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-,

高中数列知识点总结(很实用!!)

第二章 数列 复习要点 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列, 公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组1 00n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由100 n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶,1 +=n n a a S S 偶奇 .

一元二次方程知识点总结与易错题及答案

一元二次方程知识点总结 考点一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次 多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。 考点二、一元二次方程的解法 1、直接开平方法: 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如b a x =+2)(的一元二次方程。根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。 2、配方法: 配方法的理论根据是完全平方公式2 22)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。 配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c 。 4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。 分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 5、韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和等于- a b ,二根之积等于a c ,也可以表示为x 1+x 2=-a b ,x 1 x 2=a c 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。

高一数学数列全章知识点

数列 ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). ⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) (4)在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ?≤≥+0 1m m a a 的项数m 使 得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+001 m m a a 的项数m 使得m s 取最小值。在解含绝对 值的数列最值问题时,注意转化思想的应用。

数列通项的常用方法: ⑴利用观察法求数列的通项. ⑵利用公式法求数列的通项:①?? ?≥-==-) 2()111n S S n S a n n n (;②{}n a 等差、等比数列{}n a 公式. ⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+ ⑶构造等差、等比数列求通项: ① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12. 题型1 利用公式法求通项 基础篇: 1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322-+=n n S n ; ⑵12+=n n S . 总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:???≥-==-) 2() 1(11n S S n S a n n n 若1 a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ?=+“;⑵迭加法、迭乘法公式: ① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 11 22332211a a a a a a a a a a a a n n n n n n n ??????= ----- .

数列知识点总结与题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个 位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式 就叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈?+=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1 开始依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2) n n n S n a S S n -=?=?-?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为 1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,124971 16a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念: 定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。其中2 a b A += a ,A ,b 成等差数列?2 a b A += 即:212+++=n n n a a a (m n m n n a a a +-+=2) 例:1.(06全国I )设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( ) A .120 B .105 C .90 D .75 (四)、等差数列的性质: (1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m a a d n m -= -()m n ≠; (4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; (五)、等差数列的前n 和的求和公式:11()(1)22 n n n a a n n S na d +-= =+n d a )(2n 2112-+=。(),(2 为常数B A Bn An S n +=?{}n a 是等差数列 ) 递推公式:2 )(2)()1(1n a a n a a S m n m n n --+=+= 例:1.如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 2.(2009湖南卷文)设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 63 3.(2009全国卷Ⅰ理) 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ) A.13项 B.12项 C.11项 D.10项

相关主题
文本预览
相关文档 最新文档