当前位置:文档之家› 钢筋混凝土结构抗高温性能

钢筋混凝土结构抗高温性能

钢筋混凝土结构抗高温性能
钢筋混凝土结构抗高温性能

许海斌 王晓峰 晨 吴琪宇 朱泽宇 科技学院

钢筋混凝土结构抗高温性能研究综述

【摘要】随着钢筋混凝土在现代建筑中越来越广泛的使用和近年来建筑物火灾发生的增长,人们有必要对混凝土结构的火损伤行为有更系统和量化的理解。在高温(火灾)条件下,钢筋混凝土的结构性能将发生重要的变化,比如抗压、抗拉强度,粘结锚固性能损失等等。本文就从高温(火条件)下及高温后普通钢筋、预应力钢筋及混凝土等结构材料在材料性能退化规律的研究成果方面进行简要的介绍,从而掌握钢筋混凝土抗高温的性能规律,为保障火灾时人民的生命财产安全做出贡献。

【关键词】钢筋;混凝土;高温;抗火性能

1 钢筋混凝土构件截面温度场的计算

高温作用下,材料性能受到不同程度的损伤,混凝土的强度和弹性模量随温度升高而降低,钢筋虽有混凝土保护,强度也会降低.无论是进行高温下和高温后钢筋混凝土材料的强度和变形规律研究,以及钢筋混凝土构件和结构抗火性能的理论分析,还是计算构件和结构的高温承载力和火灾后剩余承载力,都必须首先分析构件的截面温度场.在火灾中,钢筋混凝土构件截面的温度分布随着时间发生变化,升温曲线!构件截面形状!材料的热工性能等都会影响截面的温度场.在确定结构温度场时,一般可根据工程要求的计算精度采用如下几种方法:简化成稳态的和线性的一维或二维问题,求解析解;用有限元法或差分法,或二者结合的方法,编制计算机程序进行数值分析,有些通用的结构分析程序可以计算简单的温度场问题;制作足尺试件进行高温试验,加以实测;直接利用有关设计规程和手册所提供的温度场图表或数据.

1.1 火灾温度的确定方法

文献[1]认为国际标准化组织(ISO)采用的火灾升温曲线能满足大多数火灾的升温曲线,为多数国家所采用.标准升温曲线可按公式(1)计算:

0T-T 345lg(81)t =+ (1) 式中 T -在时间t 时的炉温,℃; 0T -加温前炉温度℃,t -时间,min

根据火灾区域面积!可燃物种类和数量、通风条件等计算出火灾燃烧持续时间,再根据标准升温曲线推算出火灾温度,或者根据火灾后现场残留物燃烧情况来判断火灾温度.求得火灾温度后,可根据热传导理论计算出构件表面温度和截面温度场.

1.2 混凝土的热工性能

在分析截面温度场时,必须掌握材料的基本热工性能,比如温度膨胀变形、单位热容量、导热系数和质量密度等.这些参数的数值因材料而异,随温度的升高而非线性地变化.混凝土的热工性能因原材料的矿物化学成分!配合比和含水率等因素的差别而有较大变化,且试验数据的离散度大,下面简单列举各参数的一般变化规律.

(1)质量密度c ρ:混凝土升温后失水,质量密度略有减小,计算时一般取常值2400kg/m 3

. (2)热膨胀系数c α:随温度增加,不同骨料混凝土的c α值都将增大,但超过一定温度(T ≥800℃)时, c α近似常数,为简化计算,不考虑骨料类型的影响,直接给出c α与温度的关系:

6(0.00086)10c T α-=+? (1/℃) (2)

(3)单位热容量Cc:指单位质量的材料温度升高1℃所吸入的热量.混凝土的单位热容量随温度的升高而缓慢增大,而骨料类型!配合比和水分对混凝土的热容量影响都不大.文献[2]给出了简化的计算公式:

2900804[]120120

c T T C =+?- (/J kg ℃) 20℃≤T ≤1200℃ (3) (4)导热系数c λ:指单位温度梯度情况下通过单位面积的热流速度,单位为W/(m ℃).混凝土的导热系数随温度升高而明显减少,不同骨料的混凝土的导热系数可相差一倍以上.当温度升高后,除了轻骨料混凝土外,一般常用的混凝土骨料对导热系数影响随温度升高而减小.因此,文献[3]给出了导热系数与温度的简化关系式:

0001.90.000850C T 800C 1.22

T>800C c c T

λλ?=-≤≤??=??

(4) 2 结构材料的抗高温力学性能

结构的抗火性能包括结构在火灾时和火灾后的承载能力、变形能力、稳定性和完整性.结构材料的高温性能(高温下和冷却后)是研究结构抗火性能的基础.钢筋混凝土材料的高温性能主要包括钢筋和混凝土在高温下和冷却后的强度、弹性模量、应力应变关系、膨胀、收缩、徐变及两种材料间的粘结滑移性能.

文献[1]根据已有的工程实践经验和试验研究成果,抗高温的钢筋混凝土结构具有下述受力特点:

(1)不均匀温度——混凝土的导热系数极低。结构受火后表面温度迅速升高,但杆系结构一般不考虑沿构件纵向的温度不均匀性。决定截面温度场的主要因素是火灾温度和持续时间,以及构件的形状、尺寸和混凝土的热工性能等。温度场对结构的力、变形和承载力等有很大影响。

(2)材料性能的严重恶化——高温下,钢筋和混凝土的强度和弹性模量降低很多,混凝土还出现开裂、边角崩裂等现象,是构件的承载力和耐火极限严重下降的主要原因。

(3)应力-应变-温度-时间的耦合本构关系——分析一般的常温结构时,只需要材料的应力-应变本构关系。高温结构的温度值和持续时间对于材料的变形及强度值影响很大。

(4)截面应力和结构力的重分布——截面的不均匀温度场产生不等的温度变形和截面应力重分布。超静定结构因温度变形受约束而发生力重分布,改变了结构的破坏机构和破坏形态,影响了极限承载力。

2.1 钢筋

2.11 钢筋高温下的强度

在一般的钢筋混凝土构件中,常用的钢筋主要分为预应力筋和非预应力筋高温(火条件)下,钢筋的强度和变形性能的变化必然影响钢筋混凝土结构的受力性能,特别是预应力混凝土结构,一旦发生火灾,就会因为钢筋在高温下的短期徐变比常温下要大得多,而且在较高温度和较高应力水平下的钢筋短期徐变将趋向于不稳定状态,致使结构的变形量增大等原因,而将引起预应力高强钢筋(丝)的预应力丧失,钢筋(丝)的强度显著降低,结构的承载能力严

重受损因此,研究高温(火条件)下钢筋的受力性能是十分必要的。

普通低碳钢筋随温度升高屈服台阶逐渐减小,到300℃时屈服台阶消失其屈服强度可按0.2%的残余变形确定.钢筋在400℃以下,其强度还比常温时略高,但塑性降低.超过400℃时,强度随温度升高而降低,塑性增加.低合金钢筋在300℃以下时,其强度略有提高,但塑性降低超过300℃时,其强度降低而塑性增加.低合金钢筋强度降低幅度比普通低碳钢筋小.冷加工钢筋(冷拉冷拔)在冷加工过程中所提高的强度随温度升高而逐渐减小和消失,但冷加工所减小的塑性可得到恢复高强钢丝没有明显的屈服强度,在火灾高温作用下,其高温抗拉强度值降低要比其它钢材更快.文献[11]给出了各种类型的钢筋在高温下设计强度降低系数.

而对于预应力钢筋,其强度在高温下的降低速率较普通钢筋的快。另外,在高温下其还易产生预应力损失。当温度变化时,预应力钢筋会因热胀冷缩现象而随之发生应变变化。处于高温环境(温度大于100℃)中的预应力钢筋,随温度升高而产生的伸长应变与温差之间不再符合线性关系,这是因为高温作用同时会使预应力钢筋的弹性模量也发生改变,并且预应力钢筋在处于比一般温度下的应力状态更高的高应力状态时,就必将会引起高温下钢材的蠕变和松弛急增,从而导致预应力混凝土构件中预应力钢筋的预应力产生进一步的损失而减少。在文献[18]中表明了当预应力筋的受热温度达到200℃时,其预加应力值将减少45%~55%;受热达到300℃时,几乎将失去全部预加应力。

2.1.2 钢筋高温后强度

高温后,冷却钢材使其温度下降,其材料性能得到适当恢复,此时其强度比高温下的强度要高出许多。比如:当遭受的最高温度低于600℃时,普通钢筋性能基本上可完全恢复,本构关系也可与灾前取为相同文献[34]。由此可见,高温后的普通钢筋的强度要比高温下的强度高。普通钢筋高温后的强度降低主要是由于遭受的温度>600℃时钢筋表面的脱碳现象等引起的。钢筋的冷却方式主要有炉冷却、空气冷却、喷水冷却三种,但目前一般在火灾下常用的冷却方式是喷水冷却。在对试验结果进行分析、比较后发现冷却方式对高温后普通钢筋强度影响不大,可不予考虑。

文献[25]中给出了高温后热轧钢筋屈服强度的退化规律:

0401.03301.1 3.010330T y y T C f f T T C -?≤?=?-?>?? (4)

2.2 混凝土

2.2.1 强度

混凝土是一种地方性人工材料,其力学性能随原材料的矿物成分和配合比而变化.由于部存在微裂缝且缺少统一试验标准,已有的试验数据比较离散,但变化规律基本一致.

混凝土受到高温作用时水泥石收缩,骨料随温度升高产生膨胀,两者变形不协调使混凝土产生裂缝,强度降低.当温度达到400℃以后,混凝土中的Ca(OH)2脱水,生成CaO,混凝土严重开裂.当温度大于570℃时,骨料体积发生突变,强度急剧下降.影响混凝土高温下抗压强度的因素很多,尤其是加热速度、不同温度-应力途径、配合比、骨料类型等.文献[4]考虑不同温度-应力史,给出了混凝土高温强度上、下限的计算式,而一般的温度-应力途径下的强度处于上、下限之间,随初始应力和温度变化十分明显.文献[5]认为粗骨料相同而强度等

级不同的混凝土在同一高温下的抗压强度值(/T cu cu f f )相差一般不超过3个百分点;强度等

级相同的混凝土,花岗石骨料比石灰石骨料混凝土的高温抗压强度稍低.图2.2-1、2.2-2给出了高温下棱柱体抗压强度变化规律。随着温度的升高,其抗压应力-应变曲线逐渐趋于扁平。

图2.2-1 棱柱体抗压强度图2.2-2 应力-应变曲线

混凝土在火灾(高温)后的残余强度对于评估受损结构的安全度和制定加固方案有重要意义.文献[6]考虑了高温前混凝土的含水率、试件尺寸、热处理制度及高温后试件存放时间对混凝土强度的影响.认为湿度高的混凝土高温后剩余强度较湿度低的相应强度低,但随混凝土含水率的下降,湿度对强度影响变得不太敏感;大尺寸试件在200℃前强度低于小尺寸试件,可能是由于部蒸汽压大混凝土破坏;200℃后小尺寸试件部最先达到最高温度,且恒温时间长,损伤大,高温后剩余强度低于大尺寸试件;快速冷却造成试件外很大温差,加重混凝土部结构损伤,使高温后强度比缓慢冷却下的低;恒温2h强度比1h强度低,但差别不大.文献[5]的试验结果表明高温后残余抗压强度与高温下的抗压强度值很接近,混凝土部结构和抗压强度在缓慢降温过程中及回到室温后无大变化.文献[19]考虑了冷却方式及冷却后所处环境等因素对高温后混凝土抗压强度的影响,认为喷水冷却比自然冷却强度要低,冷却后放在潮湿环境中的混凝土抗压强度要低于放在自然环境中的混凝土抗压强度.文献[7]给出高温后混凝土强度在不同升温速率下试验结果的差别.高温燃油炉比电炉升温速率快,高温燃油炉升温曲线条件下的混凝土强度呈逐渐下降趋势,而电炉升温曲线条件下的混凝土强度在25~400℃温度围下降不明显,而400℃以后下降较快.并比较了高强混凝土与普通混凝土高温后强度变化规律,二者相似,但高强混凝土强度损失比普通混凝土强度损失大.温度较低时,高强混凝土强度下降不明显;当温度高于600℃时,强度大幅度下降.文献[24]进行了高温后高强混凝土的力学性能试验研究,并与普通混凝土进行了比较,发现在常温至500℃温度围,高强混凝土具有明显不同于普通混凝土的特点,快速升温时发生爆裂现象,其抗火性能低于普通混凝土.

2.2.2变形

混凝土的应变是混凝土结构受力分析中最基本的参数之一.在较低的温度围(80℃以)当混凝土承受外来荷载并同时考虑温度作用时,计算应变的方法是二者简单的迭加.但是大量的试验研究表明,当温度较高(80℃以上)时,处于压应力状态的混凝土在升温过程中,产生较显著的瞬态热应变和短期高温徐变,使得其膨胀量远远小于上述方法迭加的结果,甚至产生压缩变形.其中,瞬态热应变的数值很大,远远大于常温下混凝土的受压峰值应变,也大于高温时的短期徐变.瞬态热应变的存在使得混凝土在高温下产生应力松弛或应力重分布,因此在混凝土高温分析中必须加以考虑.尽管国外学者对混凝土瞬态热应变进行了试验研究和理论分析,但是其机理至今尚不清楚,一般认为是混凝土水泥凝胶体在高温时发生物理化学变化等原因引起的.文献[8]以两种基本的温度)应力途径分析了不同温度)应力途径下混凝土变形的巨大差别,提出高温时应力变形和应力下温度变形(即自由膨胀变形与瞬态热应变的差值)等概念,并给出各自的计算公式.文献[4]将高温过程中混凝土的应变分成三部分研究,即恒温下的应力应变、恒定应力下的温度应变和短期高温徐变,并给出计算公式.文献[9]给出了高强混凝土自由膨胀应变以及瞬态热应变的计算公式,并与普通混凝土作了比较.分析

结果表明高强混凝土在恒定应力下的温度变形与普通混凝土有较大不同,与初始应力水平和温度值密切相关,得出结论如下:(1)在相同温度下,高强混凝土自由膨胀变形大于普通混凝土,且温度越高越明显;(2)在相同应力水平下,高强混凝土的温度变形大于普通混凝土;(3)在相同应力水平下,高强混凝土的瞬态热应变低于普通混凝土.以上分析结果可供高温下高强混凝土结构的耐火设计及理论分析参考.

3 小结

研究钢筋混凝土结构的抗火性能对我国建筑业的蓬勃发展有很重要的意义。本文通过对钢筋混凝土构件的两个主要组成部分:钢筋和混凝土,分别在高温下和高温后材料性能的分析、归纳,给出了普通钢筋、预应力钢筋及混凝土等结构材料抗高温的性能规律,希望能为人们研究混凝土及预应力混凝土结构的抗火性能及其损伤评估能提供些帮助。

参考文献:

[1] 过镇海时旭东《钢筋混凝土原理和分析》清华大学2003年版

[2] 段文玺.建筑结构的火灾分析和处理(一).工业建筑,1985(7):50

[3] LieTT.A Procedure to Calculate Fire Resistance of Structural Members.

International Seminar on Three Decades of Structural Fire Safety, 22/23, February 1983.139-153

[4] Beader M,Whiteman G D.Concrete Containment: A 1970 Assessment. Concrete for

Nuclear Reactors, AC Isp ~34, Detroit, 1972.29-54

[5] 南建林,过镇海,时旭东.混凝土的温度-应变耦合本构关系.清华大学学报,1997,37(6):87-90

[6] 卫,过镇海.高温下混凝土的强度和变形性能试验研究.建筑结构学报,1993,14(1):10-16

[7] 固华,凤凌云,盛娥.高温后混凝土及其组成材料性能研究.建筑科学研

究,1991,2(1):1-5

[8] 敏,钱春香,伟.高温混凝土火灾后性能变化规律研究.工业建筑,2002,32(10):34-36

[8] 过镇海,卫.混凝土在不同应力-温度途径下的变形试验和本构关系.土木工程学

报,1993,26(5):58-69

[9] 胡海涛,董毓利.高温时高强混凝土瞬态热应变的试验研究.建筑结构学

报,2002,23(4):32-35

[10] 吴波,马忠诚,欧进萍.高温后混凝土变形特性及本构关系的试验研究.建筑结构学

报,1999,20(5):42-48

[11] 段文玺.建筑结构的火灾分析和处理(四).工业建筑,1985(11):52-54

[12] 路春森等.建筑结构耐火设计.:中国建材工业,1995

[13] 蓉,凤凌云,戎凯.高温(火灾)后钢筋力学性能的评估.建筑科学研究,1991(2):5-9

[14] 南,林铜柱,LieTT.钢筋混凝土柱的抗火性能.土木工程学报,1992,25(6):25-35

[15] 时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析[博士学位论文\<.:

清华大学土木系,1992

[16] 亚雄.钢筋混凝土框架火灾反应分析及火灾温度鉴定的研究[学位论文].:同济大

学,1990

[17] 屈立军.我国建筑结构耐火设计综述.建筑结构学报,1999,20(3):75-78

[18] 引擎等.建筑结构防火设计计算和构造处理.:中国建筑工业,1991

[19] 阎继红,林吉伸,胡云昌.高温作用后混凝土抗压强度的试验研究.土木工程学

报,2002,35,(2):14-16

[20] 段文玺.建筑结构的火灾分析和处理(五).工业建筑,1985(12):52-53

[21] 彦克,盛娥.混凝土结构火灾损伤评估.建筑科学研究,1991(4):22-26

[22] 董毓利.混凝土结构的火安全设计.:科学,2001

[23] 过镇海.钢筋混凝土原理.:清华大学,1999

[24] 吴波,袁杰,王光远.高温后高强混凝土力学性能的试验研究.土木工程学

报,2000,33(2):8-12

[25]董毓利,维澄,王清安,等.火灾后钢筋混凝土板的承载力计算与可靠指标分析1J2.火灾科学,1996,(2):7-11.

浅议钢筋混凝土结构的耐火性能

浅议钢筋混凝土结构的耐火性能 建筑科学SCIENOE&TECHNOLOGY皿圆 浅议钢筋混凝土结构的耐火性能① 郭亮 (广东省揭阳市公安消防支队广东揭阳522031) 摘要:建筑构件在火灾高温的作用下,内力产生剧烈的重分布,结构发生变形,使得构件的力学性能降低,从而导致整个结构的承裁能力 和安全性能受到影响,甚至可能会引起建筑物的破坏或饲塌.文章通过分析钢筋混凝土结构的热性能和在火灾高温环境中的行为,总结 钢筋混凝土结构在火灾高温环境下承裁能力和结构的安全性受到的影响,探讨提高钢筋混凝土结构耐火性能的设计方法. 关键词:钢筋混凝土结构耐火 中图分类号:TU528文献标识码:A文章编号:1672-3791(2011)O8(a)--O069--02 近年来,社会经济的高速增长推动了 城市建设快速发展,建筑物呈现高层化,功 能复杂化的发展趋势,建筑火灾发生的频 率不断增加,规模不断扩大.建筑物中,钢 筋混凝土结构的建筑物占的比例最高.相 比其他结构形式的建筑物,钢筋混凝土结 构的建筑物耐高温性能好,在火灾作用下, 结构稳定性高.但是,火灾的高温仍对钢筋 凝土结构的承载能力产生较大影响,火灾 的高温作用会导致结构受到破坏,甚至建 筑物倒塌_l1.2003年衡阳"11.3"火灾足以说 明问题.笔者就钢筋混凝土结构的耐火性 能和火灾对钢筋混凝土结构的危害谈点初 浅的分析,供参考.

1钢筋混凝土结构在火灾中所处环境的 分析 钢筋混凝土结构在火灾中所处的环境 即火灾在发生,发展,结束的全过程是如 何影响钢筋混凝土结构的,范围如何,温 度如何等.建筑火灾可简单分为初起阶 段,发展阶段,下降阶段.在初起阶段,火 灾属于局部燃烧,火灾环境温度一般较 低.在火灾的发展阶段,燃烧范围由起火 区域向邻近区域蔓延,直至整栋建筑I2】.在此阶段,钢筋混凝土构件受到火焰的直接 灼烧和高温烟气的热作用,环境最高温度 可达1000℃~l200℃[31.在火灾的下降阶段,环境温度不断降低,钢筋混凝土结构 构件由于温度的变化产生较大的内部应力,依然受到火灾的影响. 2钢筋混凝土结构在火灾中的行为分析 研究钢筋混凝土结构的耐火性能,重 点是研究钢筋混凝土结构的整体和各个 构件在火灾高温的作用下产生怎样的物 理变化和化学变化,结构受力和形变如 何,承载性能如何改变.因混凝土的热惰 性性质,火灾高温下,钢筋混凝土结构整 体体现热惰性,即钢筋混凝土结构在高 温环境中,其内部各个部分的温度由于 受热传导速度的影响而各不相同,温度 的高低与其处在火灾环境中的时间,受 到火灾高温的形式和本身构件的形式等 因素有关….

高温下及高温冷却后混凝土力学性能的试验研究

2005年8月第34卷 第8期施 工 技 术 C ONSTRUCTI ON TECH NO LOGY 高温下及高温冷却后混凝土力学性能的试验研究 王孔藩,许清风,刘挺林 (上海市建筑科学研究院,上海 200032) [摘要]进行了不同骨料、不同强度混凝土高温下以及不同冷却方式下力学性能的试验研究,并与常温下混凝土的 力学性能进行了对比分析。了解高温下和高温冷却后混凝土力学性能的变化,对评估钢筋混凝土结构火灾后的性能有重要作用。 [关键词]混凝土;高温;力学性能;骨料[中图分类号]T U50113;T U52811 [文献标识码]A [文章编号]100228498(2005)0820001202 Experimental R esearch on Mechanics Performance of Concrete A fter H igh Temperature and Cooled Dow n from H igh Temperature WAN G K ong 2fan ,X U Qing 2feng ,LI U T ing 2lin (Shanghai Research Institute o f Building Science ,Shanghai 200032,China ) Abstract :The effect of the aggregate type ,strength grade ,cooled way and the heating tem perature on the mechanics performance of concrete was experimentally investigated.All the test results were com pared with the relevant ones in room tem perature.The decreasing degree of strength of concrete was g ot.This may be beneficial to the assessment and appraisal of RC structures after fire.K ey w ords :concrete ;high tem perature ;mechanics performance ;aggregate [收稿日期]2005205220 [作者简介]王孔藩(1942— ),男,上海人,上海市建筑科学研究院教授级高级工程师,同济大学兼职教授,博士生导师,上海市宛平南路75号 200032,电话:(021)64390552 混凝土结构是由钢筋和混凝土组成的。火灾对钢筋和混凝土材料性能的劣化作用直接危及到结构的安全性能和耐久性能。为了正确评估火灾发生时和火灾发生后混凝土结构的安全性能和耐久性能,就应该了解高温下以及高温冷却后混凝土力学性能的改变。基于此,本文进行了不同强度、不同骨料的混凝土在高温下以及在不同冷却方式下力学性能的试验研究。 1 混凝土在火灾高温下的抗压强度 本次试块的尺寸为100mm ×100mm ×100mm ,加热设备为SR JX 21229箱形电阻炉,炉内恒温误差范围在± 5%,净空尺寸为1000mm ×1000mm ×1000mm 。采用IS O 国际标准升温曲线进行升温,加热温度分为常温、100、200、300、400、500、600、700和800℃共9种情况,当 试块加热到某指定温度后恒温2h ,以使整个试块处于均匀温度场后再进行试验。试块的强度等级为C20、 C30、C40;骨料的类型包括硅酸盐类和碳酸盐类。试块 共63组,每组3个。试块的具体情况如表1所示。试验在NY L 22000型压力试验机上进行。 由于强度等级的影响很小,因而对3种强度等级试块在高温下抗压强度折减系数进行综合分析。高温下混凝土抗压强度折减系数如表2、图1所示。 表1 混凝土试块组成及数量 混凝土 强度等级 粗骨料成分类型常温下强度Π MPa 数量Π组 石灰石碳酸盐类26109C20 红石硅酸盐类25169青石硅酸盐类25109石灰石碳酸盐类31149C30红石硅酸盐类32139青石硅酸盐类32109C40 石灰石 碳酸盐类 4110 9 表2 高温下混凝土抗压强度折减系数 温度Π℃骨料 碳质(石灰石) 硅质(红石) 硅质(青石) 常温 110011001100100 018411000196200111111281110300110811231100400018701960186500017001820172600015901680158700015001510148800 0125 0127 0124 1

网络教育试题-混凝土力学性能检测

第1题 千分表的精度不低于()mm A.0.01 B.0.001 C.0.0001 D.0.1 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第2题 加荷至基准应力为0.5MPa对应的初始荷载值F0,保持恒载60s并在以后的()s内记录两侧变形量测仪的读数ε左0,ε右0。 A.20 B.30 C.40 D.60 答案:B 您的答案:B 题目分数:9 此题得分:9.0 批注: 第3题 由1kN起以()kN/s~()kN/s的速度加荷3kN刻度处稳压,保持约30s A.0.15~0.25 B.0.15~0.30 C.0.15~0.35 D.0.25~0.35 答案:A 您的答案:A 题目分数:9 此题得分:9.0 批注: 第4题 结果计算精确至()MPa。 A.0.1 B.1

C.10 D.100 答案:D 您的答案:D 题目分数:9 此题得分:9.0 批注: 第5题 下面关于抗压弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.水泥混凝土的受压弹性模量取轴心抗压强度1/3时对应的弹性模量 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过1mm的孔洞 D.结果计算精确至100MPa。 E.以三根试件试验结果的算术平均值作为测定值。如果其循环后任一根与循环前轴心抗压与之差超过后者的10%,则弹性模量值按另两根试件试验结果的算术平均值计算,如有两根试件试验结果超出上述规定,则试验结果无效。 答案:B,D 您的答案:B,D 题目分数:12 此题得分:12.0 批注: 第6题 下面关于混凝土抗弯拉弹性模量试验说法正确的是哪几个选项 A.试验应在23℃±2℃条件下进行 B.每组6根同龄期同条件制作的试件,3根用于测定抗弯拉强度,3根则用作抗弯拉弹性模量试验。 C.在试件长向中部l/3区段内表面不得有直径超过5mm、深度超过2mm的孔洞 D.结果计算精确至100MPa。 E.将试件安放在抗弯拉试验装置中,使成型时的侧面朝上,压头及支座线垂直于试件中线且无偏心加载情况,而后缓缓加上约1kN压力,停机检查支座等各接缝处有无空隙(必要时需加木垫片) 答案:B,C,D 您的答案:B,C,D 题目分数:13 此题得分:13.0 批注: 第7题 对中状态下,读数应和它们的平均值相差在20%以内,否则应重新对中试件后重复6.6中的步骤。如果无法使差值降到20%以内,则此次试验无效。

高温对混凝土抗压强度的影响

高温对混凝土抗压强度的影响 摘要:由于混凝土材料中粗细骨料和水泥等材料的热工性能不同,在高温作用下,这些材料间的物理化学作用使混凝土力学性能产生变异,进而导致混凝土力学性能劣化。实验采用液压伺服试验系统对经历相同时间恒温加热,不同温度作用后的C30普通硅酸盐混凝圆柱体试块进行抗压强度试验,详细描述高温后试块的外观特征及抗压破坏特征,探讨分析了不同加热温度对混凝土的抗压强度力学性能的影响。本试验结果表明:高温后,混凝土的力学性能随温度的升高而劣化,表现为随着受热温度的升高,混凝土的抗压强度降低。此外,还探讨了混凝土抗压强度随温度变化的规律,得到了混凝土抗压强度随温度变化的试验曲线。 关键词:混凝土;高温;抗压强度

Effect of temperature on the compressive strength of concrete Abstract:The thermal properties of concrete material of coarse aggregate and cement and other materials, under the condition of high temperature, the physical and chemical effects of these materials to make the mechanical properties of concrete mutation, resulting in deterioration of mechanical properties of concrete. The experiment adopts hydraulic servo test system to experience the same constant temperature heating time, different temperature after interaction of C30 ordinary portland concrete cylinder specimens were subjected to compressive strength tests, described in detail after high temperature test appearance characteristics and compressive block failure characteristics, to explore the effect of compressive strength of different heating temperature on mechanical properties of concrete is analyzed. In addition, also discusses the rule of concrete compressive strength varies with temperature, a regression formula of compressive strength of concrete with temperature changes, comparing the regression curve with the test results, the regression curve can be simulated well test curve. keywords:concrete; elevated temperature; compression strength

花岗岩高温力学性能

花岗岩高温力学性能 国内外学者对岩石在常温、高温高压下的各种物理力学性能进行了研究。Alm等考察了花岗岩受到不同温度热处理后的力学性质,并对花岗岩在温度作用下微破裂过程进行了讨论;张静华等对花岗岩弹性模量的温度效应和临界应力强度因子随温度的变化进行了研究;寇绍全等系统地研究了经过热处理的Stripa花岗岩的力学特性,得到了工程中需要的基本力学参数;林睦曾等研究了岩石的弹性模量随温度升高而变化的情况;Oda等研究了在温度作用下岩石的基本力学性质;Lau研究了较低围压下花岗岩的弹性模量、泊松比、抗压强度随温度的变化规律以及破坏准则;许锡昌等通过试验,初步研究了花岗岩在单轴压缩状态下主要力学参数随温度(20~600℃)的变化规律;朱合华等通过单轴压缩试验,对不同高温后熔结凝灰岩、花岗岩及流纹状凝灰角砾岩的力学性质进行了研究,分析比较3种岩石峰值应力、峰值应变及弹性模量随温度的变化规律,并研究了峰值应力与纵波波速、峰值应变与纵波波速的关系。 1.高温下花岗岩力学行为研究 张志镇在《花岗岩力学特性的温度效应试验研究研究》一文中以花岗岩(采自山东省兖州矿区济二井,主要成分为长石,以含钙钠长石为主,有部分钾长石,同时含有部分伊利石、辉石和少量其他矿物。加工成直径为25mm,高为50mm的圆柱体)为研究对象,在进行实时高温作用下(常温~850℃)单轴压缩试验。得到的应力-应变曲线亦大致经历4个阶段:压密阶段、线弹性阶段、弱化阶段和破坏阶段。由图1可以看出,实时高温作用下花岗岩的应力-应变曲线形状几乎一致,非弹性变形过程相对较短,当应力达到峰值时,岩样迅速破裂,呈脆性破坏;温度升高,直线段的斜率降低,表明弹性模量随着温度的升高而降低;温度超过550℃以后,峰值明显减小,轴向应变呈现出增大的趋势,主要是因为岩样的脆性减弱而延性增强。从热-力学的角度,当温度升高时,岩石晶体质点的热运动增强,质点间的结合力相对减弱,质点容易位移,故塑性增强而强度降低。

混凝土结构抗火设计综述

混凝土结构抗火设计综述 向贤华勘察、设计 混凝土结构抗火设计综述 向贤华 (铁道第四勘察设计院城建院 武汉430063) [摘 要] 总结归纳了国内外混凝土结构抗火设计研究的现状、混凝土结构的火灾反应,在指出目前我国结构抗火设计方法存在的缺点的基础上,提出基于计算的结构抗火设计方法,并针对现阶段的研究状况,对结构抗火设计有待进一步研究的问题提出了自己的见解。 [关键词] 混凝土 结构 火灾 反应 结构抗火 设计 1 前言 频繁发生的建筑火灾,往往造成人类财富和物质资源的巨大损失,甚至人员的惨重伤亡。特别是近年来,随着建筑物高层化、大规模化及用途的复合化的发展,在火灾防治水平不断提高的同时,火灾的防治难度也在不断加大。目前,对火灾的防御和研究主要集中在建筑防火和结构抗火两个方面。 50年代,前苏联首先颁布了耐热钢筋混凝土的设计暂行指示( -151-56/M C ),之后,美国消防协会(1962)、FIP/CEB(1979)、瑞典(1983)、法国(1984)相继颁布了钢筋混凝土抗火的设计标准。 70年代,我国冶金工业部建筑研究总院等单位编制了冶金工业厂房钢筋混凝土结构抗热设计规程!,该规程给出了60~200?范围内的设计计算方法、设计措施、材料指标及有关规定,这是我国第一部有关钢筋混凝土结构抗火设计规程。80年代中期开始,为了制订科学合理的建筑结构抗火设计规范,清华大学、同济大学、西南交通大学等单位对钢筋混凝土结构的高温材料模型、构件和结构在高温下的反应以及灾后评估修复等问题进行了研究,并取得了较为丰富的成果。到目前为止,我国已有GB9918-88建筑构件火灾试验!和DBJ08-219-96火灾后混凝土构件评定标准!两部与混凝土结构抗火有关的技术规 范[1,2]。 随着国内混凝土结构抗火研究的深入,制定混凝土结构抗火设计标准已成为必然趋势。 2 混凝土结构进行抗火设计的必要性 2.1 火灾对混凝土结构的破坏 对于混凝土结构,虽然其耐火性能比木结构和钢结构好,但实际发生的火灾实例表明,混凝土结构在火灾作用下承载力降低、结构失效以致于倒塌的危险依然存在。主要原因是:在火灾引发的高温作用下,钢材和混凝土的强度、弹性模量以及两者之间的粘结力等均随温度升高而降低,甚至有时还会发生混凝土的爆裂。这些材性的严重劣化,必将导致构件的承载能力下降、变形增大。另外,结构受火时受火面温度随周围环境温度迅速升高,但由于混凝土的热惰性,内部温度增长缓慢,截面上形成不均匀温度场,而且温度变化梯度也不均匀,导致不均匀的温度变形和截面应力重分布,这些变化都足以危及结构的安全性,甚至导致结构失效。 2.2 结构抗火设计的内容 建筑防火主要是利用建筑的防火措施(如防火分区、消防设施的布置等)、建筑的防护设施(如防火门、防火墙)和结构防护设施(如防火涂料、防火板等)达到其减少火灾发生的概率,避免或减少人员伤亡以及减少火灾直接经济损失的目的。而进行结构抗火设计的意义为[3]:

钢筋混凝土的高温性能及其计算

钢筋混凝土的高温性能及其计算混凝土结构在高温下比在常温下的性能要复杂得多,理论分析难度大。这是因为结构在环境温度变化的情况下形成了动态的不均匀温度场,高温使材料(混凝土和钢筋)的强度和变形性能严重劣化,又使结构产生剧烈的内(应)力重分布;还因为温度和荷载(应力)有显著的耦合效应,使材料的本构关系和构件的受力性能随温度—荷载途径而有较大变化。为此,需首先通过试验手段展示混凝土的材料、构件和结构在温度与荷载共同作用下的力学性能,然后进行机理分析,总结试验数据,归纳其一般规律,进一步建立准确的理论分析方法,并给出简化的实用计算方法,供工程实践中应用。 一、结构工程中的温度问题 结构工程中因为温度变化而发生的工程问题可分为三类: (1)周期性温度超常。 (2)正常工作条件下长期高温。 (3)偶然事故诱发的短时间高温冲击。例如建筑物火灾的延续时间从数十分钟至数小时不等,在1h内可达1000℃或更高;化学爆炸或核爆炸、核电站事故等。 对于第三类问题,虽有建筑设计防火规范,但并没有解决结构的抗火分析和设计问题。建筑物遭受火灾后,其结构内部升温,形成不均匀的温度场,材料性能严重恶化,导致结构不同程度的损伤和承载力下降。作为建筑物的承重和支撑体系,其结构必须在火灾的一定时间期限内保持足够的承载能力,以便受灾人员安全撤离灾场,消防人员进行灭火,救护伤亡人员和抢救重要器物等活动。当结构达到下述极限状态之一时,即认为结构抗火失效:(1)承载能力极限;(2)阻火极限;(3)隔热极限。 人们从以往的火灾事故中吸取了教训和经验,明确了对付火灾的策略是“预防为上”,但防不胜防,仍须“立足于抗”。为了提高和解决结构与构件的抗火(高温)能力,曾经历了不同的发展阶段:初期,只是采取经验性的构造措施,

SUS304不锈钢高温力学性能的物理模拟

304 不锈钢高温力学性能的物理模拟 关小霞田建军杨健 指导教师:杨庆祥胡宏彦博士 燕山大学材料科学与工程学院 摘要:采用Gleeble-3500热模拟试验机对304 不锈钢的高温力学性能进行了物理模拟。对模拟结果中应力-应变曲线进行分析,并结合断口附近组织形貌的观察,得出结论:金属的极限应力随温度升高呈下降趋势;在δ-Fe向γ-Fe转变的某一温度,金属塑性急剧下降;对断口附近金相组织及SEM分析,推测晶界处可能存在着元素偏聚或析出相现象。 关键词:304不锈钢;力学性能;物理模拟 1.前言: 双辊铸轧不锈钢薄带技术是目前冶金及材料领域的前沿技术之一[1],是直接用钢水制成2-5mm厚薄带的工艺过程。该技术可以大大简化薄带钢的生产流程,降低生产成本,并形成低偏析、超细化的凝固组织,从而使带材具有良好的性能,被公认为钢铁工业的革命性技术[2、3]。但是,不锈钢经铸轧后,薄带表面会形成宏观的裂纹,从而降低不锈钢薄带的力学性能,影响其质量[4-6]。 国内外在双辊铸轧不锈钢薄带技术上已经开展了一些研究工作。文献[7]对比了铸轧铁素体和奥氏体不锈钢薄带;文献[8、9]对铸轧304不锈钢薄带过程中高温铁素体的溶解动力学进行了研究;文献[10]对不锈钢薄带铸轧过程中凝固热参数和组织进行了研究;文献[11-14]对不锈钢薄带铸轧过程中的流场和温度场进行了数值模拟;文献[15]对铸轧304不锈钢薄带的力学性能进行了研究。文献[16]对304不锈钢在加热过程中的高温铁素体形核与长大和夹杂物在固-液界面的聚集进行了原位观察;文献[17]对薄带铸轧溶池液面进行了物理模拟;文献[18]对铸轧不锈钢薄带过程的凝固组织、流场、温度场及热应力场进行了数值模拟。但是,缺少对铸轧不锈钢薄带表面与内部裂纹的生成机理、演变规律以及预防措施方面的研究。 在高温性能物理模拟方面,国内外也有不少研究。文献[19]应用THERMECMASTOR-Z热加工模拟机对奥氏体不锈钢的高温热变形进行了模拟试验;文献[20]利用Gleeble-1500试验机对铸态奥氏体不锈钢在1000-1200℃温度区间进行了热压缩试验;文献[21]从位错理论角度出发,对高钼不锈钢热加工特征与综合流变应力模型进行了研究。但是,对铸轧不锈钢薄带高温力学性能的物理模拟方面的研究却极少。

高温合金的性能

高温合金是在高温下具有较高力学性能、抗氧化和抗热腐蚀性能的合金。高温合金按基体成分可分为镍基高温合金、铁镍基高温合金和钴基高温合金,其中镍基高温合金发展最快,使用也最广,铁镍基高温合金次之。按强化方式分为固溶强化合金和析出强化合金(或称时效沉淀强化合金)等。按成型方式和生产工艺分为变形合金、铸造合金、粉末冶金合金和机械合金化合金。 固溶强化高温合金的基体为面心立方点阵的固溶体,在其固溶度范围内通过添加铬、钴、钼、钨、铌等元素,提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。固溶强化的效果取决于合金化元素的原子尺寸及加入量。原子半径较大、熔点较高的钼和钨具有较好固溶强化作用,两者总含量可达18%~20%。铬可防止高温氧化和热腐蚀,但含量过高会降低γ’相的固溶度,使合金的热强性下降。镍基固溶强化高温合金一般均具有优良的抗氧化、抗热腐蚀性能,塑性较高、焊接性能好,但热性相对较低。铁镍基固溶强化高温合金,虽然与镍基固熔强化高温合金相比在热强性、抗氧化和抗热腐蚀等方面略差一些,但仍具有良好的力学性能、较好冷热加工工艺性能和焊接性能。 析出强化高温合金是在固溶强化高温合金的基础上,通过添加较多的铝、钛、铌等元素而发展的。这些无元素除了强化固溶体外,通过时效处理,与镍结合形成共格稳定、成分复杂的Ni3(Al Ti)相(也就是γ’相,具有长程有序的面心立方结构)或Ni3(Nb AI Ti)相(也就是γ’’相,有序体心四方结构)金属间化合物,同时钨、钼、铬等元素与碳形成各种碳化物(如MC M6C M23C6等)由于γ’(γ’’)相和碳化物存在,使合金的热强性大大提高。此外,这类合金中还可以加入微量的硼、锆和稀士元素、形成间隙相,强化晶界。近年来发展的一些合金,往往采用固溶,析出和晶界多种方式强化,使合金具有优良的综合性能。随着AI Ti Nb 等γ’(γ’’)相形成元素含量的提高,其强化效果也增大,热强性提高,但合金的冷热加工性能和焊接性能随之下降。一般认为,AI+Ti含量大于6%(原子百分数)的高温合金焊接就很困难。镍基析出强化高温合金具有很好的热强性、抗氧化和抗腐蚀性能,正如前面所提到的冷热加工性能和焊接性能较固溶强化高温合金差。但是,在固溶状态下,有些镍基析出强化高温合金还是具有良好塑性和焊接性。铁镍基析出强化高温合金要中温下具有较高的热强性、良好的抗氧化和抗热腐蚀性能。在固溶状态下,冷热加工性能和焊接性能同镍 基析出强化高温合金相类似。无论镍基析出强化高温合金还是铁镍基析出强化高温合金,当加入更多的钼、钛、硼等强化元素时,使其冷热加工塑性下降,只能通过铸造成型,一般铸造合金的焊接较为困难。 氧化物弥散强化是在基体中加入一定量细小的弥散分布的氧化颗粒,对基体进行强化,使合金具有很高的强度和某些特性。合金TDNi TDNiCr是镍和镍铬基中加入2%左右氧化钍(ThO2)颗粒强化,由于这种合金中的氧化钍在高温下不易聚集长大、不溶于基体,同时合金的熔点高,晶粒极细,在1000~12000C下仍有较高的强度,抗疲劳性能高,缺口敏感小,室温塑性较好,可轧成棒和板材。氧化物弥散强化ODS合金是利用氧化物(如Y2 O3和AI2O3)强化的合金,这类合金的采用特殊的粉末冶金工艺生产,经锻压制成材。氧化物弥散强化合金,具有很高的持久蠕变性能,是很有发展前途的新型高温材料,其缺点是成功率低,塑性焊接性和耐蚀性差,有待解决。 高温合金性能主要取决于合金成分和它的组织结构,如前面所述,难熔金属元素Mo W以及CO起到固溶强化作用,AI Ti Nb 等γ’形成元素起到析出强化作用。一般认为,强化效果应该计算W+MO和γ’形成元素的总量,而CO和Cr居于次要地位,合金的持久强度随着合金元素总量的增加而提高。现在大量研究表明,高温合金中加入微量的B Zr Ce 和Mg等元素能显著改善晶界状况,提高合金的蠕变性能,但要注意这些元素的加入量一定要严格控制,否则就会产生有害的作用,如使合金脆化,形成低熔化合物等。

耐热混凝土的定义

耐热混凝土的定义、分类和使用 耐热混凝土是一种能长期承受高温作用(200 ℃以上),并在高温作用下保持所需的物理力学性能的特种混凝土。而代替耐火砖用于工业窑炉内衬的耐热混凝土也称为耐火混凝土。 根据所用胶结料的不同,耐热混凝土可分为:硅酸盐耐热混凝土;铝酸盐耐热混凝土;磷酸盐耐热混凝土;硫酸盐耐热混凝土;水玻璃耐热混凝土;镁质水泥耐热混凝土;其他胶结料耐热混凝土。 根据硬化条件可分为:水硬性耐热混凝土;气硬性耐热混凝土;热硬性耐热混凝土。 耐热混凝土已广泛地用于冶金、化工、石油、轻工和建材等工业的热工设备和长期受高温作用的构筑物,如工业烟囱或烟道的内衬、工业窑炉的耐火内衬、高温锅炉的基础及外壳。 硅酸盐耐热混凝土 一、硅酸盐耐热混凝土所用的材料主要有硅酸盐水泥、耐热骨料、掺合料以及外加剂等。 1 、原材料要求 (1) 硅酸盐水泥 可以用矿渣硅酸盐水泥和普通硅酸盐水泥作为其胶结材料。一般应优先选用矿渣硅酸盐水泥,并且矿渣掺量不得大于50 %。如选用普通硅酸盐水泥,水泥中所掺的混合材料不得含有石灰石等易在高温下分解和软化或熔点较低的材料。 此外,因为水泥的耐热性远远低于耐热骨料及耐热粉料,在保证耐热混凝土设计强度的情况下,应尽可能减少水泥的用量,为此,要求水泥的强度等级不得低于32.5MPa 。 用上述两种水泥配制的耐热混凝土最高使用温度可以达到700 ~800 ℃。其耐热机理是:硅酸盐水泥熟料中的C 3 S 和 C 2 S 的水化产物Ca(OH) 2 在高温下脱水,生成的CaO 和矿渣及掺合料中的活性SiO 2 和A1 2 O 3 又反应生成具有较强耐热性的无水硅酸钙和无水铝酸钙,使混凝土具有一定的耐热性。 (2) 耐热骨料 普通混凝土耐热性不好的主要原因是一些水泥的水化产物为Ca(OH) 2 ,水化铝酸钙在高温下脱水,使水泥石结构破坏而导致混凝土碎裂;另一个原因是常用的一些骨料,如石灰石、石英砂在高温下发生较大体积变形,还有一些骨料在高温下发生分解,从而导致普通混凝土结构的破坏,强度降低。因此,骨料是配制耐热混凝土一个很关键的因素。 常用的耐热粗骨料有碎黏土砖、黏土熟料、碎高铝耐火砖、矾土熟料等;细骨料有镁砂、碎镁

高温合金

1.高温合金的定义:高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定盈利作用下长期工作的一类金属材料。 2.高温合金的命名方法: 变形高温合金以“GH”加4位阿拉伯数字表示。前缀后第一位数字表分类号,1、2表铁基或铁镍基,3、4表镍基,5、6表钴基;1、3、5表固溶强化型合金,2、4、6表时效沉淀型合金。前缀后的第2、3、4位表合金编号。 铸造高温合金以“K”加3位阿拉伯数字表示。前缀后第一位数字表分类号,含义与变形合金相同,第2、3位表合金编号。 粉末高温合金以“FGH”加阿拉伯数字表示。 3.高温合金主要用于四大热端部件:导向器、涡轮叶片、涡轮盘、燃烧室。 4.常见的高温合金基体有哪几种?铁基镍基钴基 5.高温合金的固溶强化机制:固溶度小的合金元素较之固溶度大的合金元素,会产生更强烈的固溶强化作用,但其溶解度小却又限制其加入量。 6.合金元素的固溶强化能力排序:Cr

钢筋混凝土结构抗高温性能

许海斌 王晓峰 晨 吴琪宇 朱泽宇 科技学院 钢筋混凝土结构抗高温性能研究综述 【摘要】随着钢筋混凝土在现代建筑中越来越广泛的使用和近年来建筑物火灾发生的增长,人们有必要对混凝土结构的火损伤行为有更系统和量化的理解。在高温(火灾)条件下,钢筋混凝土的结构性能将发生重要的变化,比如抗压、抗拉强度,粘结锚固性能损失等等。本文就从高温(火条件)下及高温后普通钢筋、预应力钢筋及混凝土等结构材料在材料性能退化规律的研究成果方面进行简要的介绍,从而掌握钢筋混凝土抗高温的性能规律,为保障火灾时人民的生命财产安全做出贡献。 【关键词】钢筋;混凝土;高温;抗火性能 1 钢筋混凝土构件截面温度场的计算 高温作用下,材料性能受到不同程度的损伤,混凝土的强度和弹性模量随温度升高而降低,钢筋虽有混凝土保护,强度也会降低.无论是进行高温下和高温后钢筋混凝土材料的强度和变形规律研究,以及钢筋混凝土构件和结构抗火性能的理论分析,还是计算构件和结构的高温承载力和火灾后剩余承载力,都必须首先分析构件的截面温度场.在火灾中,钢筋混凝土构件截面的温度分布随着时间发生变化,升温曲线!构件截面形状!材料的热工性能等都会影响截面的温度场.在确定结构温度场时,一般可根据工程要求的计算精度采用如下几种方法:简化成稳态的和线性的一维或二维问题,求解析解;用有限元法或差分法,或二者结合的方法,编制计算机程序进行数值分析,有些通用的结构分析程序可以计算简单的温度场问题;制作足尺试件进行高温试验,加以实测;直接利用有关设计规程和手册所提供的温度场图表或数据. 1.1 火灾温度的确定方法 文献[1]认为国际标准化组织(ISO)采用的火灾升温曲线能满足大多数火灾的升温曲线,为多数国家所采用.标准升温曲线可按公式(1)计算: 0T-T 345lg(81)t =+ (1) 式中 T -在时间t 时的炉温,℃; 0T -加温前炉温度℃,t -时间,min 根据火灾区域面积!可燃物种类和数量、通风条件等计算出火灾燃烧持续时间,再根据标准升温曲线推算出火灾温度,或者根据火灾后现场残留物燃烧情况来判断火灾温度.求得火灾温度后,可根据热传导理论计算出构件表面温度和截面温度场. 1.2 混凝土的热工性能 在分析截面温度场时,必须掌握材料的基本热工性能,比如温度膨胀变形、单位热容量、导热系数和质量密度等.这些参数的数值因材料而异,随温度的升高而非线性地变化.混凝土的热工性能因原材料的矿物化学成分!配合比和含水率等因素的差别而有较大变化,且试验数据的离散度大,下面简单列举各参数的一般变化规律. (1)质量密度c ρ:混凝土升温后失水,质量密度略有减小,计算时一般取常值2400kg/m 3 . (2)热膨胀系数c α:随温度增加,不同骨料混凝土的c α值都将增大,但超过一定温度(T ≥800℃)时, c α近似常数,为简化计算,不考虑骨料类型的影响,直接给出c α与温度的关系:

耐热混凝土

耐热混凝土 一、定义和分类 耐热混凝土是一种能长期承受高温作用(200 ℃以上),并在高温作用下保持所需的物理力学性能的特种混凝土。而代替耐火砖用于工业窑炉内衬 的耐热混凝土也称为耐火混凝土。 根据所用胶结料的不同,耐热混凝土可分为:硅酸盐耐热混凝土;铝 酸盐耐热混凝土;磷酸盐耐热混凝土;硫酸盐耐热混凝土;水玻璃耐热混凝土;镁质水泥耐热混凝土;其他胶结料耐热混凝土。 根据硬化条件可分为:水硬性耐热混凝土;气硬性耐热混凝土;热硬性 耐热混凝土。 二、硅酸盐耐热混凝土 及外加剂等。 (1) 硅酸盐水泥 可以用矿渣硅酸盐水泥和普通硅酸盐水泥作为其胶结材料。一般应优先选 用矿渣硅酸盐水泥,并且矿渣掺量不得大于50 %。 (2) 耐热骨料 有镁砂、碎镁质耐火砖、含A1 2O 3 较高的粉煤灰等。 (3) 掺合料 掺合料的作用主要有两个:一是可增加混凝土的密实性,减少在高温状态下混凝土的变形;二是在用普通硅酸盐水泥时,掺合料中 的A12O3 和SiO 2 与水泥水化产物Ca(OH) 2 的脱水产物CaO 反应形成耐热性好的无水硅酸钙和无水铝酸钙,同时避免了Ca(OH) 2 脱水引

起的体积变化。所以,掺合料应选用熔点高、高温下不变形且含有一定数 量A12O3 的材料。 三、铝酸盐水泥 铝酸盐水泥是一类没有游离 CaO 的中性水泥,具有快硬、高强、热稳定性好、耐火度高等特点。在冶金、石油化工、建材、水电和机械工业的一般窑炉上得到广泛的应用,其使用温度可达到 1300 ~1600 ℃,有的甚至能达到1800 ℃ 左右,所以又称为铝酸盐耐火混凝土。它属于水硬性耐热混凝土,也属于热硬性耐热混凝土。 1 、胶结材 铝酸盐水泥耐热混凝土的胶结材主要有矾土水泥、低钙铝酸盐水泥、纯铝酸盐水泥。 (1) 高铝水泥 ( 普通铝酸盐水泥 ) 高铝水泥是由石灰和铝矾土按一定比例磨细后,采用烧结法和熔融法制成的一种以铝酸 - 钙 (CA) 为主要成分的水硬性水泥。其化学成分及矿物组成如表 3 所示 (2) 纯铝酸盐水泥 纯铝酸盐水泥是用工业氧化铝和高纯石灰石或方解石为原料,按一定比例混合后,采用烧结法或熔融法制成的以CA2 或CA 为主要矿物的水硬性水泥。其中CA2 和CA 含量总和在95 %以 上,CA2 占60 %~65 %,另外含有少量C12A7 和C2AS 。 纯铝酸盐水泥的水化硬化及在加热过程中强度的变化与高铝水泥类似。由于该水泥的化学组成中含有更多的A12O3,因此在1200 ℃发生烧结产生陶瓷结合后,具有更高的烧结强度和耐火度,其最高使用温度可 达1600 ℃以上。

混凝土受高温后力学性能

混凝土受高温后力学性能 摘要:建筑材料高温下的性能直接关系到建筑物火灾危险性的大小以及火灾发生后火势扩大蔓延的速度研究材料在高温下的力学性能在建筑防火设计科学合理的选用建筑材料减少火灾损失当前对于材料的奥温性能的研究还需要完善进一步研究很有必要 关键词:混凝土受高温性能热损伤 一概述 混凝土材料,作为现代建筑物最主要的承重体系,关键部位的关键结构必须保证在火灾发生的一段时间内,有足够的承载力,以保证人员安全撤离的时间,同时给予消防部门,对火灾进行灭火和救援提供充足的时间。当发生火灾时,建筑物内部或着火位置温度上升较快,作为一个整体,形成不均匀的温度差,会导致整体的力学性能受损,作为建筑物的结构材料,不均匀的温度差会对其刚度、强度、稳定性等性能有较大影响。当建筑物结构材料达到下列状态之一时,即可以认为结构抗火失效:(1)隔热极限。通常认为,结构的背火面的平均温度达到140℃,或者局部最高温度达到180℃,并且由此引发相邻空间起火,导致火灾向他处蔓延,这种状态下,认为结构抗火失效。(2)阻火极限。如果在火灾发生时,结构内部有损伤,而存在较宽的裂缝或者蜂窝、空洞,并因此没有能力阻值火灾的蔓延和高温烟气的穿透,这种状态下,认为结构抗火失效。(3)承载能力极限。当火灾发生时,如果因为高温导致结构内部相关结构(例如:钢筋)的承载力不足,在使用荷载的作用下,产生了较大的变形、或者失稳等情况,这种状态下,认为结构抗火失效。作为建筑物主要材料的钢筋混凝土结构,虽然钢筋的导热性能良好,但是被混凝土包裹后,作为一个整体其导热性能不均匀,并且缓慢,同时由于承重结构的截面高度较大,火灾发生时,内部的温度上升较慢,强度维持时间久,但是如果持续受到火灾影响,会导致外层起保护作用的混凝土受热破损,钢筋裸露,由于钢筋的传热性能良好,导致内部主筋在高温的状态下,承载力降低(主要体现在抗拉强度上),而内部混凝土结构热传导性差,强度保持效果良好(主要体现在抗压强度上),所以整个结构的承载力变化复杂,会产生表面龟裂,混凝土逐层脱落、甚至发生穿孔和垮塌。1)、建筑材料的高温性能 力学性能:强化性能变形性能 非力学性能:燃烧性能发烟性能隔热性能毒性性能 2)、高温下材料性能根据材料的种类、作用和使用目的来确定侧重研究内容例如混凝土为无机材料不燃烧主要研究高温下的物理力学性质及隔热性能 二混凝土的高温力学性能 1混凝土的热学性能 随温度升高导热系数减少 混凝土在温度升高时材料的热容缓慢升高 热膨胀系数与混凝土的材料构件尺寸约束条件含水量等因素有关 温度升高时由于水分的蒸发和热膨胀质量密度减小 2 混凝土力学性能 抗压强度存在阀值温度300℃左右 粘结强度钢筋混凝土在界面的相互作用 抗拉强度温度超过600℃时材料的抗拉强度基本丧失 弹性模量随温度的升高而降低呈明显的塑性状态

金属高温力学性能.

第08章金属高温力学性能 1.解释下列名词: (1 )等强温度;(2) 约比温度;(3) 蠕变;(4) 稳态蠕变;(5) 扩散蠕变;(7) 持久伸长率; (8) 蠕变脆性;(9) 松弛稳定性。 2.说明下列力学性能指标的意义: (1) σtε;(2) σtδ/τ;(3) σtτ;(4)σsh 3.试说明高温下金属蠕变变形的机理与常温下金属塑性变形的机理有何不同? 4.试说明金属蠕变断裂的裂纹形成机理与常温下金属断裂的裂纹形成机理有何不同? 5.Cr—Ni奥氏体不锈钢高温拉伸持久试验的数据列于下表。 (1) 画出应力与持久时间的关系曲线。 (2) 求出810℃下经受2000h的持久强度极限。 (3) 求出600℃下20000h的许用应力(设安全系数n=3)。 6.试分析晶粒大小对金属材料高温力学性能的影响。 7.某些用于高温的沉淀强化镍基合金,不仅有晶内沉淀,还有晶界沉淀。晶界沉淀相是一种硬质金属间化合物,它对这类合金的抗蠕变性能有何贡献? 8.和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?造成这种差别的原因何在? 9.金属材料在高温下的变形机制与断裂机制,和常温比较有何不同? 10.讨论稳态蠕变阶段的变形机制以及温度和应力的影响。 11.蠕变极限和持久强度如何定义,实验上如何确定? 12.什么是Larson-Miller参数,它有何用处? 13. 提高材料的蠕变抗力有哪些途径? 14.应力松弛和蠕变有何关系?如何计算一紧固螺栓产生应力松弛的时间。 15.为什么许多在高温下工作的零件要考虑蠕变与疲劳的交互作用?实验上如何研究这种交互作用?应变范围分配法如何预测疲劳—蠕变交互作用下的损伤?

γ′粒子尺寸对定向凝固高温合金拉伸和持久性能的影响

Y/粒子尺寸对定向凝固高温合金拉伸 和持久性能的影响 吴昌新9孙传棋9李其娟 (北京航空材料研究院9北京100095 摘要研究了一种定向凝固高温合金析出V/粒子尺寸的控制规律O结果表明V/粒子尺寸随固溶处理后冷却速度提高而减小9抗拉强度和蠕变寿命随V/粒子尺寸增大而降低9而合金的拉伸塑性将随之提高O 关键词定向合金V/粒子尺寸强度与韧性冷却速度 中图分类号TG146.1+5文献标识码A文章编号1005-5053(2002 03-0001-04 定向柱晶和单晶高温合金叶片9由于消除了垂直于应力轴的横向晶界或全部晶界9其固有韧性和强度较高[1]可以通过高温固溶处理9充分均匀化减轻偏析9同时可在这基础上控制V/粒子的尺寸9调节合金的强度与韧性O我国自行研制的DZ4无铪定向凝固高温合金已经在多种型号发动机服役飞行十多年9合金在较多型号中强度与韧性匹配甚好9发挥了合金的较大效能9但在某一型号中发现9强度与韧性的匹配不是最佳状态9强度储备过多9而韧性的裕度比较紧张O本文就是为解决此问题而开展的应用研究O 1试验材料和方法 试验材料DZ4合金公称成分为(Wt%C 0.149Cr9.59CO6.09W5.39MO2.89A16.09Ti 1.89B0.0209Ni余[2]O在Ipsen真空热处理炉中进行1220 2 2.5h的固溶处理后在1220 1050 以不同速度冷却9再进行870 32h的时效处理9试样经加工后在拉伸试验机和蠕变持久试验机上测定中温~高温下的各不同冷却速度的拉伸和持久性能O同时在JSM5600VL扫描电镜上观察V/形态9并对每种冷却速度的V/粒子形态反复观察9再将不少于三个视场的枝晶干和枝晶间放大照相9对其测定V/立方体的边长和间距O 2结论和讨论 2.1冷却速度对析出V/粒子尺寸的影响及控制 DZ4合金固溶处理温度1220 保温2h后在 收稿日期2002-04-06 修订日期2002-06-08 作者简介吴昌新(1952- 9男9高级工程师O 12201050 的温度范围内分别以25 min9 42 min968 min和88 min速度冷却9不同冷却速度的V/相粒子形态见图19而V/相粒子尺寸依赖于冷却速度的关系见图2O从图192可以看出9随着冷却速度的降低9V/粒子尺寸明显变大9同时还可以看到9即使经过了1220 的固溶均匀化热处理9合金组织枝晶干和枝晶间的偏析还是存在的9在枝晶间的V/显得比枝晶干粗大和不均匀9V/粒子以不同尺寸的立方体弥散分布于V基体O 理想的固溶处理9必须使所有铸态V/相(共晶相和粗大V/相溶解9使合金成分完全均匀9再在从固溶处理温度冷却到V/全溶温度以下时9V/相将能相对均匀细小地在整个合金组织中析出9这是定向高温合金获得最佳力学性能的最好组织9因为含有共晶或粗大V/相的偏析组织是合金的薄弱区域9以及共晶和粗大V/实际上降低了有效V/体积分数9不能充分地对合金强度作出贡献O为了得到这一组织9合金必须加热到V/全溶温度以上9使铸态V/相溶解9加热温度又要限制在合金初熔温度以下9以防止合金熔化9熔化会导致凝固偏析9形成V/共晶和产生收缩疏松O而V/全溶温度和合金初熔温度都与合金成分有关9对于有低熔点共晶相比较多的合金9例如含~f合金9最好先在较低温度进行溶解共晶相的预备热处理9以便更容易使固溶温度保持在这两个临界温度之间9当V/相溶解于基体V后9它再以细小均匀形式析出O V/相粒子尺寸影响力学性能9为了控制其大小9必须控制从固溶温度到某一温度之间的冷却速度9低于这一温度V/将不会在短时间内粗化9对DZ4合金来说9这个温度不低于1050 9所以

相关主题
文本预览
相关文档 最新文档