当前位置:文档之家› 《运筹学》试卷及答案001

《运筹学》试卷及答案001

《运筹学》试卷及答案001
《运筹学》试卷及答案001

《运筹学》试卷

一、单项选择题(1?5分)

1.下面几种情形中,不可能是线性规划(以下简称LP)的约束条件形式的是( )。

A.“=”型 B.“<”型 C.“≥”型 D.“≤”型

2.LP的灵敏度分析是在( )的基础上,分析系数或模型结构的变化对最优解的影响。

A.初始单纯形表

B. 对偶问题初始单纯形表

C.最优单纯形表

D.对偶最优单纯形表

3.关于图论中图的概念,以下说法中( )的叙述正确。

A.图中的点表示研究对象,边表示点与点之间的关系 B.图中任意两点之间必有边

C.图中的边表示研究对象,结点表示衔接关系 D.图中的边数等于点数减1

4.用割平面法求解整数规划时,构造的割平面只能切去()。

A.整数可行解 B.整数最优解 C.非整数最优解 D.非整数解

5.用两阶段法求解LP问题时,第一阶段模型的目标函数是()的线性函数。

A.决策变量

B.松弛变量

C.人工变量

D.全部变量

二、判断正误(对者打“√”,错者打“×”。1?5分)

1.在互为对偶的LP原问题与对偶问题中,原问题任一可行解的目标函数值一定不超过其对偶问题任一可行解的目标函数值。()

2.Dijkstra算法也适用于求解含有负权的最短路问题。()

3.用单纯形法求解标准型的LP问题时,σj>0的变量原则上都可以作为换入变量。 ( )

4.贝尔曼最优化原理仅是动态规划问题的允许策略成为最优策略的必要条件。()

5.目标规划模型中不包含绝对约束时,不一定存在满意解。()

三、(30分) 某企业生产3种产品,这些产品均需在A、B两种不同的设备上加工,每种产品在不同设备上加工所需的工时、销售后所能获得利润以及这两种加工设备在计划期内所能利用的有效加工机时如下表。该企业应如何安排3种产品生产,可使企业所获利润最大?

要求:

1.建立该问题的线性规划模型;(5分)

2.用单纯形法求该问题的最优解及最优值;(15分)

3.产品Ⅱ的单位利润在什么范围内变动时,最优解不变?(5分)

4.直接写出该LP的对偶问题及其最优解。(5分)

四、(10分) 某家电厂商生产A、B、C三种规格的某种家电产品,装配工作在同一生产线上完成,三种产品装配时的工时消耗分别为1.2小时、1.5小时和1.7小时,生产线每月正常工作时间为240小时;三种产品销售后,每台获利分别为150、180和200元;每月销售量预计分别为100、80和70台。该厂经营目标如下:

P1:充分利用生产线的正常加工能力;

P2:利润指标为每月不低于2.5万元;

P3:根据三种产品的需求变动趋势,产品A的产量不超过预计销量、产品B的产量不低于预计销量、产品C的产量等于预计销量为宜;

P4:产品旺销时可以适当加班,但每月加班时间不宜超过60小时。

试根据上述资料建立该家电厂商产品生产计划的目标规划模型。(不求解) 五、(15分)指派5位员工去完成5项不同的工作,每人做各项工作所需时间(单位:天)如下表所示。试用匈牙利法求最优指派方案及最少总时间。

六、(10分)某公司有资金b 万元。若投资于项目k 的投资额为x k 时,其收益为g k (x k ), k =1,2,3。问应如何分配资金才能使总投资收益最大?试建立该问题的动态规划模型(不求解)。 (提示 建立动态规划模型包括:确定解法(顺序或逆序);划分阶段;定义状态变量、状态集合、决策变量、允许决策集合、状态转移方程、阶段指标、最优指标函数;写出动态规划基本方程) 七、(10分)用Ford-Fulkerson 算法求图1中容量网络的最大流和最小割。图中弧旁的数字表示(c ij ,f ij )。

八、 (15分)已知产销平衡运输问题如下表所示。试检验表中的基可行解是否是最优解。如不是,用闭回路法对表中的解进行调整,求出最优解及最小总运费。

v v t

图1

《运筹学》试卷

一、单项选择题(1?5分)

1.B

2.C

3.A

4.D

5.C 二、判断正误(对者打“√”,错者打“×”。1?5分) 1. × 2. × 3.√ 4.√ 5.× 三、(30分)解:

1. (5分)设产品Ⅰ、Ⅱ、Ⅲ在计划期内产量分别为x 1、x 2 、x 3,由题意,该问题的LP 模型为:

???

??=≥≤++≤++++=3,2,1,0120386210

754..504540max 3213213

21j x x x x x x x t s x x x z j

2.(15

:

∴ 换入

换出:

∴ 换入换出:

∵?σj ≤0,∴得最优解:X *

=(7,0,26,0,0)T

,最优值z *

=1580

3.∵x 2是非基变量,故当σ2’≤0,即?c 2 ≤-σ2=19/3,亦即c 2’ ≤154/3时,原最优解仍是最优解。

4.对偶问题为:min w = 210y 1 + 120y 2

4y 1+6y 3 ≥40 5y 1 +8y 2 ≥ 45 7y 1 +3y 2 ≥ 50 y 1, y 2 ≥ 0

对偶问题最优解:Y*=( 6,8/3)T ,最优值w *=1580 评分标准:

1.正确设定决策变量:2分;正确列出LP 模型:3分。

2.化标准形式、答案各1分,第1张单纯形表3分, 第2,3张单纯形表各5分;

3.5分。

4.正确列出对偶问题模型:3分;最优解2分。 个别数据错误酌情扣分。

四、(10分)解: 设计划期内A 、B 、C 三种产品的产量分别为x 1,x 2,x 3,由题意,该问题的GP 模型为:

????

?????????=≥=≥=-+=-+=-+=-+=-+++=-+++++++-+-++

-+

-+

-+

-+-+

+--+--6

,,1,0,,3,2,1,060

70801002500020018015024035.22..}

),(,,min{661553442331223211132164554332211 i d d j x d d d d d x d d x d d x d d x x x d d x x x t s d P d d d d P d P d P i i j 评分标准: 正确设定决策变量:2分;正确列出目标规划模型:8分。个别条件列错酌情扣分。

五、(15分)解: 变换系数矩阵:'2 0 3 6 64 9 0 8 05 0 5 10 70 0 0 3 22 5 2 0 06 4 7 10 1010 15 6 14 612 7 12 17 146 6 6 9 8 9 12 9 7 7C C =?????

??

?????????→????????????????= 圈出C ’中的独立0元素:

C ’中只有4个独立0元素,需要继续变换:用最少直线数覆盖所有0元素,未被直线覆盖的元素中的最小元素是2,则未被直线覆盖的行中每个元素-2, 被直线覆盖的列中每个元素+2,得到C’’。 圈出C ’’

已得到5: I 做B 工作;II 做C 工作;III 做D 工作;IV 做A 工作;V 做E 工作。总耗时为7+6+7+6+6=32(天)。

评分标准: 变换系数矩阵得到C ’:4分;进一步变换系数矩阵得到C ’’:6分;圈出5个独立0元素、给出最优指派方案:5分。个别数据错误酌情扣分。 六、(10分)解:建立该问题的动态规划模型如下: (1)采用逆序解法(顺序解法亦可);

’’

(2)阶段:每个项目为一个阶段,k =1,2,3

(3)状态变量s k 为第k 个阶段初可用于分配的资金。 (4)状态集合: S 1=b ,S 4=0,0≤S k ≤b,k=2,3

(5)决策变量x k 为分配第k 个项目的资金,k =1,2,3 (6)允许决策集合: 0≤x k ≤S k , k=1,2,3 (7)状态转移方程:s k+1= s k - x k ,k =1,2,3 (8)阶段指标:v k (s k ,x k )= g k (x k ) ,k =1,2,3

(9)最优指标函数f(s k )表示第k 阶段初可用于分配的资金为s k 时,采取最优策略,从第k 至第3阶段的最大投资收益。 (10)DP 基本方程为:

评分标准: (1)~(10) 项每项1分.

七、(10分)解:

(1)标号过程:先给v s 标以(0,+∞)。检查v s 的相邻未标号点,发现v 1、 v 2符合标号条件,故给v 1

以标号(v s ,min {+∞,c s1-f s1})=(v s ,2);给v 2以标号( v s ,min {+∞,c s2-f s2})= (v s ,1)。继续标号

过程,给v 4

以标号(v 1,min {2,c 14-f 14})=(v 1,2);给v 3以标号( -v 4,min {2, f 34})= (-v 4,2);给v t

以标号(v 3

,min {2, c 3t –f 3t })= (v 3

,2)。至此v t 已得到标号,说明存在一条可增广链。转调整过程。

(2)调整过程 可增广链:v s →v 1→v 4←v 3→v t ,如图1。沿可增广链调整流量,调整量δ=δv t =2,即令可增广链上所有前向弧的流量增加2,后向弧的流量减少2。调整后得到的可行流如图2:

v t

图1

(0, (v s ,1)

(-v 4,2)

,2)

{}?????==+=++≤≤0

)(1,2,3)()()(44110max s f k s f x g s f k k k k S x k k k k v

v t

(

(3) 重新标号:去掉所有标号,对新的可行流重新标号。

给v s标(0,+∞), 给v2以标号( v s,min{+∞,c s2-f s2})= (v s,1)。至此标号进行不下去,而v t未得到标号,说明图中的流已是最大流。最大流量w(f * ) =f4t+f3 t=15。

最小割集()S S,={(v s,v1),(v2,v3) ,(v2,v4)},如图2中的虚线所示。最小割集的容量为:c(S,?)=c s1+ c23+c24=6+5+4=15, 与最大流的流量相等。

评分标准: (1)、(2)、(3)、图1、图2各2分。若算法步骤和图不完整,可适当扣分。

八、(15分)解: 闭回路法求得表中基可行解的非基变量的检验数,填入表1中空格的左下角。∵σ34<0,∴表中基可行解不是最优解。

用闭回路法对表中的解进行调整,闭回路为:(x34)—x14—x24—x33—(x34),调整量为min{x14,x33}=35,调整后得到一个新的基可行解,如表2。

再用闭回路法求得表2中基可行解的非基变量的检验数,填入表2中空格的左下角。∵?σij>0,∴表2中的解即为问题的最优解。

最小总运费z=2?45+4?15+3?20+2?30+4?5+2?35=360。

评分标准: 两个表中的基可行解的检验和解的调整各5分。个别数据错误酌情扣分。

运筹学建模例题和判断题

【例1-2】某商场决定:营业员每周连续工作5天后连续休息2天,轮流休息。根据统计,商场每天需要的营业员如表1-2所示。 j 息的营业员,该模型如何变化. 【例1-3】合理用料问题。某汽车需要用甲、乙、丙三种规格的轴各一根,这些轴的规格分别是,1,(m),这些轴需要用同一种圆钢来做,圆钢长度为4 m。现在要制造1000辆汽车,最少要用多少圆钢来生产这些轴 如果要求余料最少,数学模型如何变化; 【例1-4】配料问题。某钢铁公司生产一种合金,要求的成分规格是:锡不少于28%,锌不多于15%,铅恰好10%,镍要界于35%~55%之间,不允许有其他成分。钢铁公司拟从五种不同级别的矿石中进行冶炼,每种矿物的成分含量和价格如表1-4所示。矿石杂质在治炼过程中废弃,现要求每吨合金成本最低 在例中,若允许含有少量杂质,但杂质含量不超过1%,模型如何变化. 【例1-5】投资问题。某投资公司拟将5000万元的资金用于国债、地方国债及基金三种类型证券投资,每类各有两种。每种证券的评级、到期年限及每年税后收益率见表1-5 2。问每种证券各投资多少使总收益最大。 【例1-6】均衡配套生产问题。某产品由2件甲、3件乙零件组装而成。两种零件必须经过设备A、B上加工,每件甲零件在A、B上的加工时间分别为5分钟和9分钟,每件乙零件在A、B上的加工时间分别为4分钟和10分钟。现有2台设备A和3台设备B,每天可供加工时间为8小时。为了保持两种设备均衡负荷生产,要求一种设备每天的加工总时间不超过另一种设备总时间1小时。怎样安排设备的加工时间使每天产品的产量最大 在例中,假定同种设备的加工时间均匀分配到各台设备上,要求一种设备每台每

运筹学试题及答案

运筹学A卷) 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分) 1.线性规划具有唯一最优解就是指 A.最优表中存在常数项为零 B.最优表中非基变量检验数全部非零 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 2.设线性规划的约束条件为 则基本可行解为 A.(0, 0, 4, 3) B.(3, 4, 0, 0) C.(2, 0, 1, 0) D.(3, 0, 4, 0) 3.则 A.无可行解 B.有唯一最优解medn C.有多重最优解 D.有无界解 4.互为对偶的两个线性规划, 对任意可行解X 与Y,存在关系 A.Z > W B.Z = W C.Z≥W D.Z≤W 5.有6 个产地4个销地的平衡运输问题模型具有特征 A.有10个变量24个约束

B.有24个变量10个约束 C.有24个变量9个约束 D.有9个基变量10个非基变量 6、下例错误的说法就是 A.标准型的目标函数就是求最大值 B.标准型的目标函数就是求最小值 C.标准型的常数项非正 D.标准型的变量一定要非负 7、m+n-1个变量构成一组基变量的充要条件就是 A.m+n-1个变量恰好构成一个闭回路 B.m+n-1个变量不包含任何闭回路 C.m+n-1个变量中部分变量构成一个闭回路 D.m+n-1个变量对应的系数列向量线性相关 8.互为对偶的两个线性规划问题的解存在关系 A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解 9、有m个产地n个销地的平衡运输问题模型具有特征 A.有mn个变量m+n个约束…m+n-1个基变量 B.有m+n个变量mn个约束 C.有mn个变量m+n-1约束 D.有m+n-1个基变量,mn-m-n-1个非基变量 10.要求不超过第一目标值、恰好完成第二目标值,目标函数就是

运筹学课程设计报告(附代码)范文

《运筹学》课程设计报告 姓名: 班级: 学号:

一、问题描述 1、机型指派问题 机型指派优化设计是航空公司制定航班计划的重要内容,它要求在满足航班频率和时刻安排以及各机型飞机总数约束的条件下,将各机型飞机指派给相应的航班,使运行成本最小化。本课程设计要求建立机型指派问题的数学模型,应用优化软件Lindo/Lingo进行建模求解,给出决策建议,包括各机型执行的航班子集和相应的运行成本。 2、问题描述 已知某航空公司航班频率和时刻安排如《运筹学课程设计指导书》中表1所示,航班需求数据和运输距离如表2所示,其中,OrignA/P表示起飞机场,Dep.T.表示起飞时间,Dest.A/P表示目标机场,Dist表示轮挡距离,Demand表示航班需求量,Std Dev.表示需求的标准差。该航空公司的机队有两种机型:9架B737-800,座位数162;6架B757-200,座位数200。飞八个机场:A,B,I,J,L,M,O,S。 B737-800的CASM(座英里成本)是0.34元,B757-200是0.36元。两种机型的 RASM(座英里收益)都是 1.2元。以成本最小为目标进行机型指派,在成本方面不仅考虑运行成本,还必须考虑旅客溢出成本,否则将偏向于选取小飞机,使航空公司损失许多旅客。 旅客溢出成本是指旅客需求大于航班可提供座位数时,旅客流失到其他航空公司造成的损失。旅客需求服从N(μ,σ)的正态分布。如果机票推销工作做得好,溢出旅客并不全部损失,有部分溢出旅客将该成本航空公司其他航班,这种现象叫做“再获得”(Recapture)。设有15%的溢出旅客被再获得。 将飞机指派到航班上去,并使飞机总成本最小。 二、分析建模 1.确定决策变量 经过对问题描述的分析得出,要解决飞机机型指派问题,我设定了两类变量: (1)针对各条航线的机型,令B737-800和B757-200分别为机型1和机型2,设变量Xi,j.其中101≤i≤142,j=1或2。且对于变量Xi,j=0或1,当Xi,j=1,表示第i条航线由第j 种飞机运营。例如,X101,1=1,则第101号航班由第1种机型飞行,且X101,2=0 (2)针对机场时间节点飞机流的变量,设变量Gm,j.表示对于第m个节点上第j种机型的数量,例如,G A1,1表示A机场第1个节点上第1种机型的数量。 2.目标函数 以飞机总成本最小为指派目标,而单个航班的飞机总成本包括两个部分:1.运输成本;2. 旅

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1 +x 2 与 约束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

运筹学试卷及答案.doc

运 筹 学 考 卷 1 / 51 / 5

考试时间: 第十六周 题号一二三四五六七八九十总分 评卷得分 : 名 一、单项选择题。下列每题给出的四个答案中只有一个是正确的,将表示正确 姓 答案的字母写这答题纸上。(10 分, 每小题2 分) 1、使用人工变量法求解极大化线性规划问题时,当所有的检验数j 0 ,在 线 基变量中仍含有非零的人工变量,表明该线性规划问题() A. 有唯一的最优解; B. 有无穷多个最优解; C. 无可行解; D. 为无界解 2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中(): 号 A.b 列元素不小于零B.检验数都大于零 学 C.检验数都不小于零D.检验数都不大于零 3、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可行解中非 零变量的个数() 订 A. 不能大于(m+n-1); B. 不能小于(m+n-1); C. 等于(m+n-1); D. 不确定。 4、如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足() A. d 0 B. d 0 C. d 0 D. d 0,d 0 5、下列说法正确的为() : 业 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解 专 B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解 装 C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原 问题可行解的目标函数值都一定不超过其对偶问题可行解的目标函数 D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解 : 院

学 2 / 52 / 5

二、判断下列说法是否正确。正确的在括号内打“√”,错误的打“×”。(18 分,每 小题2 分) 1、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。() 2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一 个基变量的值为负。() 3、任何线性规划问题存在并具有惟一的对偶问题。() 4、若线性规划的原问题有无穷多最优解,则其最偶问题也一定具有无穷多最优解。 ()5、运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之 一:有惟一最优解,有无穷多最优解,无界解,无可行解。() 6、如果运输问题的单位运价表的某一行(或某一列)元素再乘上那个一个常数k , 最有调运方案将不会发生变化。() 7、目标规划模型中,应同时包含绝对约束与目标约束。() 8、线性规划问题是目标规划问题的一种特殊形式。() 9、指派问题效率矩阵的每个元素都乘上同一常数k,将不影响最优指派方案。() 三、解答题。(72 分) max z 3x 3x 1 2 1、(20分)用单纯形法求解 x x 1 2 x x 1 2 4 2 ;并对以下情况作灵敏度分析:(1)求 6x 2 x 18 1 2 x 0, x 0 1 2 5 c 的变化范围;(2)若右边常数向量变为2 b ,分析最优解的变化。 2 20 2、(15 分)已知线性规划问题: max z x 2x 3x 4x 1 2 3 4 s. t. x 2x 2x 3x 20 1 2 3 4 2x x 3x 2x 20 1 2 3 4 x x x x , , , 0 1 2 3 4 其对偶问题最优解为y1 1.2, y2 0.2 ,试根据对偶理论来求出原问题的最优解。

运筹学试卷及答案

运筹学考卷

学 院: 专 业: 学 号: 姓 名: 装 订 线 考试时间: 第 十六 周 题 号 一 二 三 四 五 六 七 八 九 十 总分 评卷得分 一、 单项选择题。下列每题给出的四个答案中只有一个是正确的,将表示正确 答案的字母写这答题纸上。(10分, 每小题2分) 1、使用人工变量法求解极大化线性规划问题时,当所有的检验数0j σ≤,在 基变量中仍含有非零的人工变量,表明该线性规划问题( ) A. 有唯一的最优解; B. 有无穷多个最优解; C. 无可行解; D. 为无界解 2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中( ) A .b 列元素不小于零 B .检验数都大于零 C .检验数都不小于零 D .检验数都不大于零 3、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可行解中非零变量的个数( ) A. 不能大于(m+n-1); B. 不能小于(m+n-1); C. 等于(m+n-1); D. 不确定。 4、如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足( ) A. 0d +> B. 0d += C. 0d -= D. 0,0d d -+>> 5、下列说法正确的为( ) A .如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解 B .如果线性规划的对偶问题无可行解,则原问题也一定无可行解 C .在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值都一定不超过其对偶问题可行解的目标函数 D .如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解

运筹学课设 doc(1)

西安建筑科技大学课程设计(论文)任务书 一、本次课程设计应达到的目的 1. 掌握运筹学知识在管理问题中应用的基本方法与步骤; 2. 巩固和加深对所学运筹学理论知识及方法的理解与掌握; 3. 培养与锻炼学生从管理实践中提炼问题、分析问题、构建模型求解问题的综合应用能力; 4. 上机练习,了解与掌握几种常用的运筹学计算软件及其使用与操作方法; 5. 锻炼并初步掌握运筹学模型求解程序的编写方法与技术。 6. 初步了解学术研究的基本方法与步骤,并通过设计报告的撰写,了解学术报告的写作方法。 二、本次课程设计任务的主要内容和要求 1. 结合专业知识,对某一实际管理问题进行分析,调查收集相关数据,并整理出符合问题特征的数据,包括目标因素、约束因素以及必须的参数与系数等等; 2. 在上一步分析基础上,按照运筹学建模的基本方法与要求,通过抽象处理,建立所研究问题的运筹学模型,判断模型的类型并选择求解方法; 3. 上机练习,学习常用运筹学计算软件的使用与基本操作方法,并选择其中一种对所建运筹学模型进行求解,得出最优解、灵敏度计算等相关计算结果; 4. 结合理论课以及计算机程序设计课程所学的基本知识,编写线性规划单纯形法的计算程序,别用所编写程序和已学习的某种运筹学计算软件,并分求解相关课后习题,对所编写的算程序进行验证; 5. 总结设计过程,整理与记录设计中的关键工作与成果,撰写设计报告。 三、应收集的资料及主要参考文献: 1. 应收集的资料: [1]研究对象的现状数据材料 [2]与所建模型的参数、系数、约束条件等因素相关的数据材料 2. 主要参考文献: [1]杨茂盛.运筹学(第三版).陕西科学技术出版社,2006 [2]运筹学编写组. 运筹学(第三版).清华大学出版社,2005 [3]徐玖平, 胡知能, 王緌. 运筹学(第二版). 北京: 科学出版社, 2004 [4]胡运权. 运筹学基础及应用. 哈尔滨: 哈尔滨工业大学出版社, 1998 [5]陈汝栋,于延荣. 数学模型与数学建模(第2版).国防工业出版社,2009 [6]刘建永.运筹学算法与编程实践:Delphi实现.清华大学出版社,2004 [7]谢金星,薛毅.建优化建模LINDO/LINGO软件.清华大学出版社,2005

清华大学运筹学考试

一、不定向选择 1、若线性规划问题有可行解则: A其可行域可能无界 B其可行域为凸集 C至少有一个可行解为基本可行解 D可行域边界上点都为基本可行解 E一定存在某一可行解使目标函数达最优值 F任一可行解均能表示为所有可行域顶点线性组合表示 G某一可行解为最优解必要条件为它是一个基本解。 2、线性规划问题和其对偶问题关系: A对偶问题的对偶问题为原问题 B若原问题无解,其对偶问题有无界解 C若原问题无界解,其对偶问题无解或者无界解 D即使原问题有最优解,其对偶问题也未必有最优解 E原问题目标函数达到最大时,其对偶问题取最小值 F只有原问题达最优解时,其对偶问题才有可行解 G若原问题有无穷多最优解,其对偶问题有无界解。 二、已知线性规划问题,如下: max z=x1+x2-x3 -x1+2x2+x3<=2 st. -2x1+x2-x3<=3 x1,x2,x3>=0 据对偶理论分析此问题有解的情况(最优,无界或无解)三、已知线性规划问题 max z=x1+4x2+x3+2x4 x1+2x2 +x4<=8 x2 +2x4<=6 st. x2+x3+x4<=9 x1+x2+x3 <=6 x1,x2,x3,x4>=0 最优解为(0,2,4,2)据对偶理论找出其对偶问题最优解四、单纯形法解下列线性规划问题 max z=3x1+2x2

x1+2x2<=6 st. 2x1+x2<=8 -x1+x2<=1 x2<=2 x1,x2>=0 1)第一、二、四约束的影子价格为多少? 2)变量x1价值系数增加2,最优解是否变化? 五、运输问题单价表如下,确定总运费最小的调运方案 B1 B2 B3 B4 产量 A1 3 10 3 11 14 A2 2 8 1 9 8 A3 10 6 7 4 18 销量10 12 6 12 40 六、设备更新题:某设备收益r(万元),维修保养费w(万元) 更新费g(万元)与役龄t(年)关系如下: r(t)=10-1/2 t w(t)=1+5/4 t g(t)=1/2+4/5 t 考虑资金占用利率I ,试建立10年更新计划动态规划模型

运筹学习题课

运筹学习题课 一、选择题 1.用图解法解线性规划时,以下几种情况中不可能出现的是( )。 A. 可行域有界,无有限最优解 B. 可行域无界,有唯一最优解 C. 可行域是空集,无可行解 D. 可行域有界,有多重最优解 2.根据线性规划的互补松弛定理,安排生产的产品机会成本一定( )利润. A. 小于 B. 等于 C. 大于 D. 大于等于 3.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为( )。 A. 3 B. 2 C. 1 D. 以上三种情况均有可能 4.在求解整数规划问题时,不可能出现的是( )。 A. 唯一最优解 B. 无可行解 C. 多重最佳解 D. 无穷多个最优解 5.1m n +-个变量构成一组基变量的充要条件是( )。 A. 1m n +-个变量恰好构成一个闭回路 B. 1m n +-个变量对应的系数列向量线性相关 C. 1m n +-个变量中部分变量构成一个闭回路 D. 1m n +-个变量不包含任何闭回路 6.线性规划具有唯一最优解是指( )。 A. 最优表中存在常数项为零 B. 可行解集合有界 C. 最优表中存在非基变量的检验数为零 D. 最优表中非基变量检验数全部非零 7.有6 个产地4个销地的产销平衡运输问题模型具有特征( )。 A. 有10个变量24个约束 B. 有24个变量10个约束 C. 有24个变量9约束 D. 有9个基变量10个非基变量 8.下列关于网络最大流的说法中,不正确的是( )。 A. 可行流*f 是最大流,当且仅当网络中存在关于* f 的增广链 B. 用标号法求解最大流问题,同时可得到一个最小截集 C. 最小截集的容量的大小影响网络总的输送量的提高 D. 网络的最大流需满足容量条件和平衡条件

运筹学试题及答案汇总

3)若问题中 x2 列的系数变为(3,2)T,问最优解是否有变化; 4)c2 由 1 变为 2,是否影响最优解,如有影响,将新的解求出。 Cj CB 0 0 Cj-Zj 0 4 Cj-Zj 3 4 Cj-Zj 最优解为 X1=1/3,X3=7/5,Z=33/5 2对偶问题为Minw=9y1+8y2 6y1+3y2≥3 3y1+4y2≥1 5y1+5y2≥4 y1,y2≥0 对偶问题最优解为 y1=1/5,y2=3/5 3 若问题中 x2 列的系数变为(3,2)T 则P2’=(1/3,1/5σ2=-4/5<0 所以对最优解没有影响 4)c2 由 1 变为2 σ2=-1<0 所以对最优解没有影响 7. 求如图所示的网络的最大流和最小截集(割集,每弧旁的数字是(cij , fij )。(10 分) V1 (9,5 (4,4 V3 (6,3 T 3 XB X4 X5 b 9 8 X1 6 3 3 X4 X3 1 8/5 3 3/5 3/5 X1 X3 1/3 7/5 1 0 0 1 X2 3 4 1 -1 4/5 -11/5 -1/3 1 - 2 4 X 3 5 5 4 0 1 0 0 1 0 0 X4 1 0 0 1 0 0 1/3 -1/ 5 -1/5 0 X5 0 1 0 -1 1/5 -4/5 -1/3 2/5 -3/5 VS (3,1 (3,0 (4,1 Vt (5,3 V2 解: (5,4 (7,5 V4 V1 (9,7 (4,4 V3 (6,4 (3,2 Vs (5,4 (4,0 Vt (7,7 6/9 V2 最大流=11 (5,5 V4 8. 某厂Ⅰ、Ⅱ、Ⅲ三种产品分别经过 A、B、C 三种设备加工。已知生产单位各种产品所需的设备台时,设备的现有加工能力及每件产品的预期利润见表:ⅠⅡⅢ设备能力(台.h A 1 1 1 100 B 10 4 5 600 C 2 2 6 300 单

运筹学课程设计

目录 一问题提出 (1) 二问题分析 (1) 三模型建立 (1) 3.1模型一的建立 (3) 3.2模型二的建立 (5) 3.3模型三的建立 (6) 四结果分析 (8) 五模型评价 (8) 5.1模型优点 (8) 5.2模型缺点 (8) 六参考文献 (9)

旅游最短路 一 问题提出 周先生退休后想到各地旅游。计划从沈阳走遍华北各大城市。请你为他按下面要求制定出行方案: 1. 按地理位置(经纬度)设计最短路旅行方案; 2. 如果2010年5月1日周先生从沈阳市出发,每个城市停留3天,可选择航空、铁路(快车卧铺或动车),设计最经济的旅行互联网上订票方案; 3. 设计最省时的旅行方案,建立数学模型,修订你的方案; 二 问题分析 第一问要求按地理位置(经纬度)设计最短路旅行方案,求最短路径是一个典型的旅行售货商(TSP )模型。TSP 模型可解的是知道任意两个城市之间的距离,通过查阅资料可以华北各个城市所在的经纬度,所以首先就需要通过经纬度计算出任意两个城市之间的距离,得到一个距离矩阵,再建立()TSP 模型, 对模型进行求解。问题的目标函数为 ij n i n j ij x d z ∑∑==1min ( )j i ≠ 其中10或=ij x , 若1=ij x 表示周先生直接从i 市到j 市。建立整数目标规划,用Lindo 软件求解,找出所有1=ij x ,确定最短路的旅行方案。 第二问要求最经济,所以应从票价方面进行考虑,通过查阅资料可得各城市之间航空、铁路(快车卧铺或动车)的不同票价,由于要求最经济的旅行互联网上订票方案,所以选取三种类型票价中最低的票价,构建票价矩阵。用票价矩阵代替第一问中的距离矩阵,求解出一条最经济路径。 第三问要求设定省时的方案就需要考虑时间因素,因为以上三种交通工具中航空用时最短,选择飞机作为旅行交通工具。通过查阅资料得到各城市间航班的时间矩阵,用时间矩阵代替第一问中的距离矩阵,求解一条最省时的路径。 三 模型建立 在具体的实现上,我们采用了整数规划法,并辅以LINGO 软件编程实现 在下述意义下,引入一些0—1变量: ???≠=其他情况 且到巡回路线是从0,1j i j i x ij

运筹学试卷及答案完整版

《运筹学》模拟试题及参考答案 一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。) 1. 图解法提供了求解线性规划问题的通用方法。( ) 2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。( ) 3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。( ) 4. 满足线性规划问题所有约束条件的解称为基本可行解。( ) 5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。( ) 6. 对偶问题的目标函数总是与原问题目标函数相等。( ) 7. 原问题与对偶问题是一一对应的。( ) 8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。( ) 9. 指派问题的解中基变量的个数为m+n。( ) 10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。( ) 11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。( ) 12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。( ) 13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。( ) 14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。( ) 15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。 ( ) 三、填空题 1. 图的组成要素;。 2. 求最小树的方法有、。 3. 线性规划解的情形有、、、。 4. 求解指派问题的方法是。 5. 按决策环境分类,将决策问题分为、、。 6. 树连通,但不存在。 1

运筹学课程设计

运筹学

案例6.1网络中的服务及设施布局 (a)在11个小区内准备共建一套医务所,邮局,储蓄所,综合超市等服务设施,应建于哪一个居民小区,使对居民总体来 说感到方便; ●问题分析 为满足题目的要求。只需要找到每一个小区到其他任何一个小区的最短距离。然后再用每一小区的人数进行合理的计算后累加,结果最小的便是最合理的建设地。 ●以下表中数据d ij表示图中从i到j点的最短距离

设施建于各个小区时居民所走路程

由以上数据可知。各项服务设施应建于第八个居民小区。 (b)电信部门拟将宽带网铺设到各个小区,应如何铺设最为经济 ●问题分析 要解决这个问题时期最为经济。只需要找到图找的最小部分树便可以。 ●以下是最小部分树。 起点终点距离 1 4 4 4 2 5 4 5 5 5 6 4 6 3 5 4 8 6 8 7 4 8 9 4 7 10 5 10 11 0 所以按照以上路径进行线路铺设,就可达到最经济。总的距离为42 (c)一个考察小组从小区1出发,经5.8.10。小区(考察顺序不

限),最后到小区9再离去,请帮助选一条最短的考察路线。 问题分析 找出这几个小区通过的不同组合,计算出路程总和,最短的就是最优路线。 以下是不同组合以及各个路程 一·1→5(11)5→8(8)8→10(9)10→9(12)40 二·1→5(11)5→10(17)10→8(9)8→9(4)41 三·1→8(12)8→10(9)10→5(17)5→9(6)44 四·1→8(12)8→5(8)5→10(17)10→9(12)49 五·1→10(13)10→5(17)5→8(8)8→9(4)42 六·1→10(13)10→8(9)8→5(8)5→9(6)36 由以上数据可知最短的考察路线是 1→10→8→5→9 案例8.2用不同的方法解决最短路问题 说明:为了解题的方便,现将图中的代号修改如下。A、B1、B2、B3、C1、C2、D1、D2、D3、E.修改为1、2、3、4、5、7、8、9、10。

2015年清华大学826运筹学与统计学

2015年清华大学826运筹学与统计学(数学规划、应用随机模型、统计学各占1/3)考研复习参考书 科目:826 运筹学与统计学(数学规划、应用随机模型、统计学各占1/3)参考书:《运筹学(数学规划)(第3版)清华大学出版社,2004年1月 W.L.Winston 《运筹学》(应用随机模型)清华大学出版社,2004年2月 V.G. Kulkarni 《概率论与数理统计》(第1~9章)高等教育出版社,2001年盛聚等 考研复习方法,这里不详细展开。简单归纳为: 新祥旭考研提醒:首先,清楚考试明细,掌握真题,真题为本。通过真题,了解和熟知:考什么、怎么考、考了什么、没考什么;通过练习真题,了解:目前我的能力、复习过程中我的进步、我的考试目标。提醒一句:千万不要浪费大量时间做不相关的模拟题;千万不要把考研复习等同于做题目,搞题海战术。 其次,把握参考书,参考书为锚。弄懂、弄熟。考研复习如何才能成功?借用《卖油翁》里的一句话,那就是:手熟而已。明确考试之后,考研就基本上是一个熟悉吃透的过程。无论何时,参考书第一,不能轻视。所以,千万不要本末倒置,把做题凌驾于看书之上。如何才叫熟悉?我认为,要打破“讲速度,不讲效率”的做法,看了多少遍并不是检验熟悉与否的指标,合上书本,随时自我检测,能否心中有数、一问便知,这才是关键。 再次,制定计划,合理分配时间。不是每一本参考书都很重要,都一样重要,所以,在了解真题的基础上,要了解每一本书占多少分,如何命题考试,在此基础上,每一本参考书的主次轻重、复习方略也就清楚了,复习才不会像开摊卖药,平均用力。一个月制定一份计划书,每天写一句话鼓励自己,一个月调整一次复习重点,这都是必要的。 最后,快乐复习。考研复习是以什么样状态进行的,根源在于能否克服不良情绪。第一,报考对外汉语,你是因为喜欢这个专业吗?如果是,那么,就继续给自己这种暗示,那么你一定会发现,复习再紧张,也是愉悦的,因为你是为了兴趣而考研的;第二,规律的作息,不大时间战,消耗战,养精蓄锐。运动加休息,如果能每天都很规律,那么成功也就有了保障,负面情绪少了,效率也就高了。 总结为几个关键词,就是:知己知彼、本末分明。

运筹学课后习题答案

第一章 线性规划及单纯形法 1.用X j (j=1.2…5)分别代表5中饲料的采购数,线性规划模型: 12345123412341234min 0.20.70.40.30.8.3267000.50.2300.20.8100 (1,2,3,4,5,6)0 j z x x x x x st x x x x x x x x x x x x x x x x j =+++++++≥+++≥+++≥=≥555 +18 +2 0.5+2 2.解:设123456x x x x x x x 表示在第i 个时期初开始工作的护士人数,z 表示所需的总人数,则 123456 161223344556min .607060502030 (1,2.3.4.5.6)0i z x x x x x x st x x x x x x x x x x x x x i =++++++≥+≥+≥+≥+≥+≥=≥ 3.解:设用i=1,2,3分别表示商品A ,B ,C ,j=1,2,3分别代表前,中,后舱,Xij 表示装于j 舱的i 种商品的数量,Z 表示总运费收入则: 111213212223313233111213212223313233112131122232132333112131max 1000()700()600() .6001000800105740010575400105715008652000z x x x x x x x x x st x x x x x x x x x x x x x x x x x x x x x =++++++++++≤++≤++≤++≤++≤++≤++≤ 122232132333112131122232132333 122232112131 132333865300086515008650.15 8658650.15 8658650.1 8650(1,2.3.1,2,3)ij x x x x x x x x x x x x x x x x x x x x x x x x x i j ++≤++≤++≤++++≤++++≤++≥== 5. (1)

(整理)《运筹学》期末考试试题与参考答案

《运筹学》试题参考答案 一、填空题(每空2分,共10分) 1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。 2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。 3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。 4、在图论中,称 无圈的 连通图为树。 5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。 二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2 ?????? ?≥≤≤+≤+0 7810 22122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。 2)min z =-3x 1+2x 2 ????? ????≥≤-≤-≤+-≤+0 ,1 37210 42242212 1212121x x x x x x x x x x 解: ⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺ ⑴ ⑵ ⑶ ⑷ ⑸、⑹

可行解域为abcda ,最优解为b 点。 由方程组? ??==+022 42221x x x 解出x 1=11,x 2=0 ∴X *=???? ??21x x =(11,0)T ∴min z =-3×11+2×0=-33 三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示: A B C 甲 9 4 3 70 乙 4 6 10 120 360 200 300 1)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)

运筹学部分课后习题解答_1

运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题 a) 12 12 12 12 min z=23 466 ..424 ,0 x x x x s t x x x x + +≥ ? ? +≥ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为 最优解,即该问题有无穷多最优解,这时的最优值为 min 3 z=2303 2 ?+?= P47 1.3 用图解法和单纯形法求解线性规划问题 a) 12 12 12 12 max z=10x5x 349 ..528 ,0 x x s t x x x x + +≤ ? ? +≤ ? ?≥ ? 解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点, 即 1 12 122 1 349 3 528 2 x x x x x x = ? += ?? ? ?? +== ?? ? ,即最优解为* 3 1, 2 T x ?? = ? ?? 这时的最优值为 max 335 z=1015 22 ?+?=

单纯形法: 原问题化成标准型为 121231241234 max z=10x 5x 349 ..528,,,0x x x s t x x x x x x x +++=?? ++=??≥? j c → 10 5 B C B X b 1x 2x 3x 4x 0 3x 9 3 4 1 0 0 4x 8 [5] 2 0 1 j j C Z - 10 5 0 0 0 3x 21/5 0 [14/5] 1 -3/5 10 1x 8/5 1 2/5 0 1/5 j j C Z - 1 0 - 2 5 2x 3/2 0 1 5/14 -3/14 10 1x 1 1 0 -1/7 2/7 j j C Z - -5/14 -25/14

运筹学课程设计

运筹学课程设计实践报告 姓名:潘园园 班级:信管1班 学号:1108210127

1. 杂粮销售问 一贸易公司专门经营某种杂粮的批发业务,公司现有库容5127担的仓库。一月一日,公司拥有库存1000担杂粮,并有资金20000元。估计第一季度杂粮价格如下所示:一月份,进货价2.85元,出货价3.10元;二月份,进货价3.05元,出货价3.25元;三月份,进货价2.90元,出货价2.95元;如买进的杂粮当月到货,需到下月才能卖出,且规定“货到付款”。公司希望本季度末库存为2000担,问应采取什么样的买进与卖出的策略使三个月总的获利最大,每个月考虑先卖后买? 解:设第一月买进a x 1卖出b x 1,第二个月买进a x 2卖出b x 2,第三个月买进a x 3卖b x 3 MaxZ=3.1*b x 1+3.25*b x 2+2.95*b x 3-2.85*a x 1-3.05*a x 2-2.9*a x 3 1000-b x 1+a x 1≤5127 1000-b x 1+a x 1-b x 2+a x 2≤5127 b x 1≤1000 1000+a x 1-b x 1+a x 2-b x 2+a x 3-b x 3=2000 1000+a x 1-b x 1≥b x 2 1000+a x 1-b x 1-b x 2+a x 2≥b x 3 20000+3.1*b x 1≥2.85*a x 1 20000+3.1*b x 1-2.85*a x 1+3.25*b x 2≥3.05*a x 2 20000+3.1*b x 1-2.85*a x 1+3.25*b x 2-3.05*a x 2+2.95*b x 3≥2.9*a x 3 a x 1, b x 1……. b x 3≥0 利用winQSB 求解1x ,2x ,3x ,4x ,5x ,6x 分别代表a x 1,b x 1,a x 2,b x 2,a x 3,b x 3

运筹学试题及答案4套

《运筹学》试卷一 一、(15分)用图解法求解下列线性规划问题 二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、 为松弛变量,试求表中到的值及各变量下标到的值。 -13 1 1 6 1 1-200 2-1 1 1/2 1/2 1 4 07 三、(15分)用图解法求解矩阵对策, 其中 四、(20分) (1)某项工程由8个工序组成,各工序之间的关系为 工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e 试画出该工程的网络图。 (2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键

线路(箭线下的数字是完成该工序的所需时间,单位:天) 五、(15分)已知线性规划问题 其对偶问题最优解为,试根据对偶理论求原问题的最优解。 六、(15分)用动态规划法求解下面问题:

七、(30分)已知线性规划问题 用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。 2 -1 1 0 0 2 3 1 1 3 1 1 1 1 1 6 10 0 -3 -1 -2 0 (1)目标函数变为; (2)约束条件右端项由变为; (3)增加一个新的约束: 八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案 销地 产地 甲乙丙丁产量 A41241116 B2103910

C8511622需求量814121448 《运筹学》试卷二 一、(20分)已知线性规划问题: (a)写出其对偶问题; (b)用图解法求对偶问题的解; (c)利用(b)的结果及对偶性质求原问题的解。 二、(20分)已知运输表如下: 销地 产地B1B2B3B4供应量 50 A 1 3 2 7 6 A 2 60 7 5 2 3 25 A 3 2 5 4 5 需求量60 40 20 15 (1)用最小元素法确定初始调运方案; (2)确定最优运输方案及最低运费。 三、(35分)设线性规划问题 maxZ=2x1+x2+5x3+6x4

运筹学课程设计

运筹学课程设计

运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。通过对数据的调查、收集和统计分析,以及具体模型的建立。收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。 本文研究的主要内容是某食品企业希望向消费者推销低脂类早餐谷物,希望通过广告来吸引各个年龄段的男女消费者,这些广告投放在不同的电视节目上,价格不同,达到的效果也不同,在既能满足观众的要求,又为广告支出的费用最低的情况下做出一个规划。根据各种限定性因素得出目标函数和各个约束条件,运用运筹学计算软件(主要是指Lindo软件)求解所建立的线性规划模型。另外利用LINGO软件求解某摩托车厂四个季度生产量的分配问题,使得每个季度的生产量合理安排,达到生产成本最少的目的。然后利用Lingo求解某游戏机厂运输问题,得到一个最优运输方案。 所以对基本情况的分析,经过抽象和延伸,建立起了购买电视广告的线性规划模型。结合模型的特点,对模型的求解进行了讨论和分析,将模型应用于案例的背景问题,得出相应的最优解决方案,就可以对问题一一进行解答。 关键词:线性规化软件;Lingo;Lindo软件;数据分析;灵敏度分析。

1.购买电视广告问题 (4) 1.1.问题的提出和分析 4 1.1.1.问题提出 4 1.1. 2.问题分析 6 1.2.问题求解 7 1.3.结果分析 8 2.运输问题 (11) 2.1.提出问题 11 2.2.问题分析 12 2.3.结果分析 15 总结 (16) 参考文献 (17)

大学运筹学课程知识点总结

1.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。 ?? ???≤≤≤≤≤++=8 3105120106max 21212 1x x x x x x z 2.将下述线性规划问题化成标准形式。 (1)?????? ?≥≥-++-≤+-+-=-+-+-+-=无约束 4,03,2,12321422245243min 43214 32143214 321x x x x x x x x x x x x x x x x x x x x z 解:令z z -=',' '4'44x x x -= ???????≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,23214 2222455243'max 6 5''4'43216' '4'43215' '4'4321''4'4321' '4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应

图解法中的可行域的哪个顶点。 ??? ??≥≤+≤++=0,825943510max 2 121212 1x x x x x x x x z 解:①图解法: ②单纯形法:将原问题标准化: ??? ??≥=++=+++=0,,,825943510max 4 3214213 212 1x x x x x x x x x x x x z C j 10 5 0 0 θ 对应图解法中的点 C B B b x 1 x 2 x 3 x 4 0 x 3 9 3 4 1 0 3 O 点 0 x 4 8 [5] 2 0 1 8/5 σj 0 10 5 0 0 0 x 3 21/5 0 [14/5] 1 -3/5 3/2 C 点 10 x 1 8/5 1 2/5 0 1/5 4 σj -16 0 1 0 -2 5 x 2 3/2 0 1 5/14 -3/14 B 点 10 x 1 1 1 0 -1/7 2/7 σj 35/2 -5/14 -25/14 最优解为(1,3/2,0,0),最优值Z=35/2。

相关主题
文本预览
相关文档 最新文档