当前位置:文档之家› 细菌的耐药性与控制策略

细菌的耐药性与控制策略

细菌的耐药性与控制策略
细菌的耐药性与控制策略

细菌的耐药性与控制策略

一、选择题

A型题

1.细菌因基因突变发生的耐药性的特点是

A.不是随机发生的

B.突变频率很高

C.在接触抗菌药物之前出现

D.不稳定

E.不发生回复突变

2.R质粒决定的耐药性的特点是

A.单一耐药性

B.稳定

C.发生任何细菌

D.可经接合转移

E.不能从宿主菌检出

3.来源于质粒的β-内酰胺酶有

A.头孢菌素酶

B.非金属碳青霉烯酶

C.金属酶

D.头孢菌素类

E.羧苄青霉素酶

4.细菌对磺胺耐药是改变体内的哪种酶

A.二氢叶酸合成酶

B. DNA旋转酶

C.拓扑异构酶 D .转肽酶 E. 转糖基酶

5.青霉素结合蛋白(PBPs)介导的耐药性最常见的细菌是

A.肺炎链球菌

B.淋病奈瑟菌

C.葡萄球菌

D.耐甲氧西林金黄色葡萄球菌

E.脑膜炎奈瑟菌

6.耐药株30S亚基S12蛋白的构型改变,使细菌对哪种抗菌药物发生耐药性

A.链霉素

B.红霉素

C.利福平

D.青霉素

E.喹诺酮类药

7.耐药株50S亚基的L12蛋白的构型改变,使细菌对哪种抗菌药物发生耐药性

A.链霉素

B.红霉素

C.利福平

D.青霉素

E.磺胺药

8.当RNA聚合酶的β亚基的编码基因突变时,使细菌对哪种抗菌药物发生耐

药性

A.利福平

B.红霉素

C.链霉素

D.青霉素

E.磺胺药

X型题

1.R质粒导致耐药性传递其特点是

A.可从宿主菌检出R质粒

B.以多重耐药性常见

C.容易因质粒丢失成为敏感株

D.耐药性可经接合转移

2.丁胺卡那霉素具有的钝化酶是

A..乙酰化酶

B.磷酸转移酶

C.腺苷转移酶

D..青霉素酶

3.细菌获得耐药性可以通过

A.产生钝化酶

B.改变药物的作用靶位

C.改变细胞壁的屏障功能

D.主动外排机制

4.铜绿假单胞菌中存在主动外排机制的药物是

A.四环素

B.青霉素类

C.喹诺酮类

D.头孢菌素类

5.某些革兰阴性菌通过改变细胞壁通透性实现非特异性低水平耐药性的抗菌药物有

A .β-内酰胺抗生素 B.喹诺酮类药物 C.氯霉素

D.四环素

6.细菌耐药性的控制策略是

A.合理使用抗菌药物

B.严格执行消毒隔离制度

C.抗菌药物的“轮休”

D.研制新抗菌药物

二、名词解释

1. 耐药性(drug resistance)

2. 多重耐药性(multiple resistance)

3. 固有耐药性(intrinsic resistance)

4. 获得耐药性(acquired resistance)

5. 质粒介导的耐药性(plasmid mediated resistance)

6. 转座因子介导的耐药性(transposable element mediated resistance)

7. 钝化酶(modified enzyme)

三、问答题

1. 细菌发生获得耐药性有哪些因素?

2. 耐甲氧西林金黄色葡萄球菌(MRSA)产生耐药性的原因如何?

3. 铜绿假单胞菌的固有耐药性的主要原因如何?

4. 细菌耐药性的基因控制机制如何?

5. 细菌耐药性产生的机制如何?

6. 抗菌药物的使用与细菌耐药性的关系如何?

7. 细菌耐药性的控制策略有哪些?

参考答案

一、选择题

A型题:1.C 2.D 3.E 4.A 5.D 6.A 7.B 8.A

X型题:1.ABCD 2.ABC 3.ABCD 4.ABCD 5.ABCD 6.ABCD

二、名词解释

1. 耐药性是指细菌对药物所具有的相对抵抗性。耐药性的程度以该药对细菌的最小抑菌浓度(MIC)表示。临床上通常以该药物的治疗浓度,即该药常用量在血清中的浓度与该药对细菌的最小抑菌浓度的相对关系而定。如果此种药物的治疗浓度大于最小抑菌浓度为敏感,反之则为耐药。

2. 多重耐药性是有的细菌表现为同时耐受多种抗菌药物。

3. 固有耐药性是指细菌对某些抗菌药物天然不敏感,故也称为天然耐药性。

4. 获得耐药性是指细菌DNA改变而获得了耐药性。由于是遗传物质结构改变引起的变异,因此获得的耐药性可稳定地传给后代。

5. 质粒介导的耐药性,耐药质粒广泛存在于革兰阳性和革兰阴性细菌中,几乎所有致病菌均可有耐药质粒。它们在菌细胞之间可以通过接合和转导等方式进行传递。环境中抗生素形成的选择性压力有利于耐药质粒的播散和耐药菌株的存活。R质粒常见于肠道菌,推测其演变过程可能是耐药传递因子(RTF)与耐药性基因或非接合性耐药质粒结合形成多重耐药的接合性质粒。

6. 转座因子介导的耐药性是指转座子(Tn)常带有耐药基因,Tn转移位置插入某一基因时,使细菌产生耐药性。

7. 钝化酶是指耐药菌株通过合成某种钝化酶作用于抗菌药物,使其失去抗菌活性。重要的钝化酶有β-内酰胺酶、氨基糖苷类钝化酶和氯霉素乙酰转移酶等。

2017年1季度细菌耐药情况分析与对策报告

太和县人民医院 2013年三季度细菌耐药情况分析与对策报告一.标本送检及细菌检出情况 本季度细菌培养送检率为35.24%。微生物室共收到标本2068份,分离出病原菌496株,阳性率23.98%。其中革兰氏阴性菌412株、占83.06%,革兰氏阳性菌54株,占10.89%,白假丝酵母菌5株,占1.01%。科室分布前六位的是:重症医学科422例,儿科422例,肝胆外科112例,神经外科103例,呼吸内科80例,普外科62例,内分泌科59例。送检标本类型较多的依次是:痰581份、大便114份、尿液111份、渗出液111份、脓液75份、血液57份,阳性率最高的为血液,其它依次为:脓液、渗出液、痰液、尿液、大便。 标本中检出的常见菌如下:以肺炎克雷伯菌最多,其次是大肠埃希菌、产气肠杆菌、阴沟肠杆菌、铜绿假单胞菌、奇异变形杆菌。 共筛选出多重耐药菌20株,占总菌数的4.03%,其构成为:大肠埃希菌11株,占多重耐药菌菌株总数的55%,鲍曼不动杆菌3株,占多重耐药菌菌株总数的15%,肺炎克雷伯菌2株,占多重耐药菌菌株总数的10%,铜绿假单胞菌1株,占多重耐药菌菌株总数的5%,阴沟肠杆菌1株,占多重耐药菌菌株总数的5%,产气肠杆菌1株,占多重耐药菌菌株总数的5%,嗜麦芽寡食单胞菌1株,占多重耐药菌菌株总数的5%。

二.常见临床分离细菌耐药情况与分析 1.革兰氏阳性菌 本次分离的革兰氏阳性菌较少,不具代表性,无法具体分析。 2.革兰氏阴性菌 本次分离出的大肠埃希菌对哌拉西林、头孢呋辛、头孢他啶耐药率高,应暂停该类抗菌药物的临床应用;对庆大霉素、哌拉西林/他唑巴坦、头孢吡肟、复合磺胺、环丙沙星的耐药率在50-75%之间,参照药敏实验结果选择用药;对氨苄西林/舒巴坦为中敏,提示医务人员慎重经验用药;对头孢西丁、阿米卡星耐药率在30-40%应及时将抗菌药物预警信息通报医务人员,对亚胺培南敏感性高。 本次分离的肺炎克雷伯菌对哌拉西林、头孢呋辛的耐药率高,根据细菌耐药预警机制,应暂停使用;对头孢唑林、头孢曲松、氨苄西林、氨苄西林/舒巴坦、头孢他啶、头孢吡肟、哌拉西林/他唑巴坦、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨曲南、庆大霉素耐药率在40-50%之间,提示医务人员慎重经验用药;对环丙沙星耐药率在30-40%应及时将抗菌药物预警信息通报医务人员;对头孢西丁、左氧沙星、阿米卡星、亚胺培南均敏感,是肺炎克雷伯菌的治疗用药。 本次分离的产气肠杆菌对哌拉西林、头孢西丁、头孢呋辛、庆大霉素、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨苄西林、哌拉西林/他唑巴坦耐药率在40-50%之间,提示医务人员慎重经验用药;对氨苄西林/舒巴坦耐药率在30-40%应及时将抗菌药物预警信息通报医务人员;对阿米卡星、头孢他啶、环丙沙星、头孢吡肟、头孢曲松、亚胺培南、氨曲南均敏感,是产气肠杆菌的治疗用药。 本次分离的阴沟肠杆菌对哌拉西林的耐药率高,根据细菌耐药预警机制,应暂停使用,避免耐药范围的扩大;对头孢西丁、氨苄西林、哌拉西林/他唑巴坦耐药率大于50%,提示医务人员参照药敏实验结果用药;对氨苄西林/舒巴坦、头孢他啶、庆大霉素耐药率在40-50%之间,提示医务人员慎重经验用药;对头孢吡肟、复合磺胺耐药率在30-40%之间,应及时将抗菌药物预警信息通报医务人员。对环丙沙星、阿米卡星、亚胺培南、头孢呋辛、左氧沙星、氨曲南均敏感,是阴沟肠杆菌的治疗用药。

医院多重耐药菌的耐药机制及防控措施

医院多重耐药菌的耐药机制及防控措施 大量广谱抗生素的应用及抗生素的滥用打破了抗菌药物-细菌耐药的动态平衡,造成细菌耐药性增强。多重耐药菌在医院的传播形势日益严重,也给医院感染控制带来严峻的挑战。为保障医疗安全,让医务人员了解多重耐药菌的耐药机制,及早采取有效的防控措施,预防和控制多重耐药菌的传播和医院感染的发生。该文针对多重耐药菌的耐药机制和防控措施进行了综述。 标签:医院;多重耐药菌;耐药机制;防控措施 多重耐药菌的产生与流行已构成社会性危害,防控MDRO感染重于治疗。研究多重耐药菌的耐药机制,有利于临床制定合理的治疗方案及多重耐药菌感染与传播预防策略[1]。多重耐药菌的概念(MDRO)[2]:指对通常敏感的常用的3类或3类以上抗菌药物同时呈现耐药的细菌,临床常见多重耐药菌有耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素肠球菌(VRE)、产超广谱β-内酰胺酶(ESBLs)的细菌、耐碳青霉烯类肠杆菌科细菌(CRE)如耐碳青霉烯鲍曼不动杆菌(CR-AB)、产KPC的细菌、产NDM-1的细菌、多重耐药/泛耐药铜绿假单胞菌(MDR-PA)和艰难梭菌(CD)等。 1 常见多重耐药菌耐药机制 1.1 艰难梭菌耐药机制 艰难梭菌(CD)主要引起抗生素相关腹泻和假膜性肠炎,其感染发病率和病死率极高,尤其是多重耐药艰难梭菌,给临床的治疗带来极大的挑战。目前,随着广谱抗菌药物的大量使用导致患者肠道菌群失调,极易引起艰难梭菌感染。避免盲目使用广谱抗菌素,从而降低CD感染的发生和传播。2001年我国报道了1例多重耐药艰难梭菌感染的病例,绝大多数艰难梭菌菌株对甲硝唑、万古霉素、非达霉素仍呈敏感,但近来报道敏感性逐渐下降甚至呈现耐药,耐药机制可能为铁代谢、细菌DNA修复能力增强等多种因素有关。通常艰难梭菌对大环内酯类如红霉素、克林霉素,四环素类、氟喹诺酮类等的耐药主要为作用靶点改变、核糖体靶点保护蛋白的产生、主动外排作用等所致。艰难梭菌对利福霉素类耐药性是通过特异性与依赖于DNA的RNA聚合酶β亚单位结合,形成稳定的复合物抑制DNA转录[3]。 1.2 MRSA的耐药机理 目前我国还没有进行全国性感染率和死亡率的数据行统计,但MRSA的检出率及多重耐药报道逐年增加,已引起全世界重视。MRSA是引起医院感染的重要病原菌,和乙肝、艾滋病成为世界3大感染顽疾,同时由于其传播速度快,成为临床治疗及抗感染棘手的难题[4]。MRSA的耐药机制较复杂,包括几种,染色体DNA介导导致的固有性耐药、由质粒介导通过DNA转化、转导传递耐药基因的获得性耐药、主动外排系统、产生多种灭活酶等,另外一些耐药相关基因

多重耐药菌预防与控制措施

多重耐药菌预防与控制措施 一、加强医务人员手卫生。 医院应当提供有效、便捷的手卫生设施,特别是在手术室、口腔科、检验科等重点部门,同时配备充足的洗手设施和手消毒凝胶。医务人员在直接接触患者前后、进行无菌技术操作和侵入性操作前,接触患者使用的物品或处理其分泌物、排泄物后,必须洗手或使用手消毒凝胶进行手消毒。 二、严格实施隔离措施。 对确定或高度疑似多重耐药菌感染患者或定植患者,实施接触隔离措施。 1.尽量选择单间隔离,也可以将同类多重耐药菌感染患者或定植患者安置在同一房间。隔离房间应当有隔离标识。不宜将多重耐药菌感染或者定植患者与留置各种管道、有开放伤口或者免疫功能低下的患者安置在同一房间。没有条件实施单间隔离时,应当进行床旁隔离。 2.与患者直接接触的医疗器械、器具及物品(听诊器、血压计、体温表、输液架等)要专人专用,及时消毒。轮椅、担架、床旁心电图机等不能专人专用的医疗器械、器具及物品要在每次使用后擦拭消毒。 3. 医务人员对患者实施诊疗护理时,应将高度疑似或确诊多重耐药菌感染患者或定植患者安排在最后进行。接触多重耐药菌感染患者或定植患者的伤口、溃烂面、粘膜、血液、体液、引流液、分泌物、排泄物时,应当戴手套,必要时穿隔离衣,完成诊疗护理操作后,要及时脱去手套和隔离衣,并进行手卫生。 三、遵守无菌技术操作规程。 医务人员应严格遵守无菌技术操作规程,尤其在实施侵入性操作时,应当严格执行无菌技术操作和标准操作规程,避免污染。 四、加强清洁和消毒工作。 加强多重耐药菌感染患者或定植患者诊疗环境的清洁、消毒工作,特别要对重点部门物体表面物体表面(如心电监护仪、微量输液泵、呼吸机等的面板或旋钮表面、听诊器、计算机键盘和鼠标、电话机、患者床栏杆和床头桌、门把手、水龙头开关等)使用专用的抹布进行清洁和消毒,被患者血液、体液污染时应当立即消毒。出现多重耐药菌感染暴发或者疑似暴发时,应当增加清洁、消毒频次。在多重耐药菌感染患者或定植患者诊疗过程中产生的医疗废物,应当按照医疗废物有关规定进行处置和管理。 五、合理应用抗菌药物 医疗机构应当严格执行《抗菌药物临床应用管理办法》,切实落实抗菌药物的分级管理,正确、合理地实施个体化抗菌药物给药方案,根据临床微生物检测结果,合理选择抗菌药物,严格执行围术期抗菌药物预防性使用的相关规定,避免因抗菌药物使用不当导致细菌耐药的发生。 六、建立和完善对多重耐药菌的监测 1、加强多重耐药菌监测工作:医疗机构应当重视医院感染管理部门的建设,积极开展常见多重耐药菌的监测。对多重耐药菌感染患者或定植高危患者要进行监测。 2、提高临床微生物实验室的检测能力。 加强临床微生物实验室的能力建设,提高其对多重耐药菌检测及抗菌药物敏感性、耐药模式的监测水平。临床微生物实验室发现多重耐药菌感染患者和定植患者后,应当及时反馈医院感染管理部门以及相关临床科室,以便采取有效的治疗和感染控制措施。临床微生物实验

浅谈细菌的耐药性及控制对策

浅谈细菌的耐药性及其控制对策 1 概述 由于各种抗菌药物的广泛使用,各种微生物势必加强其防御能力,抵御抗菌药物的侵入,从而使微生物对抗菌药物的敏感性降低甚至消失,这是微生物的一种天然抗生现象,此称为耐药性或抗药性(Resistance to Drug )。加之耐药基因的传代、转移、传播、扩散,耐药微生物越来越多,耐药程度越来越严重,形成多重耐药性(multidrug resistance,MDR)耐药性一旦产生,药物的化疗作用就明显下降。耐药性根据其发生原因可分为获得耐药性和天然耐药性。自然界中的病原体,如细菌的某一株也可存在天然耐药性。当长期应用抗生素时,占多数的敏感菌株不断被杀灭,耐药菌株就大量繁殖,代替敏感菌株,而使细菌对该种药物的耐药率不断升高。目前认为后一种方式是产生耐药菌的主要原因。 细菌耐药问题已成为全球危机,为遏制细菌耐药,我国不少专家和学者都开展了对细菌耐药的研究,这些研究大多是从微观的角度、从细菌耐药本身开展的探索,从宏观角度研究的很少。本研究旨在从宏观管理和微观的角度,用流行病学的思路和方法,研究我国细菌耐药性在时间、空间、抗菌药间的“三间”分布情况,为细菌耐药研究者提供新的研究思路,促进细菌耐药研究的全面性,并预测细菌耐药性的发展趋势,探索潜在的用药风险;通过利益集团分析方法,分析我国控制细菌耐药性策略的可行性,最终提出优先控制策略,以达到提高我国控制细菌耐药性、提高抗菌药的效果、节约有限卫生资源的目的。 2 细菌的耐药性现状 随着抗菌药物、抗肿瘤药物、免疫抑制剂、各种侵袭性操作,特别是静脉导管及各种介入性治疗手段的应用,细菌性血流感染在医院中的发生率及细菌的耐药性均有上升的趋势,主要G+球菌对常用抗生素的耐药率为22%~100%[1]。喹诺酮抗菌药物进入我国仅仅20多年,但耐药率达60%~70%。

常见致病菌耐药机制与应对措施 (2)

2014年第二季度细菌耐药监测结果预警与应对策略由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。

菌药物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制

铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)β-内酰胺酶的产生 ①大肠埃希菌对β-内酰胺类抗菌药物耐药主要是由超广谱β-内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、CTX-M型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs 呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯基。CTX-M型ESBLs呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA型ESBLs 呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpCβ-内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与β-内酰胺环羧基部分共价结合,在水分子作用下导致β-内酰胺环开环,破坏β-内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的β-内酰胺酶对酶抑制剂药的耐药的β-内酰胺酶(IRT)主要有TEM系列衍变而来,又称为耐酶抑制剂TEM系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制 肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN 耐药机制包括:(1)产抗菌药物灭活酶 ①β-内酰胺酶包括产超广谱β-内酰胺酶(ESBLs)、AmpC酶、耐酶抑制剂β-内酰胺酶、碳青霉烯酶(KPC酶)及金属β-内酰胺酶(MBLs)等。 ESBLs是耐药KPN产生的最主要的一类酶,由质粒介导,产ESBLsKPN对青霉素类、头孢菌素类及单环类药物耐药,但对头霉素类和碳青霉烯类及酶抑制剂敏感。

抗生素耐药性的来源与控制对策

抗生素耐药性的来源与控制对策 抗生素的抗性1抗生素耐药性是指一些微生物亚群体能够在暴露于一种或多种抗生素的条件下得以生存的现象,其主要机制包括:(1)抗生素失活。通过直接对抗生素的降解或取代活性基团,破坏抗生素的结构,从而使抗生素丧失原本的功能;(2)细胞外排泵。通过特异或通用的抗生素外排泵将抗生素排出细胞外,降低胞内抗生素浓度而表现出抗性;(3)药物靶位点修饰。通过对抗生素靶位点的修饰,使抗 生素无法与之结合而表现出抗性。 微生物对抗生素的耐性是自然界固有的,因为抗生素实际上是微生物的次生代谢产物,因此能够合成抗生素的微生物首先应该具有抗性,否则这些微生物就不能持续生长。这种固有的抗生素耐药性,也称作内在抗性(intrinsic resistance),是指存在于环境微生物基因组上的抗性基因的原型、准抗性基因或未表达的抗性基因。这些耐药基因起源于环境微生物,并且在近百万年的时间里进化出不同的功能,如控制产生低浓度的抗生素来抑制竞争者的生长,以及控制微生物的解毒机制,微生物之间的信号传递,新陈代谢等,从而帮助微生物更好地适应环境。因此,抗生素耐药性的问题其实是自然和古老的。科学家在北极的冻土中提取到3万年前的古DNA,从中发现了较高多样性的抗生素抗性基因,而且部分抗性蛋

白的结构与现代的变体相似,也证实了抗生素耐药性问题是古老的。虽然一些抗生素抗性微生物和抗性基因很早就存在于自然界,但是抗生素大规模的生产和使用加速了固有抗性微生物和抗性基因的扩散,极大地增加了抗生素耐药性的发生频率。抗生素耐药基因的存在往往与抗生素的使用之间存在良好的相关性。由外源进入并残留在环境中的抗生素对环境微生物的耐药性产生选择压力,携带耐药基因的具有抗性的微生物能存活下来并逐渐成为优势微生物,并不断地将其耐药基因传播给其他微生物。众多研究证实抗生素耐药基因具有较高的移动性,主要是通过基因水平转移(Horizontal gene transfer,HGT)机制,又称基因横向转移(Lateralgene transfer)。即借助基因组中一些可移动遗传因子,如质粒(plasmids)、整合子(integrons)、转座子(transposons)和插入序列(insertion sequences)等,将耐药基因在不同的微生物之间,甚至致病菌和非致病菌之间相互传播。环境中拥有基因横向转移等内在机制的微生物组成一个巨大的 抗性基因储存库,并可能将抗生素耐药性转移到人类共生微生物和病原体中。医学专家很早就指出,抗生素的广泛使用导致了内源性感染和细菌耐药性的增加。而通过宏基因组学的研究方法,科学家在人类肠道微生物群中也发现了高丰度、高多样性的抗生素耐药基因,也印证了这一观点。 人类活动与耐药性2 已有文献和相关统计资料显示,我国

多重耐药菌感染预防控制措施

多重耐药菌感染预防控制措施 一、多重耐药菌的预防首先是合理使用抗生素 目前临床滥用抗生素的现象,对多重耐药菌的流行起了一定的扩散作用,因此,在选择抗生素时应慎重,以免产生多重耐药菌菌株。 二、早期检出带菌者,临床科室发现感染病例,应及时送检标本,及早 明确病原学诊断,及州发现多重耐药菌,并做好消毒隔离与治疗等工作,以防止多重耐药菌传播与流行。 三、检验科细菌室检出多重耐药菌时,须及时电话报告医院感染管理科,以便能及时指导临床开展预防控制工作;细菌室每季度负责对检出的多重耐药菌资料进行统计、汇总分析,上报医院感染管理科,由医院感染管理科整理审核后,将结果公布,供临床参考。 四、各病区主管医师发现多重耐药菌感染病例或定植病例,须及时报告本科室医院感染监控医生,同时填写“多重耐药菌感染病例报告卡”报医院感染管理科。监控医生应在《医院感染管理手册》的相应栏目内进行登记。发生多重耐药菌感染暴发时,应当按照《医院感染管理办法》和医院《医院感染病例监测报告制度》规定的时限报告医院感染管理科。 五、各临床科室发现多重耐药菌感染病例时,应通知全科人员积极采取如下预防和控制多重耐药菌传播措施: (一)加强医务人员的手卫生

1.医务人员对患者实施诊疗护理活动过程中.应当严格执行医院《手卫生制度》和《手卫生实施规范》。 2.医务人员在直接接触患者前后、对患者实施诊疗护理操作前后、接触患者体液或者分泌物后、摘掉手套后、接触患者使用过的物品后以及从患者的污染部位转到清洁部位实施操作时,都应当实施手卫生。3.手上有明显污染时,应当洗手;无明显污染时,可以使用速干手消毒剂进行手部消毒。 (二)严格实施隔离措施 1.将患者隔离于单间,同类多重耐药菌感染或定檀患者可安置在同一病房。不能将多重耐药菌感染与气管插管、深静脉留置导管、有开放伤口或者免疫功能抑制患者安置在同一病房。 2.病房和“患者~览表”须设黄色隔离标志,并在病历夹封面粘贴黄色隔离标签。 3.医务人员进入病室应戴口罩、帽子、穿工作服,实施诊疗护理操作中严格执行标准预防,有可能接触多重耐药菌感染患者的伤口、溃烂面、粘膜、血液和休液、引流液、分泌物、痰液、粪便时,须戴手套,必要时穿隔离衣,完成对多重耐药菌感染患者的诊疗护理操作后,必须及时脱去手套和隔离衣,并严格洗手或手消毒,妥善处置使用后隔离衣。 4.减少患者的病房转换和转运,如必须转运时,应尽量减少对其他患者和环境表面的污染。

细菌的耐药性与控制策略综述

细菌的耐药性与控制策略 一、选择题 A型题 1.细菌因基因突变发生的耐药性的特点是 A.不是随机发生的 B.突变频率很高 C.在接触抗菌药物之前出现 D.不稳定 E.不发生回复突变 2.R质粒决定的耐药性的特点是 A.单一耐药性 B.稳定 C.发生任何细菌 D.可经接合转移 E.不能从宿主菌检出 3.来源于质粒的β-内酰胺酶有 A.头孢菌素酶 B.非金属碳青霉烯酶 C.金属酶 D.头孢菌素类 E.羧苄青霉素酶 4.细菌对磺胺耐药是改变体内的哪种酶 A.二氢叶酸合成酶 B. DNA旋转酶 C.拓扑异构酶 D .转肽酶 E. 转糖基酶 5.青霉素结合蛋白(PBPs)介导的耐药性最常见的细菌是 A.肺炎链球菌 B.淋病奈瑟菌 C.葡萄球菌 D.耐甲氧西林金黄色葡萄球菌 E.脑膜炎奈瑟菌 6.耐药株30S亚基S12蛋白的构型改变,使细菌对哪种抗菌药物发生耐药性 A.链霉素 B.红霉素 C.利福平 D.青霉素 E.喹诺酮类药 7.耐药株50S亚基的L12蛋白的构型改变,使细菌对哪种抗菌药物发生耐药性 A.链霉素 B.红霉素 C.利福平 D.青霉素 E.磺胺药 8.当RNA聚合酶的β亚基的编码基因突变时,使细菌对哪种抗菌药物发生耐 药性 A.利福平 B.红霉素 C.链霉素 D.青霉素 E.磺胺药 X型题 1.R质粒导致耐药性传递其特点是 A.可从宿主菌检出R质粒 B.以多重耐药性常见 C.容易因质粒丢失成为敏感株 D.耐药性可经接合转移 2.丁胺卡那霉素具有的钝化酶是 A..乙酰化酶 B.磷酸转移酶 C.腺苷转移酶 D..青霉素酶 3.细菌获得耐药性可以通过 A.产生钝化酶 B.改变药物的作用靶位 C.改变细胞壁的屏障功能 D.主动外排机制 4.铜绿假单胞菌中存在主动外排机制的药物是 A.四环素 B.青霉素类 C.喹诺酮类 D.头孢菌素类 5.某些革兰阴性菌通过改变细胞壁通透性实现非特异性低水平耐药性的抗菌药物有

细菌主要耐药机制

细菌主要耐药机制 1.产生灭活抗生素的各种酶 1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的丝氨酸活性位点,与β—内酰胺环结合并打开β—内酰胺环,导致药物失活。迄今为止报道的β—内酰胺酶已超过300种,1995年Bush等将其分为四型:第1型为不被克拉维酸抑制的头孢菌素酶;第2型为能被克拉维酸抑制的β-内酰胺酶;第3型为不被所有β—内酰胺酶抑制剂抑制的金属β-内酰胺酶(需Zn2+活化)。可被乙二胺四乙酸和P-chloromercuribenzate所抑制;第4型为不被克拉维酸抑制的青霉素酶。临床常见的β—内酰胺酶有超广谱β—内酰胺酶、头孢菌素酶(AmpC酶)和金属酶。 1.1.1超广谱β-内酰胺酶(Extended-Spectrumβ-lactamases,ESBLs) ESBLs是一类能够水解青霉素类、头孢菌素类及单环类抗生素的β—内酰胺酶,属Bush分型中的2型β—内酰胺酶,其活性能被某些β—内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs主要由普通β-内酰胺酶基因(TEM—1,TEM—2和SHV—1等)突变而来,其耐药性多由质粒介导。自1983年在德国首次发现ESBLs以来,目前已报道的TEM类ESBIs已有90多种,SHV类ESBLs多于25种。TEM型和SHV型ESBLs主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。 国内近年来随着三代头孢菌素的广泛使用,产ESBLs菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产ESBLs菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs菌株不仅对β-内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药率也在60%左右,因此,临床遇到由ESBLs引起的感染时,建议首选含β—内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议。 1.1.2头孢菌素酶(AmpC酶)届Bush分类中的1型(Ⅰ型) β—内酰胺酶。 通常将其分为由染色体介导产生的AmpC β—内酰胺酶和由质粒介导产生的AmpC β—内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC酶可作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌素、碳青霉烯类不受该酶作用。该酶不能被β—内酰胺酶抑制剂所抑制。AmpCβ—内酰胺酶的产生有2种可能:①在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC酶的强诱导剂;②染色体上控制酶表达的基因发生突变,导致AmpC酶持续稳定高水平表达。由高产AmpC酶耐药菌引起的感染死亡率很高。 实际上,所有的革兰氏阴性菌都能产生染色体介导的AmpC头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突

细菌的耐药性与对策

细菌的耐药性与对策 在过去20年来,随着医药工业的发展,新的抗生素层出不穷,在人类与细菌感染的斗争中发挥了极的作用,但又带来了较严重的细菌耐药问题,已在全球呈现日益严重的趋势,人类正面临着巨大的挑战 1 细菌的耐药概况 据报道,近20年来细菌的耐药问题在发展中国家与发达国家均日益严重,链球菌性肺炎对青霉素G的耐药率12%~55%,国内为10%左右,同时也出现了头孢噻肟与头孢曲松的高度耐药。大肠杆菌、产气杆菌、肺炎杆菌等对氨苄西林的耐药率为69%~99%,其中超广谱酶(ESBL)占5.5%~45.7%,绿脓杆菌对头孢他啶的耐药率为17.2%~22.7%,对亚胺培南的耐药率为24.2%~39.7%,金葡菌对甲氧西林的耐药率为40%~80.2%,表葡菌对甲氧西林耐药率为49.6%~60.3%,多资料表明耐甲氧西林金葡菌(MRSA)具有多重耐药特点,仅对万古霉素敏感。 2 细菌耐药机制 细菌耐药可分为天然耐药与获得性耐药,者为染色体遗传基因介导,后者由质粒(染色体外的DNA)介导,后者所带基因易于传播,临床上较为常见。 2.1 灭活酶与钝化酶的产生细菌尤其是G-杆菌常产生β内酰胺酶如青霉素酶、头孢菌素酶及头孢呋辛酶等,可使β内酰胺类抗生素的β内酰胺环断裂而失去抗菌活性,多数G-杆菌的耐药与此有关。近年又发现了超广谱酶(ESBL),能水解青霉素、头孢菌素及氨曲南,但对碳青霉烯类及头霉烯类抗生素则敏感。 氨基糖甙类的钝化酶的产生是细菌对氨基糖甙类耐药的主要机制。多数G-杆菌、金葡菌、肠球菌等均可产生此酶,主要有磷酸转移酶、腺苷转移酶及乙酰转移酶,使抗生素磷酰化、腺苷酰化或乙酰化而失去活性,改变了的抗生素不能与细菌核糖体结合而耐药。 另外,喹诺酮类的耐药与改变了DNA旋转酶而产生了超螺旋酶,导致细菌耐药有关。

细菌的耐药性与对策

细菌的耐药性与对策 在过去20多年来,随着医药工业的发展,新的抗生素戻出不穷,在人类与细菌感染的斗争中发 挥了极大的作用,但又带来了较严重的细菌附药问题,巳在全球呈现日益严重的趋势, 人类正面 临着巨大的挑战。 1细菌的咐药概况 据报道,近20年来细菌的耐药问题在发展中国家与发达国家均日益严重,链球菌性肺炎对音霉素G的耐药率为12%~55%,国内为10%左右,同时也出现了头砲∣?府与头鞄曲松的高度耐药。大肠杆菌、产气杆菌、肺炎杆菌等对氨节西林的耐药率为69%~99%,其中超广谱酶(ESBL)占5?5%~45.7%,绿脓杆菌对头砲他噪的耐药率为17.2%~22.7%, 对亚胺培南的耐药率为24.2%~39.7%,金葡菌对甲氧西林的耐药率为40%~80.2%,表葡菌对甲氧西林耐药率为49.6%~60.3%,多数资料表明耐甲氧西林金葡菌(MRSA)具有多重耐药特点,仅对万古霉素敏感。 2细茵咐药机制 细菌耐药可分为天然咐药与获得性耐药,前者为染色体遗传基因介导,后者由质粒(染色体外的DNA)介导,后者所带基因易于醴,临床上较为常见。 2.1灭活酶与锂化酶的产生细菌尤其是G-杆菌常产生B内酰胺酶如青毒素酶、头砲菌素酶及头范咲辛酶等,可使0内酰胺类抗生素的β内酰胺环断裂而失去抗菌活性,多数G-杆菌的耐药与此有关。近年又发现了超广谱酶(ESBL),能水解青霉素、头砲菌素及氫曲南,但对碳青霉烯类及头毒烯类抗生素则敏感。 氨基糖式类的钝化酶的产生是细菌对氨基糖貳类耐药的主要机制。多数G-杆菌、金葡菌、肠鯉等均可产生此酶,主要有磷酸转移酶、腺昔转移酶及乙酰转移酶,便抗生素磷醸化、腺昔酰化或乙酰化而失去活性,改变了的抗生素不能与细菌孩糖体结合而耐药。 另外,唾诺酮类的耐药与改变了DNA旋转酶而产生了超螺旋酶,导致细菌耐药有关。

第9章 细菌的耐药性与控制策略

第九章细菌的耐药性与控制策略 第一节细菌的耐药性 耐药性是指细菌对药物所具有的相对抵抗性。耐药性的程度以该药对细菌的最小抑菌浓度(MIC)表示。 一、细菌耐药性的分类 细菌耐药性可分为固有耐药性和获得耐药性。前者是指细菌对某些抗菌药物天然不敏感,故也称天然耐药性。后者是指细菌DNA改变而获得了耐药性。 (一)固有耐药性 固有耐药性是指细菌对某种抗菌药物的天然耐药性,固有耐药性是始终如一的,由细菌的种属特性所决定的。抗菌药物对细菌能够起作用首先的条件是细菌必须具有药物的靶位。 (二)获得耐药性 获得耐药性是指正常情况下,敏感的细菌中出现了对抗菌药物有耐药性的菌株。获得耐药性发生有三个方面的因素: 1、染色体突变; 2、质粒介导的耐药性; 3、转座因子介导的耐药性。 二、细菌耐药性的基因控制 (一)基因突变导致的耐药性 有抗生素敏感基因经过基因突变变成耐药性基因,以单一耐药性为主,一般是稳定的,很少自然丢失。 (二)R质粒决定的耐药性 决定细菌耐药性的质粒叫R质粒,通过细菌间接合导致耐药性传递。其特点是:①可以从宿主菌检出R质粒;②以多重耐药性常见;③容易因质粒丢失称为敏感株;④耐药性可经接合传递。 第二节细菌耐药性产生机制 一、钝化酶的产生 耐药菌株通过合成某种钝化酶作用于抗菌药物,使其失去抗菌活性。重要的钝化酶有以下几种: 1、β-内酰胺酶:对青霉素类和头孢菌素类内要的菌株产生β-内酰胺酶,可以特异性地打开药物分子结构中的β-内酰胺环,使其完全失去抗菌活性。 2、氨基糖苷类钝化酶:对氨基糖苷类药物质粒介导的耐药机制是耐药菌株产生磷酸转移酶使氨基糖苷类抗生素的羧基磷酸化,而将抗菌药物钝化失活。 3、氯霉素乙酰转移酶:该酶由质粒编码,使氯霉素乙酰化而失去抗菌活性。、 4、甲基化酶。 二、药物作用的靶位发生变化 1、链霉素:其结合部位是细菌核糖体30S亚基上的S12蛋白。 2、红霉素:靶部位是细菌核糖体上的50S亚基的L4或L12蛋白。 3、利福平:作用点是RNA聚合酶的β亚基。 4、青霉素:靶部位是细菌细胞膜上的特异的青霉素结合蛋白PBP。 5、喹诺酮类药物:靶部位是DNA旋转酶。 三、胞壁通透性的改变和主动外排机制 耐药菌株通过改变细胞壁通透性和主动外排机制而产生耐药性。

2020年医院细菌耐药监测与预警机制及应对措施

作者:空青山 作品编号:89964445889663Gd53022257782215002 时间:2020.12.13 医院细菌耐药监测与预警机制及应对措施 为继续深入贯彻卫生部《抗菌药物临床应用管理办法》,结合本医院工作实际,制定本制度。 1. 及时向临床科室通报全院的细菌耐药情况,做到每季度通报1次。该工作由药剂科、感染科和检验科共同参与完成。感染科和检验科负责提供相关的病原学检测数据,药剂科负责对数据进行分析、评价和总结。细菌耐药分析结果由综合办公室向全院公布。 2. 针对主要目标细菌耐药率的不同,采取不同的预警及处理措施,以指导临床抗菌药物合理应用。 (1)对主要目标细菌耐药率超过30%的抗菌药物,应及时将预警信息通报本机构医务人员。 (2)对主要目标细菌耐药率超过40%的抗菌药物,应提示临床医务人员慎重经验用药。 (3)对主要目标细菌耐药率超过50%的抗菌药物,应提示临床医务人员参照药敏试验结果选用。

(4)对主要目标细菌耐药率超过75%的抗菌药物,应暂停该类抗菌药物的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复其临床应用。 3.严格控制围手术期抗菌药物预防性应用的管理,特别是要重点加强Ⅰ类切口手术预防用药的管理。 4.治疗性应用抗菌药物需要有指征,应尽早查明感染病原,根据病原种类及细菌药物敏感试验结果选用抗菌药物。在开始抗菌治疗前,先留取相应标本,立即送细菌培养,以尽早明确病原菌和药敏结果。危重患者在未获知病原菌及药敏结果前,先给予抗菌药物经验治疗,获知细菌培养及药敏结果后,对疗效不佳的患者调整给药方案。 5.严格执行抗菌药物分级管理制度,特别是加强“特殊使用”抗菌药物的使用和管理。特殊使用的抗菌药物需由药事管理委员会认定、具有抗感染临床经验的感染或相关专业专家及临床药师共同会诊同意,并由具有临床科主任或主任医师资格的医生开具处方后方可使用。 6.医院合理用药评价专家组每月对全院抗菌药物情况进行评价分析,并将各科室抗菌药物使用情况列入考核目标。 作者:空青山 作品编号:89964445889663Gd53022257782215002 时间:2020.12.13

常见致病菌耐药机制与应对措施

2014年第二季度细菌耐药监测结果预警与应对策略 由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。 12014年第2季度我院细菌耐药率及预警信息

备注:耐药率超过30%的抗菌药物,提示“预警抗菌药物”;耐药率超过40%的抗菌药物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试 验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制 铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活

酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)怜内酰胺酶的产生 ①大肠埃希菌对P -内酰胺类抗菌药物耐药主要是由超广谱P -内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、 CTX-M型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs 呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯 基。CTX-M 型ESBLs 呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA 型ESBLs 呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA 型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpC怜内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与怜内酰胺环羧基部分共价结合,在水分子作用下导致怜内酰胺环开环,破坏0内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的0内酰胺酶对酶抑制剂药的耐药的0内酰胺酶(IRT)主要有TEM 系列衍变而来,又称为耐酶抑制剂TEM 系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN 耐药机制包括:(1 )产抗菌药物灭活酶 ①0-内酰胺酶包括产超广谱0-内酰胺酶(ESBLs)、AmpC 酶、耐酶抑制剂0-内酰胺酶、碳青霉烯酶(KPC酶)及金属0内酰胺酶(MBLs)等。 ESBLs是耐药KPN产生的最主要的一类酶,由质粒介导,产ESBLsKPN对青霉素类、头孢菌素类及单环类药物耐药,但对头霉素类和碳青霉烯类及酶抑制剂敏感。

多重耐药菌医院感染管理制度及防控措施

多重耐药菌医院感染管理制度及防控措施多重耐药菌(MDRO)已经逐渐成为医院感染的重要病原菌。为加强多重耐药菌的医院感染管理,有效预防和控制多重耐药菌在医院内的传播,保障患者安全,特制定本制度。 一、加强多重耐药菌的医院感染管理 当发现有多重耐药菌株流行可能时,医院感染管理科应及时组织调查,临床科室、微生物实验室必须密切协作,并在全院公布感染发生情况,报告医院感染管理委员会、抗菌药物使用指导小组,减少使用可促使这些特殊病原体选择性生长的药物,同时组织人员进行流行病学调查。如出现耐亚胺培南等泛耐药菌株,建议所发生的病区应检查所有的其他病人所用的抗菌药物方案,必要时停用所有可促进这些特殊病原体选择性生长的药物而改用替代药物。 二、多重耐药菌的监测 (一)开展多重耐药菌的目标性监测 耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素肠球菌(VRE)、产超广谱β-内酰胺酶(ESBLs)细菌、多重耐药鲍曼不动杆菌、耐碳青霉烯铜绿假单胞菌等。 (二)早期检出带菌者、严密监测高危人群 加强微生物室对多重耐药菌的检测,早期检出多重耐药菌感染患者和定植患者。根据监测结果指导临床对多重耐药菌医院感染的控制工作。 加强对从其他医院转入者及易感者的检查,尤其是对年老体弱、 有严重基础疾病的免疫力低下患者、接受侵入性检查治疗如气切患者、住院时间长及近期使用广谱、高档抗菌药物治疗的患者等高危人群要严密监测。 三、诊断与报告 诊断主要依赖于病原微生物的诊断。临床科室应及时送检标本,及时发现、早期诊断多重耐药菌感染患者和定植患者。同时做好控制措施,以防扩散、流行。

(一)临床微生物实验室发现时及时电话报告医院感染管理科。 (二)医院感染管理科专职人员目标性监测的及时发现与诊断。 (三)确诊为医院感染的必须在24 小时内填卡上报医院感染管理科。 四、预防和控制多重耐药菌的传播措施 (一)遵守无菌技术操作规程 在诊疗护理操作过程中必须严格遵守无菌技术操作规程,特别是实施中心静脉置管、气管切开、气管插管、留置尿管、放置引流管等操作时,应当避免污染,减少感染的危险因素。 (二)加强医院环境卫生管理 收治多重耐药菌感染患者和定植患者的病房,应当使用专用的物品进行清洁和消毒,对患者经常接触的物体表面、医疗设施表面,须由保洁员用含氯消毒剂每天进行清洁和擦拭消毒。使用过的抹布、拖布必须消毒处理。出现或者疑似有多重耐药菌感染暴发时,应增加清洁和消毒频次。 (三)加强抗菌药物合理使用管理 严格按照《抗菌药物临床应用指导原则》和《协和医院抗菌药物临床应用管理办法(试行)》要求,严格执行抗菌药物分级使用管理制度和抗菌药物临床应用预警机制。 合理使用的前提是要依据病原学药敏结果,同时严格按照权限开处方,联合用药以及使用万古霉素、广谱头孢菌素、碳青霉烯类等必须严格掌握用药指征。避免由于抗菌药物的滥用而导致耐药菌的产生。 (四)严格遵循手卫生规范 在直接接触多重耐药菌患者前后、实施诊疗护理操作前后、接触患者体液或者分泌物后、摘掉手套后、接触患者使用过的物品后以及从患者的污染部位转到清洁

细菌耐药性的控制策略

细菌耐药性的控制策略 细菌的耐药性(drug resistance),也称为抗药性,是指细菌与抗菌药物(抗生素或消毒剂)多次接触后,对药物的敏感性下降甚至消失,致使抗菌药物对耐药菌的疗效降低或无效。 近年来,耐药细菌越来越多,耐药范围越来越广,程度越来越高,细菌耐药性已成为世界抗感染治疗领域面临的严峻问题。随着抗生素在临床上应用广泛、日益增多,而因不合理使用出现的细菌耐药、不良反应、二重感染等问题也日趋严重,使抗感染治疗失败,导致发病率和病死率上升及医疗费用增加,给临床治疗带来诸多困难,对人类健康造成极大威胁。因此,控制细菌耐药性已是刻不容缓。 一、细菌产生耐药性的原因 要达到合理有效地控制细菌耐药性的产生和蔓延,首先必须要分析细菌耐药性产生的原因。从现状来分析,细菌耐药性产生的原因主要由以下几点: 1、细菌耐药性是微生物对抗菌药物的一种自然反应每一种抗菌药物进入临床后伴随而来的都是细菌的耐药。这种耐药可能与细菌的固有特性有关,也可能出现在正常敏感菌种内,通过变异或者基因转移获得。细菌自身繁殖能力极强,它们不但能将自身耐药基因传递给其子代菌株,也能将其传递给其它细菌。随着抗菌药物的广泛应用,对每一种新药的耐药现象逐渐增加。所以我们可以说,每一种抗菌药物耐药迟早都会出现,这是自然界的普遍规律。 2、细菌的自身因素即是指细菌自身的遗传特性。细菌可通过突变或获得耐药质粒而产生耐药性,一种细菌可通过多种耐药机制对抗菌药物产生耐药。 3、医疗过程的影响医疗过程中滥用抗生素,尤其是广谱抗生素的不合理使用,导致了大量耐药菌株的产生。同时,医学新技术的推广应用促进了耐药菌的产生,如静脉导管、人工瓣膜、介入治疗等新技术成果的广泛应用为一些机会致病菌提供了进入人体的通道,这些机会致病菌比有毒力的致病菌更易产生耐药性。 二、细菌耐药性的控制策略 1、合理使用抗生素,加强医院临床微生物实验室建设,提高对感染病患者病原微生物的诊断水平,通过药敏试验为临床选用正确的抗菌药物提供依据。首先要建立标准的药敏试验方法以及对耐药菌和感染耐药菌的患者进行动态监测,及时发现耐药菌感染,制止耐药基因扩散;其次是分期分批循环使用抗菌药物,延长抗菌药物使用周期;第三要加强管理,制定科学合理的临床用药制度,防止滥用抗菌药物,能不用抗生素的尽量不用,能少用的尽量少用。再有应减少抗生素在食用动物中的滥用和误用。 2、加强药政管理,严格控制抗菌药物的生产和销售制定抗菌药物使用管理条例,加强抗菌药物使用管理。加强抗菌药物的质量监督,打击生产、销售伪劣抗菌药物行为,抗菌药物生产企业必须通过GMP认证。加强兽药管理,严厉打击假药和劣质产品。兽药生产企业应严格执行GMP标准,兽药经营企业应取得

医院感染相关细菌耐药的现状与对策探讨

医院感染相关细菌耐药的现状与对策探讨 发表时间:2016-07-21T15:58:48.077Z 来源:《系统医学》2016年第2卷第8期作者:李莹王修梅刘群 [导读] 本文结合目前医院相关耐药性细菌,简要分析其存在现状,重点阐述其预防及解决对策。 贵州省黔西南州人民医院检验科 562400 【摘要】随着医疗技术水平的不断提升,抗生素的大量使用及抗菌药等新型药物种类逐渐增加,大大增加了医院细菌感染的机率,其感染种类和数量都发生了质的变化,基于此,医院必须加大对耐药性细菌的重视程度,有效解决抗感染化疗中的问题。本文结合目前医院相关耐药性细菌,简要分析其存在现状,重点阐述其预防及解决对策。 【关键词】细菌耐药;医院感染;感染方式 【中图分类号】R197.3 【文献标识码】A 【文章编号】2096-0867(2016)08-324-02 医院感染指住院病人在医院内获得的感染,包括在住院期间发生的感染和在医院内获得出院后发生的感染,但不包括入院前已开始或者入院时已处于潜伏期的感染。在青霉素问世前,主要有A型链球菌等细菌类型[1],在青霉素问世后,则产生了金黄色葡萄球菌,肠杆菌属、克雷伯菌属等新的类型。医院中存在的感染细菌与外界感染细菌相比,具有一定特殊性,比如条件致病菌这些本身没有毒性的正常菌群,在医疗环境中逐渐耐药,从而破坏人体自身菌群的平衡,使免疫力低下的患者感染,因此,必须加大对耐药菌的重视程度,基于患者实际情况,保护患者生命健康。 1.医院感染相关细菌耐药的现状 随着抗生素等药物种类不断增多,在临床治疗过程中,产生的耐药性细菌也越来越多,常见的主要有葡萄球菌、大肠杆菌、克雷伯菌属、鲍曼不动等,严重影响着患者安全,因此,分析医院感染现状、抓住耐药性细菌具体传播途径越发凸显其必要性。 1.1葡萄球菌 葡萄球菌在医院感染中占据较大的比例,其主要包括金黄色葡萄球菌及耐甲氧西林金黄色葡萄球菌金黄色葡萄球菌(MRSA);凝固酶阴性葡萄球菌(CNS)及耐甲氧西林凝固酶阴性的葡萄球菌(MRCNS),根据某医院的临床资料显示,患者呼吸道金黄色葡萄球菌感染达45.61%,医院中感染的凝固酶阴性葡萄球菌高达90.14%。MRSA主要是由于甲氧西林药物广泛在临床应用,该类细菌对β-内酰胺类抗生素、喹诺酮、氨基糖苷类等抗生素耐药,因此其属于多重耐药性细菌。CNS多属于污染菌,常见于临床标本,但其能引起心内膜炎、败血症、骨髓炎等异物感染[2]。MRCNS同MRSA一样耐药广泛,危害大,需结合临床,排除污染,早期隔离,积极治疗。 1.2产超广谱-β内酰胺酶的肠杆菌科细菌(ESBLs) ESBLs大多数为质粒介导的普通β-内酰胺酶基因(TEM-1,TEM-2,SHV-1)突变而来,可以水解具有超广谱抗菌的内酰胺类,如第三代头孢菌素、氨曲南等,使之活性降低或者失活;而且该类菌株往往同时携带氨基糖甙类、喹诺酮类等的耐药基因,呈现多重耐药。ESBLs菌株主要在肺炎克雷伯菌和大肠埃希菌中被发现。去除产ESBLs细菌产生的诱因。包括及时拨出各种侵入性导管、尽量缩短住院时间、严格抗菌药物的使用原则等,同时应防止产ESBLs细菌的医院内扩散。如耐喹诺酮类大肠杆菌多发于新生儿科室,因医护人员或家属没有做好消毒措施,致病性大肠杆菌带到新生儿身上,导致新生儿出现腹泻等情况[3]。 1.3泛耐药铜绿假单胞菌(PDR-PA) 铜绿假单胞菌可以通过获得各种β-内酰胺酶编码基因、广谱或超广谱β-内酰胺酶、氨基糖苷类修饰酶、借助整合子qacEE基因对抗菌药物或消毒剂耐药。对5类抗菌药中的3类及以上药物耐药即可定义为PDR-PA,耐药铜绿假单胞菌容易在潮湿的环境中滋生,其传播速度快,属于目前医院中感染的病原菌。医院在使用诸如氧气湿化瓶、雾化器等医疗器械时,如果不注意其接口的消毒和清洗,很有可能会污染耐药铜绿假单胞菌,其危险因素主要有患者住院天数、呼吸机的使用频率、引流管、抗生素种类等,这一类细菌在传播过程中,易产生外毒素、凝固酶、溶血素等多种酶与毒素,因此其致病力较强。 1.4耐万古霉素肠球菌(VRE) 肠球菌主要存在于人体口腔和肠道。该类耐药性细菌可以引发泌尿性系统、血液感染、伤口感染等常见医院感染[4],还可引起危及生命的腹腔感染、败血症、心骨膜炎和脑膜炎等。肠球菌对β内酰胺类、氨基糖苷类抗菌药物具有内在抗药性,抗生素的大量使用使其耐药性进一步扩大,逐渐形成了多重耐药菌。所致感染治疗困难。在我国,耐万古霉素肠球菌(VRE)感染的发生率呈逐年上升趋势,VRE已成为医院感染的重要病原菌之一,对免疫系统受损的人尤其有危险性。 2解决医院感染相关细菌耐药问题的对策 针对不同种类的耐药性细菌,医护人员应采取不同的预防措施,不断加强自身职业道德修养,切实做好相关隔离、消毒杀菌工作,提高医院感染对耐药菌的重视程度,采取综合措施预防医院感染。 2.1加强临床医生重视程度,严格执行相关消毒制度 医院应定期举办培训或讲座,强调医院感染的危害性,不仅会引发多种临床疾病,也严重危害到医护人员和患者的健康,不利于医院持续稳定发展,可以聘请专业、有丰富经验的医生进行实地指导,不断更新细菌耐药知识,结合国内外耐药菌发展情况、流行情况,立足于医院实际需要,做好医院感染预防措施,如集中处理氧气湿化瓶,严格执行相关消毒制度,防止各类耐药性细菌的交叉感染,确保医疗器械的干净程度。 2.2合理使用抗生素,保障患者安全 抗生素的发明,在很大程度上缓解了患者疾病痛苦,但目前,存在部分依赖抗生素的情况,特别是在外科感染中。因此,医院应制定严格的抗生素使用规则,保障抗生素的合理性[5],同时,应加大对医护人员的培养力度,定期检测外科医生手术操作水平,提升医生临床实践能力,减少对抗生素的依赖程度。 2.3重视优质护理措施,监督药物使用过程 患者护理过程和围手术期护理的有效性也直接影响着耐药性细菌的传播,护理人员须及时配合医生,适当增加病房巡查次数,密切关注患者病情变化情况,对于原发疾病患者应注重保护其肠道屏障,并在护理期间,合理采取优质护理模式,多与患者进行交流,叮嘱患者注意防范医院感染,宣传各类细菌耐药的危害程度,增强患者自我保护意识。此外,医院必须加大对药物的监督力度,制定相关抗菌药的

相关主题
文本预览
相关文档 最新文档