当前位置:文档之家› 厌氧生物处理、调试运行指导手册

厌氧生物处理、调试运行指导手册

厌氧生物处理、调试运行指导手册
厌氧生物处理、调试运行指导手册

厌氧生物处理、调试、运行指导手册

1、目的:本手册用于厌氧生物降解工艺单元的运行管理。

2、内容及对象:手册包括有以下7个内容:即:

厌氧生物反应概述;厌氧技术优势和不足;反应机理;厌氧反应器类型;厌氧反应器工艺控制条件;启动方式;运行管理;问题及解决措施;

手册适用于厌氧反应器操作人员、污水站技工、化验人员和管理人员,亦可供相关人员参考。

3、厌氧反应概述:

利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。

厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。

4、厌气处理技术的优势和不足:

优势:

4.1可作为环境保护、能源回收和生态良性循环结合系统的技术,具有良好的社会、经济、环境效益。

4.2耗能少,运行费低,对中等以上(1500mg/L)浓度废水费用仅为好氧工艺1/3. 4.3回收能源,理论上讲1kgCOD可产生纯甲烷0.35m3,燃值(3.93×10-1J/m3),高于天然气(3.93×10-1J/m3)。以日排10t COD工厂为例,按COD去除80%,甲烷为理论值80%计算,日产沼气2240m3,相当于2500m3天然气或 3.85t煤,可发电5400Kwh.

4.4设备负荷高、占地少。

4.5剩余污泥少,仅相当于好氧工艺1/6~1/10.

4.6对N、P等营养物需求低,好氧工艺要求C:N:P=100:5:1,厌氧工艺为C:N:P=(350-500):5:1。

4.7可直接处理高浓有机废水,不需稀释。

4.8厌氧菌可在中止供水和营养条件下,保留生物活性和沉泥性一年,适合间断和季节性运行。

4.9系统灵活,设备简单,易于制作管理,规模可大可小。

厌氧不足:

1、出水污染浓度高于好氧,一般不能达标;

2、对有毒性物质敏感;

3、初次启动缓慢,最少需8-12周以上方能转入正常水平。

5、反应机理:

厌氧反应过程是对复杂物质(指高分子有机物以悬浮物和胶体形式存在于水中)生物降解的复杂的生态系统。其反应过程可分为四个阶段:

5.1水解阶段——被细菌胞外酶分解成小分子。例如:纤维素被纤维酶水解为纤维二糖和葡萄糖,淀粉被淀粉酶分解为麦牙糖和葡萄糖,蛋白质被蛋白酶水解为短肽和氨基酸等,这些小分子的水解产物能被溶解于水,并透过细胞为细胞所利用。

5.2发酵阶段——小分子的化合物在发酵菌(即酸化菌)的细胞内转化为更为简单的化合物,并分泌到细胞外。这一阶段主要产物为挥发性脂肪酸(VFA)醇类、乳酸、CO2、氢、氨、硫化氢等。

5.3产酸阶段——上一阶段产物被进一步转化为乙酸、氢、碳酸以及新的细胞物质。

5.4产甲烷阶段——在这一阶段乙酸、氢、碳酸、甲酸和甲醇等被转化为甲烷、二氧化碳和新细胞物质。原a、水解阶段——含有蛋白质水解、碳水化合物水解和脂类水解。

a、发酵酸化阶段——包括氨基酸和糖类的厌氧氧化,以及较高级脂肪酸与醇类的厌氧氧化。

b、产乙酸阶段——含有从中间产物中形成乙酸和氧气,以及氢气和二氧化碳形成乙酸。

c、产甲烷阶段——包括从乙酸形成甲烷,以及从氧、二氧化碳形成甲烷。废水中有硫酸盐时,还会有硫酸盐还原过程,如虚线所示。

6、厌氧反应器类型:

6.1普通厌氧反应池

6.2厌氧接触工艺

6.3升流厌氧污泥库(UASB)反应器

6.4厌氧颗粒污泥膨胀库(EGSR)

6.5厌氧滤料(AF)

6.6厌氧流化库反应器

6.7厌氧折流反应器(ABR)

6.8厌氧生物转盘

6.9厌氧混台反应器等.

7、厌氧反应的工艺控制条件:

7.1温度:按三种不同嗜温厌氧菌(嗜温5-20℃嗜温20-42℃嗜温42-75℃)工程上分为低温厌氧(15-20℃)、中温厌氧(30-35℃)、高温厌氧(50-55℃)三种。温度对厌氧反应尤为重要,当温度低于最优下限温度时,每下降1℃,效率下降11%。在上述范围,温度在1-3℃的微小波动,对厌氧反应影响不明显,但温度变化过大(急速变化),则会使污泥活力下降,度产生酸积累等问题。

7.2 PH:厌氧水解酸化工艺,对PH要求范围较松,即产酸菌的PH应控制4-7℃范围内;完全厌氧反应则应严格控制PH,即产甲烷反应控制范围6.5-8.0,最佳范围为6.8-7.2,PH低于6.3或高于7.8,甲烷化速降低。

7.3氧化还原电位:水解阶段氧化还原电位为-100~+100mv,产甲烷阶段的最优氧化还原电位为-150~-400mv。因此,应控制进水带入的氧的含量,不能因以对厌氧反应器造成不利影响。

7.4营养物:厌氧反应池营养物比例为C:N:P=(350-500):5:1。

7.5有毒有害物:

抑制和影响厌氧反应的有害物有三种:

7.5.1无机物:有氨、无机硫化物、盐类、重金属等,特别硫酸盐和硫化物抑制作用最为严重;

7.5.2有机化合物:非极性有机化合物,含挥发性脂肪酸(VFA)、非极性酚化合物、单宁类化合物、芬香族氨基酸、焦糖化合物等五类。

7.5.3生物异型化合物,含氯化烃、甲醛、氰化物、洗涤剂、抗菌素等。

7.6工艺技术参数:

7.6.1水力停留时间:HRT

7.6.2有机负荷

7.6.3污泥负荷

8、厌氧反应器启动:

8.1接种污泥:

有颗粒污泥时,接种污泥数量大小10-15%.当没有现成的污泥时,应用最多的是污水处理厂污泥池的消化污泥.稠的消化污泥有利于颗粒污泥形成。没有消化污泥和颗粒污泥时,化粪池污泥、新鲜牛粪、猪粪及其它家畜粪便都可利用作菌种,,也可用腐败污泥和鱼塘底泥作接种污泥,但启动周期较长。

污泥接种浓度至少不低10Kg·VSS/m3反应器容积,但接种污泥填充量不大于反应器容积60%。污泥接种中应防止无机污泥、砂以及不可消化的其它物进入厌氧反应器内。

8.2接种污泥启动:启动分以下三个阶段进行:

1、起始阶段——反应池负荷从0.5-1.0kgCOD/m3d或污泥负荷0.05-0.1kgCOD/kgVSS·d开始。进入厌氧池消化降解废水的混合液浓度不大于COD5000mg/L,并按要求控制进水,最低的COD负荷为1000mg/L。进液浓度不符合应进行稀释。

进液时不要刻意严格控制所有工艺参数,但应特别注意乙酸浓度,应保持在1000mg/L以下。进液采用间断冲击形式,即每3~4小时一次,每次5-10min,之后逐步减断间隔时间至1小时,每次进液时间逐步增长20~30min。起始阶段,进水间隔时间过长时,则应每隔1小时开动泵对污泥搅拌一次,每次3~5min。

2、启动第二阶段——当反应器容积负荷上升到2-5kgCOD/m3d时,这一阶段洗出污泥量增大,颗粒污泥开始产生。一般讲,从第一段到第二段要40d时间,此时容积负荷大约为设计负荷的50%。

3、启动的第三阶段——从容积负荷50%上升到100%,采用逐步增加进料数量和缩短进料间断时间来实现。衡量能否获进料量和缩短进料时间的化验指标定控制发挥性脂肪酸VFA不大于500mg/L,当VFA超过500-1000mg/L,厌氧反应器呈现酸化状态,超过1000mg/L则表明已经酸化,需立即采取措施停止进料,

进行菌种驯化。一般来讲第二段到第三段也需30-40d时间。

8.3启动的要点

1、启动一定要逐步进行,留有充裕的时间,并不能期望很短时间进入加料运行达到厌氧降解的目标。因为启动实际上是使细菌从休眠状态恢复,即活化的过程。启动中细菌选择、驯化、增殖过程都在进行,原厌氧污泥中浓度较低的甲烷菌的增长速度相对于产酸菌要慢的多。因此,这时负荷一般不能高,时间不能短,每次进料要少,间隔时间要长。

2、混合进液浓度一定要控制在较低水平,一般COD浓度为1000-5000mg/L,当超过5000mg/L,应进行出水循环和加水稀释至要求。

3、若混合液中亚硫酸盐浓度大于200mg/L时,则亦应稀释至100mg/L以下才能进液。

4、负荷增加操作方式:启动初期容积负荷可从0.2-0.5kgCOD/m3·d开始,当生物降解能力达到80%以上时,再逐步加大。若最低负荷进料,厌氧过程仍不正常COD不能消化,则进料间断时间应延长24h或2-3d,检查消化降解的主要指标测量VFA浓度,启动阶段VFA应保持在3mmoL/L以下。

UASB厌氧处理技术调试经验总 结

UASB厌氧处理技术调试经验总结在废水的厌氧生物处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响、制约,形成复杂的生态系统,此生态系统在UASB反应系统中直观表现为颗粒污泥。 有机物在废水中以悬浮物或胶体的形式存在,它们的厌氧降解过程可分为四个阶段。 (1)水解阶段,微生物利用酶将大分子切割成小分子; (2)发酵(或酸化)阶段,小分子有机物被发酵菌利用,在细胞内转化为简单的化合物,这一阶段的主要产物有挥发酸、醇类、乳酸、二氧化碳、氢气、氨和硫化氢等; (3)产乙酸阶段,此阶段中上一阶段的产物被进一步转化为乙酸等物质; (4)产甲烷阶段,在此阶段乙酸、氢气、碳酸等被转化为甲烷、二氧化碳。上述四个阶段的进行,大分子有机物被转化为无机物,水质变好,同时微生物得到了生长。 1、UASB升流式厌氧污泥床反应器 升流式厌氧污泥床反应器即UASB其基本特征是在反应器的上部设置气、固、液三相分离器,下部为污泥悬浮层区和污泥床区。污水从底部流入,向上升流至顶部流出,混合液在沉淀区进行固液分离,污泥可自行回流到污泥床区,使污泥床区保持很高的污泥浓度。从构造和功能上划分,UASB反应器主要由进水配水系统、反应区(污泥床区和污泥悬浮层区)、沉淀区、三相分离器、集气排气系统、排泥系统及出水系统和浮渣清除系统组成。其工作的基本原理为:在厌氧状态下,微生物分解有机物产生的沼气在上升过程中产生强烈的搅动,有利于颗粒污泥的形成和维持。废水均匀地进入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床,在与污泥颗粒的接触过程中发生厌氧反应,经过反应的混合液上升流动进入三相分离器。沼气泡和附着沼气泡的污泥

第三章--厌氧生物处理

第三章厌氧生物处理 3.1基本概念 3.1.1厌氧生物处理的基本原理 一、厌氧生物处理的基本生物过程及其特征 ——又称厌氧消化、厌氧发酵; ——实际上,是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。 1、厌氧生物处理工艺的发展简史: ①上述的厌氧过程广泛地存在于自然界中; ②人类第一次利用厌氧消化处理废弃物,是始于1881年——Louis Mouras的“自动净化器”; ③随后人类开始较大规模地应用厌氧消化过程来处理城市污水(如化粪池、双层沉淀池等)和剩余污 泥(如各种厌氧消化池等); ——长的HRT、低的处理效率、浓臭的气味等; ④50、60年代,特别是70年代中后期,随着能源危机的加剧,人们对利用厌氧消化过程处理有机废 水的研究得以强化,出现了一批被称为现代高速厌氧消化反应器的处理工艺,厌氧消化工艺开 始大规模地应用于废水处理; ——HRT大大缩短,有机负荷大大提高,处理效率也大大提高; ——厌氧接触法、厌氧滤池(AF)、上流式厌氧污泥床(UASB)反应器、厌氧流化床(AFB)、AAFEB、厌氧生物转盘(ARBC)和挡板式厌氧反应器等; ——HRT与SRT分离,SRT相对很长,HRT则可以较短,反应器内生物量很高。 ⑤最近(90年代以后),随着UASB反应器的广泛应用,在其基础上又发展起来了EGSB和IC反应 器; ——EGSB反应器可以在较低温度下处理低浓度的有机废水; ——IC反应器则主要应用于处理高浓度有机废水,可以达到更高的有机负荷。 2、厌氧消化过程的基本生物过程 ①两阶段理论: ——30~60年代,被普遍接受的是“两阶段理论” ●第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段; ——水解和酸化,产物主要是脂肪酸、醇类、CO2和H2等; ——主要参与微生物统称为发酵细菌或产酸细菌; ——其特点有:1)生长快,2)适应性(温度、pH等)强。 ●第二阶段:产甲烷阶段,又称碱性发酵阶段; ——产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;

厌氧生物处理技术、

废水的厌氧生物处理技术 厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。 1厌氧生物处理的基本原理 1.1两阶段理论 在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇 类、CO 2和H 2 等为主的产物。第二阶段则被称为产甲烷阶段或碱性发酵阶段,所 发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO 2和H 2 等为基质, 并最终将其转为CH 4和CO 2 。 1.2三阶段理论 三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。有机物首先通过发酵细菌的作用生成乙醇、丙酸、 丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH 4和CO 2 。产氢 产乙酸菌和产甲烷菌之间存在着互营共生的关系。该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。 1.3四阶段理论 几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria),该菌群的代谢特点是能将H 2/CO 2 合成为乙酸。但是研究结果表明,这 一部分乙酸的量较少,一般可以忽略不计。 目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。 2 厌氧生物处理的优缺点 厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。

-污水处理调试指导手册

污水处理工程调试及试运行指导手册 污水处理工程调试及试运行指导手册 一、宗旨 本手册是针对污水处理工程调试及试运行工作编写的,可供安装、调试及营运工作人员使用,亦可作为建设方、施工方施工验收之参考。 二、纲目 手册含以下主要内容: 调试条件、调试准备、试水方式、单机调试、单元调试、分段调试、接种菌种、驯化培养、全线连调、检测分析、改进缺陷、补充完善、正式试运行、自行检验、正式提交检验、竣工验收。 三、细则 1、调试条件 (1)土建构筑物全部施工完成; (2)设备安装完成; (3)电气安装完成; (4)管道安装完成; (5)相关配套项目,含人员、仪器,污水及进排管线,安全措施均已完善。 2、调试准备

(1)组成调试运行专门小组,含土建、设备、电气、管线、施工人员以及设计与建设方代表共同参与; (2)拟定调试及试运行计划安排; (3)进行相应的物质准备,如水(含污水、自来水),气(压缩空气、蒸汽),电,药剂的购臵、准备; (4)准备必要的排水及抽水设备;堵塞管道的沙袋等; (5)必须的检测设备、装臵(PH计、试纸、COD检测仪、SS);(6)建立调试记录、检测档案。 3、试水(充水)方式 (1)按设计工艺顺序向各单元进行充水试验;中小型工程可完全使用洁净水或轻度污染水(积水、雨水);大型工程考虑到水资源节约,可用50%净水或轻污染水或生活污水,一半工业污水(一般按照设计要求进行)。 (2)建构筑物未进行充水试验的,充水按照设计要求一般分三次完成,即1/3、1/3、1/3充水,每充水1/3后,暂停3-8小时,检查液面变动及建构筑物池体的渗漏和耐压情况。特别注意:设计不受力的双侧均水位隔墙,充水应在二侧同时冲水。 已进行充水试验的建构筑物可一次充水至满负荷。 (3)充水试验的另一个作用是按设计水位高程要求,检查水路是否畅通,保证正常运行后满水量自流和安全超越功能,防止出现冒水和跑水现象。 4、单机调试

(完整版)污水处理工程调试及试运行指导手册

污水处理工程调试及试运行指导手册 一、宗旨 本手册是针对污水处理工程调试及试运行工作编写的,可供安装、调试及营运工作人员使用,亦可作为建设方、施工方施工验收之参考。 二、纲目 手册含以下主要内容: 调试条件、调试准备、试水方式、单机调试、单元调试、分段调试、接种菌种、驯化培养、全线连调、检测分析、改进缺陷、补充完善、正式试运行、自行检验、正式提交检验、竣工验收。 三、细则 1、调试条件 (1)土建构筑物全部施工完成; (2)设备安装完成; (3)电气安装完成; (4)管道安装完成; (5)相关配套项目,含人员、仪器,污水及进排管线,安全措施均已完善。 2、调试准备 (1)组成调试运行专门小组,含土建、设备、电气、管线、施工人员以及设计与建设方代表共同参与; (2)拟定调试及试运行计划安排;

(3)进行相应的物质准备,如水(含污水、自来水),气(压缩空气、蒸汽),电,药剂的购置、准备; (4)准备必要的排水及抽水设备;堵塞管道的沙袋等; (5)必须的检测设备、装置(PH计、试纸、COD检测仪、SS); (6)建立调试记录、检测档案。 3、试水(充水)方式 (1)按设计工艺顺序向各单元进行充水试验;中小型工程可完全使用洁净水或轻度污染水(积水、雨水);大型工程考虑到水资源节约,可用50%净水或轻污染水或生活污水,一半工业污水(一般按照设计要求进行)。 (2)建构筑物未进行充水试验的,充水按照设计要求一般分三次完成,即1/3、1/3、1/3充水,每充水1/3后,暂停3-8小时,检查液面变动及建构筑物池体的渗漏和耐压情况。特别注意:设计不受力的双侧均水位隔墙,充水应在二侧同时冲水。 已进行充水试验的建构筑物可一次充水至满负荷。 (3)充水试验的另一个作用是按设计水位高程要求,检查水路是否畅通,保证正常运行后满水量自流和安全超越功能,防止出现冒水和跑水现象。 4、单机调试 (1)工艺设计的单独工作运行的设备、装置或非标均称为单机。应在充水后,进行单机调试。 (2)单机调试应按照下列程序进行:

汽车污水处理站生化调试与运行方案

某汽车有限公司 污水处理站生化调试与运行操作方案 一、厌氧生物处理、调试、运行指导 1、厌氧反应概述: 利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。 厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。 2、厌氧反应的工艺控制条件: 2.1温度:温度对厌氧反应尤为重要,当温度低于最优下限温度时,每下降1℃,效率下降11%。在上述范围,温度在1-3℃的微小波动,对厌氧反应影响不明显,但温度变化过大(急速变化),则会使污泥活力下降,度产生酸积累等问题。 2.2 PH:厌氧水解酸化工艺,对PH要求范围较松,即产酸菌的PH应控制4-7范围内;完全厌氧反应则应严格控制PH,即产甲烷反应控制范围6.5-8.0,最佳范围为6.8-7.2,PH低于6.3或高于7.8,甲烷化速降低。 2.3氧化还原电位:水解阶段氧化还原电位为-100~+100mv,产甲烷阶段的最优氧化还原电位为-150~-400mv。因此,应控制进水带入的氧的含量,不能因以对厌氧反应器造成不利影响。 2.4营养物:厌氧反应池营养物比例为C:N:P=(350-500):5:1。 2.5有毒有害物:抑制和影响厌氧反应的有害物有三种: 2.5.1无机物:有氨、无机硫化物、盐类、重金属等,特别硫酸盐和硫化物抑制作用最为严重; 2.5.2有机化合物:非极性有机化合物,含挥发性脂肪酸(VFA)、非极性酚化合物、单宁类化合物、芬香族氨基酸、焦糖化合物等五类。 2.5.3生物异型化合物,含氯化烃、甲醛、氰化物、洗涤剂、抗菌素等。 3、厌氧反应器启动: 3.1接种污泥:有颗粒污泥时,接种污泥数量大小10-15%.当没有现成的污泥时,应用最多的是污水处理厂污泥池的消化污泥(消化污泥的含水率按70%计算,按池体有效容积的3.5%投放污泥量;例如:水池有效容积300m3,则需投放污泥:300*3.5%=10.5吨),消化污泥有利于颗粒污泥形成。没有消化污泥和颗粒污泥时,化粪池污泥、新鲜牛粪、猪粪及其它家畜粪便都可利用作菌种,也可用腐败污泥和鱼塘底泥作接种污泥,但启动周期较长。本次使用的是城市污水处理厂污泥池的消化污泥。

环境工程第三章 习题

第三章习题 一、填空: 1、废水处理方法主要有:物理处理法,化学处理法,生物处理法。 2、影响厌氧生化反应的因素有pH 、温度、有机负荷、有毒物质。 3 、日常人们所说的废水,按其产生的来源,一般可分为生活污水、工业废水和雨水三种。 4、废水的物理指标包括温度、色度、气味、悬浮固体等指标。 5、微生物分解有机物的速度与温度有关,温度较高时分解较快,反之则较慢。 6、测定废水中有机污染物数量的指标,目前常用的有生物化学需氧量和化学需氧量两种。前者用BOD 来表,后者用COD 来表示。 7、废水生化处理工程设计的原则为技术先进、安全可靠、和质量第一和经济合理。 8、污水处理产生的沼气一般由甲烷、二氧化碳和其他微量气体组成。 9、生化需氧量是表示污水被有机物污染程度的综合指标。 10、有毒物质可分为重金属离子、有机物类、;无机物类。 11、一般好氧生化处理PH值可6.5-8.5之间变化,厌氧生物处理要求较为严格,pH值在6.7-7.4之间。 二、选择题 1、溶解氧在水体自净过程中是个重要参数,它可反映水体中( D )。 A.耗氧指标 B.溶氧指标C.有机物含量 D.耗氧和溶氧的平衡关系2、在理想沉淀池中,颗粒的水平分速度与水流速度的关系(C )。 A.大于 B.小于 C. 相等 D. 无关 3、测定水中有机物的含量,通常用( C )指标来表示。 A.TOC B.SVI C.BOD5 D.MLSS 4、在水质分析中,常用过滤的方法将杂质分为( C )。 、A.悬浮物与胶体物 B.胶体物与溶解物 C.悬浮物与溶解物 D.无机物与有机物

5、一般衡量污水可生化的程度为BOD/COD为(C )。 A.小于0.1 B.小于0.3 C.大于0.3 D.0.5—0.6 6、沉淀池的形式按(B)不同,可分为平流、竖流与辐流三种形式。 A:池的结构 B:水流方向 C 池的容积 D 水流速度 7、对污水中可沉悬浮物质常采用(B )来去除 A:格栅 B:沉砂池 C:调节池 D:沉淀池 8、在水质分析中,常用过滤的方法将杂质分为( C )。 A:悬浮物与胶体物B:胶体物与 C:悬浮物与溶解物 D:无机物与有机物9、废水中各种有机物的相对组成如没有变化,那COD与之间的比例关系为( D )。 A:COD>BOD5 B:COD>BOD5 >第一阶段BOD C:COD>BOD5 >第二阶段BOD D:COD>第一阶段BOD >BOD5 10、废水治理需采用原则是(D )。 A:分散 B:集中 C:局部 D:分散与集中相结合 11、测定水中微量有机物和含量,通常用( C )指标来说明。 A、BOD B、COD C、TOC D、DO 12、对污水中的无机的不溶解物质,常采用( B )来去除。 A、格栅 B、沉砂池 C、调节池 D、沉淀池 13、沉淀池的形式按(B )不同,可分为平流、辐流、竖流3种形式。 A、池的结构 B、水流方向 C、池的容积 D、水流速度 14、BOD5指标是反映污水中( B )污染物的浓度。A、无机物 B、有机物 C、固体物 D、胶体物 15.在水质分析中,通常用过滤的方法将杂质分为(B )。 A.悬浮物与胶体物 B.悬浮物与溶解物 C.胶体物与溶解物 D.漂浮物与有机物 16.饮用水消毒合格的主要指标为1L水中的大肠菌群数小于( C )。 A.5个 B.4个 C.3个 D.2个 17.城市污水一般用( A )法来进行处理。 A.物理法 B.化学法 C.生物法 D.物化法

生化系统调试方法资料

生化系统调试 一.因为消化污泥中细菌很少,主要是一些甲烷细菌,而原本存在的好氧菌在厌氧后已处于休眠状态,再经酸性发酵阶段和碱性发酵阶段后已过了休眠期,如果将消化污泥再曝气是无法再恢复活性的,再说此时污泥中的营养已很 少. 二.调试我想应从这些方面入手: 1、掌握所要调试工程各工艺单元或反应器单体的性能及控制运行参数和所需要调试步骤; 2、了解各单元在全工艺中的地位和作用,如:各段去除率、主次地位、及调试先后次序等; 3、了解废水性质,清楚各组分去除难易程度,如何去除最难处理物质,如何应付毒性物质,是否需要补充物质; 4、确定物化及化学法投药量,必要时现场试验确定。 三.作为一名调试人员,我想应具备以下条件: 1、熟悉各种水处理工艺、及工艺组合; 2、能够运行维护各设备,能及时发现设备运行问题,最好能解决问 题; 3、会化验; 4、最好多少懂一点电的知识; 5、有点力气,现场难免干点活!拽个泵、清理筛网格姗、排堵防漏什么的; 四.调试的三种人: 1、明白工艺,确定并合理调整运行参数。 2、了解设备,能够维修、处理故障,保持正常运行。 3、监测分析,知道处理的性能和效果,异常时能及时发现进水特殊物质的变化和生物相的状况 五.生化调试相关知识 1、污泥的培养

方法有同步与异步培养与接种,同步是培奍与驯化同时进行或交替进行, 异步是先培后驯化,接种是利用类似污水的剩余污泥接种 活性污泥可用糞便水经曝气培养而得,因为粪便污水中,细菌种类多,本 身含有的营养丰富,细菌易于繁殖。通常为了缩短培菌周期,我们会选择接种 培养。 2、先说粪便水培菌具体步骤: 将经过过滤的粪便水投入曝气池,再用生活污水或河水稀释,至BOD约为300-400,进行连续曝气。这样过二,三天后,为补充微生物的营养物质和排 除由微生物产生的代谢产物,应进行换水,换水根据操作情况分为间断和连续 操作 1)间断操作: 当第一次加料曝气并出现模糊的活性污泥绒絮后,就可停止曝气,使混合 液静止沉淀,经1-1.5小时后排放上清液,把排放的上清液约占总体积的60-70%。 然后再加生活污水和粪便水,这时的粪便水可视曝气池内的污泥量来调整,这样一直下去,直至SV达到30%。一般需2周,水温低时时间要延长。 在每次换水时,从停止曝气,沉淀到重新曝气的总时间要控制在2小时之 内为宜,成熟的污泥应具有良好的混凝,沉降性能,污泥内有大量的菌胶菌和 终生。 纤毛类原生动物,如钟虫,等枝虫,盖纤虫等,并可使污水的生化需氧量 去除率达90%左右 2)连续操作: 在第一次加料出现绒絮后,就不断地往曝气池投加生活污水或河水,添加 粪便水的控制原则与间断投配相同。往曝气池的投加的水量,应保证池内的水 量能每天更换一次,随着培奍的进展,逐渐加大水量使在培养后期达到每天更 换二次。在曝气池出水进入二次沉淀池后不久(0.5-1)就开始回流污泥,污 泥的回流量为曝气池进水量的50% 3、驯化的方法:可在进水中逐渐增加被处理的污水的比例,或提高浓度,使生物逐渐适应新的环境开始时,被处理污水的加入量可用曝气池设计负荷的

厌氧生物处理

3、厌氧反应概述: 利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。 厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。 4、厌气处理技术的优势和不足: 优势: 4.1可作为环境保护、能源回收和生态良性循环结合系统的技术,具有良好的社会、经济、环境效益。 4.2耗能少,运行费低,对中等以上(1500mg/L)浓度废水费用仅为好氧工艺1/3. 4.3回收能源,理论上讲1kgCOD可产生纯甲烷0.35m3,燃值(3.93×10-1J/m3),高于天然气(3.93×10-1J/m3)。以日排10t COD工厂为例,按COD去除80%,甲烷为理论值80%计算,日产沼气2240m3,相当于2500m3天然气或3.85t煤,可发电5400Kwh. 4.4设备负荷高、占地少。 4.5剩余污泥少,仅相当于好氧工艺1/6~1/10. 4.6对N、P等营养物需求低,好氧工艺要求C:N=100:5:1,厌氧工艺为C:N=(350-500):5:1。 4.7可直接处理高浓有机废水,不需稀释。 4.8厌氧菌可在中止供水和营养条件下,保留生物活性和沉泥性一年,适合间断和季节性运行。 4.9系统灵活,设备简单,易于制作管理,规模可大可小。 厌氧不足: 1、出水污染浓度高于好氧,一般不能达标; 2、对有毒性物质敏感; 3、初次启动缓慢,最少需8-12周以上方能转入正常水平。 5、反应机理:

UASB厌氧处理技术调试经验总结

UASB厌氧处理技术调试经验总结 在废水的厌氧生物处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响、制约,形成复杂的生态系统,此生态系统在UASB反应系统中直观表现为颗粒污泥。 有机物在废水中以悬浮物或胶体的形式存在,它们的厌氧降解过程可分为四个阶段。 (1)水解阶段,微生物利用酶将大分子切割成小分子; (2)发酵(或酸化)阶段,小分子有机物被发酵菌利用,在细胞内转化为简单的化合物,这一阶段的主要产物有挥发酸、醇类、乳酸、二氧化碳、氢气、氨和硫化氢等; (3)产乙酸阶段,此阶段中上一阶段的产物被进一步转化为乙酸等物质; (4)产甲烷阶段,在此阶段乙酸、氢气、碳酸等被转化为甲烷、二氧化碳。上述四个阶段的进行,大分子有机物被转化为无机物,水质变好,同时微生物得到了生长。 1、UASB升流式厌氧污泥床反应器 升流式厌氧污泥床反应器即UASB其基本特征是在反应器的上部设置气、固、液三相分离器,下部为污泥悬浮层区和污泥床区。污水从底部流入,向上升流至顶部流出,混合液在沉淀区进行固液分离,污泥可自行回流到污泥床区,使污泥床区保持很高的污泥浓度。从构造和功能上划分,UASB反应器主要由进水配水系统、反应区(污泥

床区和污泥悬浮层区)、沉淀区、三相分离器、集气排气系统、排泥系统及出水系统和浮渣清除系统组成。其工作的基本原理为:在厌氧状态下,微生物分解有机物产生的沼气在上升过程中产生强烈的搅动,有利于颗粒污泥的形成和维持。废水均匀地进入反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床,在与污泥颗粒的接触过程中发生厌氧反应,经过反应的混合液上升流动进入三相分离器。沼气泡和附着沼气泡的污泥颗粒向反应器顶部上升,上升到气体反射板的底面,沼气泡与污泥絮体脱离。沼气泡则被收集到反应器顶部的集气室,脱气后的污泥颗粒沉降到污泥床,继续参与进水有机物的分解反应。在一定的水力负荷下,绝大部分污泥颗粒能保留在反应区内,使反应区具有足够的污泥量。 2、厌氧生物处理的影响因素 (1)温度。 厌氧废水处理分为低温、中温和高温三类。迄今大多数厌氧废水处理系统在中温范围运行,在此范围温度每升高10℃,厌氧反应速度约增加一倍。中温工艺以30-40℃最为常见,其最佳处理温度在35-40℃间。高温工艺多在50-60℃间运行。在上述范围内,温度的微小波动(如1-3℃)对厌氧工艺不会有明显影响,但如果温度下降幅度过大(超过5℃),则由于污泥活力的降低,反应器的负荷也应当降低以防止由于过负荷引起反应器酸积累等问题,即我们常说的“酸化”,否则沼气产量会明显下降,甚至停止产生,与此同时挥发酸积累,出水pH下降,COD值升高。

环境工程学第三章讲义水的生物化学处理方法

环境工程学第三章讲义水的生物化 学处理方法 第3章水的生物化学处理方法本章教学内容:废水处理的微生物学基础,活性污泥法,生物膜法,厌氧生物技术,污泥处理技术本章教学要求:(1) 理解微生物处理废水的基本原理,掌握活性污泥法的原理与常用的几种工艺流程,掌握生物膜法的原理与几种典型处理工艺;掌握厌氧生物处理技术的机理与影响因素以及处理工艺;(2) 熟悉污泥的性质和常见的处理技术。本章教学重点:活性污泥法、生物膜法、厌氧生物处理技术、污泥的处理本章习题: P290 1, 2, 3, 5,7,13,14 废水处理微生物学基础一、废水处理中的微生物净化污水的微生物主要有细菌、真菌、藻类、原生动物和小型的后生动物等。从利用碳源的角度来

说,可分为自养型微生物和异养型微生物。从利用氧气的角度来分,有好氧、厌氧和兼性三类。针对单细胞的细菌,从形体来分,有球菌、杆菌和螺旋菌三类。净化污水中,微生物增长与递变的模式,祥教材205页。二、微生物的生理学特性生物酶与代谢过程祥教材206页。三、细菌生长曲线及莫诺公式活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。1、活性污泥的增殖曲线内源呼吸对数增殖减速增殖微生物增殖曲线氧利用速率曲线BOD降解曲线Xa 0 时间注意:1)间歇静态培养;2)底物是一次投加;3)图中同时还表示了有机底物降解和氧的消耗曲线。①适应期:是活性污泥微生物对于新的环境条件、污水中有机物污染物的种类等的一个短暂的适第 1 页应过程;经过适应期后,微生物从数量

上可能没有增殖,但发生了一些质的变化:a.菌体体积有所增大;b.酶系统也已做了相应调整;c.产生了一些适应新环境的变异;等等。BOD5、COD等各项污染指标可能并无较大变化。②对数增长期:F/M值高(?/kgVSS?d),所以有机底物非常丰富,营养物质不是微生物增殖的控制因素;微生物的增长速率与基质浓度无关,呈零级反应,它仅微生物本身所特有的最小世代时间所控制,即只受微生物自身的生理机能的限制;微生物以最高速率对有机物进行摄取,也以最高速率增殖,而合成新细胞;此时的活性污泥具有很高的能量水平,其中的微生物活动能力很强,导致污泥质地松散,不能形成较好的絮凝体,污泥的沉淀性能不佳;活性污泥的代谢速率极高,需氧量大;一般不采用此阶段作为运行工况,但也有采用的,如高负荷活性污泥法。③减速增长期:F/M值下降到一定水平后,有机底物的浓度成为微生物增殖的控制

污水处理运行维护及调试计划

第二章运行维护及调试计划 13.1工程的运行维护 对于整个工程的维护,我们对业主有如下承诺: 1)污水处理厂投产运行后,我方将定期到污水处理厂进行技术回访,了解运行过程中存在的问题,以便及时解决; 2)工程及设备保修一年,一年后为用户提供免费咨询和终身优惠维修服务,保证出水达设计排放标准; 3)对总承包工程实行终身负责制。 13.1.1 预处理系统的运行、维护 1、栅渣的清除 格栅除污机每日什么时候清污,主要利用时间继电器控制,即通过设定时间,按时清除栅渣。格栅运行时,值班人员应经常现场巡视,及时发现格栅除污机的故障,及时压榨、清运栅渣。 2、定期检查渠道的沉砂情况 由于污水流速的减慢,或渠道内粗糙度的加大,格栅前后渠道内可能会积砂,应定期检查清理积砂,或修复渠道。 3、做好运行测量与记录 应测定每日栅渣量的重量或容量,并通过栅渣量的变化判断格栅是否正常运行。13.1.2 污水提升泵房的运行、维护 1、泵组的运行调度 为保证抽升量与来水量一致,泵组的运行调度应注意以下几条: 1). 利用泵的大小组合来满足水量,不靠阀门来调节,以减少管路水头损失,节能降耗; 2). 保持集水池高水位,降低提升扬程; 3). 水泵开停次数不可过于频繁;

4). 各台泵的投运次数及时间应基本均匀。 2、集水池的维护 因为污水流速减慢,泥砂可能沉积到集水池池底,故应定期清洗。定期清洗时,应注意人身安全。清池前,应首先强制排风,达到安全部门规定的要求后,人方可下池工作。下池后仍应保持一定的通风量。每个操作人员有池下工作时间不可超过30min。 3、做好运行记录 每班应记录的内容有:主要仪表的显示值,各时段水泵投运的台号,异常情况及其处理结果。 13.1.3 缺氧池的运行、维护 2)经常观察反硝化运行效果并做相应记录。 3)营养料投加:做好甲醇的投加,早晚各1次,水量变化时按比例增减,当水中N、P的含量满足这个比例时,可减少投加或者不投加。 3)面粉在一般情况下不投加,当出水恶化、车间轮休放假期间,把25—50kg面粉调成糊状,早晚各加一次,均匀投加于各池中。 13.1.4 活性污泥池的运行、维护 1)调节各进气阀,使曝气池布气均匀,调节各进水阀,使曝气池出水均匀并观察曝气池曝气是否均匀,并做相应的记录。 2)设定曝气池中间部位溶氧仪的DO为3.0mg/l,为保证系统正常运行,每周必须定时检测一次。 3)沉淀池内的污泥回流至缺氧池内。曝气池内的污泥浓度控制在2~4g/L之间,如超过应将剩余污泥排至浓缩池内,剩余污泥排放量应根据污泥浓度的测定每天定时排放。 4)每两小时做一次镜检,注意微生物种类、数量、活性及污泥结构变化情况,相应调整运行参数。 5)营养料的投加根据需要。 13.1.5二沉池的运行、维护 1)沉淀池的应及时排泥,防止污泥沉积导致污泥厌氧上浮。 污泥回流量的大小应根据进水量大小、好氧池内的污泥浓度、SV30以及二沉池内

微生物学习题及答案第三章

四、习题 填空题 1.证明细菌存在细胞壁的主要方法有、、和等4种。2,细菌细胞壁的主要功能为、、和等。 3.革兰氏阳性细菌细胞壁的主要成分为和,而革兰氏阴性细菌细胞壁的主要成分则是、、和。 4.肽聚糖单体是由和以糖苷键结合的,以及 和 3种成分组成的,其中的糖苷键可被水解。 5.G+细菌细胞壁上磷壁酸的主要生理功能为、、和 等几种。 6.G-细菌细胞外膜的构成成分为、、和。 7.脂多糖(LPS)是由3种成分组成的,即、、和。 8.在LPS的分子中,存在有3种独特糖,它们是、和。 9,用人为方法除尽细胞壁的细菌称为,未除尽细胞壁的细菌称为,因在实验室中发生缺壁突变的细菌称为,而在自然界长期进化中形成的稳定性缺壁细菌则称为。 10.细胞质膜的主要功能有、、、和。 11.在细胞质内贮藏有大量聚声一羟基丁酸(PHB)的细菌有、、 和等。 12.在芽孢核心的外面有4层结构紧紧包裹着,它们是、、 和。 13,在芽孢皮层中,存在着和 2种特有的与芽孢耐热性有关的物质,在芽孢核心中则存在另一种可防护DNA免受损伤的物质,称为。14.芽孢的形成须经过7个阶段,它们、、、、 、和。 15.芽孢萌发要经过、和 3个阶段。 16.在不同的细菌中存在着许多休眠体构造,如、、和 等。 17,在细菌中,存在着4种不同的糖被形式,即、、和14,。 18.细菌糖被的主要生理功能为、、、、和 等。 19,细菌的糖被可被用于、、和等实际工作中。 20.判断某细菌是否存在鞭毛,通常可采用、、和 等方法。 21.G-细菌的鞭毛是由基体以及和 3部分构成,在基体上着生 、、和 4个与鞭毛旋转有关的环。

22.在G-细菌鞭毛的基体附近,存在着与鞭毛运动有关的两种蛋白,一种称,位于,功能为;另一种称,位于,功能为。 23.借周生鞭毛进行运动的细菌有和等,借端生鞭毛运动的细菌有和等,而借侧生鞭毛运动的细菌则有等。 24.以下各类真核微生物的细胞壁主要成分分别是:酵母菌为,低等真菌为,高等真菌为,藻类为。 25.真核微生物所特有的鞭毛称,其构造由,和 3部分组成。 26.真核生物鞭毛杆的横切面为型,其基体横切面则为型,这类鞭毛的运动方式是。 27.真核生物的细胞核由、、和 4部分组成。28,染色质的基本单位是,由它进一步盘绕、折叠成和 后,再进一步浓缩成显微镜可见的。 29.细胞骨架是一种由、和 3种蛋白质纤维构成的细胞支架。 30.在真核微生物细胞质内存在着沉降系数为 S的核糖体,它是由 S和 S两个小亚基组成,而其线粒体和叶绿体内则存在着 S核糖体,它是由 S和 S两个小亚基组成。 31.真核微生物包括、、和等几个大类。 32.长有鞭毛的真核微生物类如、、和,长有纤毛的真核微生物如;长有鞭毛的原核生物如、和 等。 选择题(4个答案选1) 1.G-细菌细胞壁的最内层成分是( )。 (1)磷脂 (2)肽聚糖 (3)脂蛋白(4)LPS 2.G+细菌细胞壁中不含有的成分是( )。 (1)类脂 (2)磷壁酸 (3)肽聚糖(4)蛋白质 3.肽聚糖种类的多样性主要反映在( )结构的多样性上。 (1)肽桥 (2)黏肽 (3)双糖单位(4)四肽尾 4.磷壁酸是( )细菌细胞壁上的主要成分。 (1)分枝杆菌 (2)古生菌 (3)G+ (4)G- 5.在G-细菌肽聚糖的四肽尾上,有一个与G+细菌不同的称作( )的氨基酸。(1)赖氨酸 (2)苏氨酸 (3)二氨基庚二酸 (4)丝氨酸 6.脂多糖(LPS)是G-细菌的内毒素,其毒性来自分子中的( )。 (1)阿比可糖 (2)核心多糖 (3)O特异侧链 (4)类脂A

厌氧生物处理技术、

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 废水的厌氧生物处理技术 厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。 1厌氧生物处理的基本原理 1.1两阶段理论 在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。 1.2三阶段理论 三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。 1.3四阶段理论 几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria),该菌群的代谢特点是能将H2/CO2合成为乙酸。但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。 目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。 2 厌氧生物处理的优缺点

厌氧池和好氧池调试

2.1厌氧调试 2.1.1接种污泥的选择与处理 可引进同类特征废水的污泥接种,应尽量选用含甲烷菌多的污泥,如城市废水处理厂厌氧消化污泥,经脱水的厌氧、好氧污泥,以及长期贮存、排放废水的阴沟、水塘污泥等。对过稠的接种污泥,可用水稀释、过滤、沉淀,去除污泥中夹带的大颗粒固体和漂浮杂物。 2.1.2影响调试的因素 影响调试的因素,除接种污泥外,还有废水的水质特征、有机质负荷和有毒污染物负荷、环境条件、填料种类等。厌氧调试所需时间较长,一般16~24周不等。 ⑴pH值pH值变化将直接影响产甲烷菌的生存与活动,厌氧池pH值应维持在6.5~ 7.8之间,最佳范围在 6.8~7.5左右。厌氧池具有一定的缓冲能力,正常运行时,进水pH值可略低于上述值。 ⑵温度采用中温调试。大多数产甲烷菌的适宜温度在中温35~40℃之间,中温条件下,产甲烷菌种类多,易培养驯化、活性高。应控制厌氧池温度波动范围一般1d不宜超过±2℃,避免温度超过42℃。 ⑶碱度合理的厌氧池碱度(以CaCO3计)范围为2000~4000mg/L,⑷基质的碳、氮、磷比例及微量元素厌氧处理要维持正常运行,废水中必须含有足够的细菌用以合成自身细胞物质的化合物。甲烷菌的主要营养物质为氮、磷、钾和硫及其它必需的微量元素。厌氧池中营养物质比例一般取BOD5:N:P=(200~300):5:1,而生物接触氧化池和生物铁微电解池中主要营养物质的比例一般取BOD5:N:P=100:5:1。细菌所需要的微量元素非常少,但微量元素的缺乏能够导致细菌活力下降,在调试阶段应加适量的微量元素。 2.1.3厌氧池调试操作 ⑴将接种污泥投入厌氧池,用稀释的废水浸泡2d,调节厌氧池内pH值约在7.0~ 7.5之间。 ⑵向厌氧池注入生产废水约1/3池容,再补充生活废水至设计容量,调试初始应采

厌氧生物处理法、流程及动力学特征

第十章厌氧生物处理法 本章重点:厌氧过程动力学 20世纪70年代以来,由于城市的扩大和工业的迅速发展,有机废.如仍用需氧法处理则需要消耗大量的能量。随着全球性能源问题的日益突出,在废水处理领域内,人们便逐渐对厌氧生物处理工艺产生了新的认识和估价。 厌氧生物处理法的主要优点有:能耗低;可回收生物能源(沼气);每去除单位质量底物产生的微生物(污泥)量少;而且由于处理过程不需要氧,所以不受传氧能力的限制,因而具有较高的有机物负荷的潜力。其缺点是处理后出水的COD、BOD值较高,水力停留时间较长并产生恶臭等。 §10.1 厌氧生物处理法的基本原理和流程 1.基本原理 可将有机物在厌氧条件下的降解过程分成三个反应阶段。 第一阶段是,废水中的溶性大分子有机物和不溶性有机物水解为溶性小分子有机物。 反应的第二阶段为产酸和脱氢阶段。水解形成的溶性小分子有机物被产酸细菌作为碳源和能源,最终产生短链的挥发酸,如乙酸等。 在废水的厌氧生物处理过程中,有机物的真正稳定发生在反应的第三阶段,即产甲烷阶段。产甲烷的反应由严格的专一性厌氧细菌来完成,这类细菌将产酸阶段产生的短链挥发酸(主要是乙酸)氧化成甲烷和二氧化碳。

图 10-1 厌氧处理的连续反应过程 2.甲烷的产生与形成途径 产甲烷阶段,又称碱性发酵阶段,这一阶段产甲烷菌利用前一阶段的产物,并将其转化为CH 4和CO 2,可能反应如下: 4H 2+CO 2 CH 4+2H 2O (10-1) 4H 2+CH 3COOH 2CH 4+2H 2O (10-2) CH 3COOH CH 4+CO 2 (10-3) 因为氧化氢形成甲烷的细菌可从二氧化碳中获得碳源,所以这些细菌带有自养性,其生长速率很慢,虽然它们与分解乙酸的细菌在厌氧反应器中有共生关系,但其数量较少,在厌氧反应过程中,生成的甲院大部分来自乙酸的分解。主要参与微生物统称为产甲烷菌; 其特点有:1)生长慢;2)对环境条件(温度、pH 、抑制物等)非常敏感。 3.基本流程

厌氧生物处理调试运行控制

厌氧生物处理、调试、运行指导手册 1、目的:本手册用于厌氧生物降解工艺单元的运行管理。 2、内容及对象:手册包括有以下7个内容:即: 厌氧生物反应概述;厌氧技术优势和不足;反应机理;厌氧反应器类型;厌氧反应器工艺控制条件;启动方式;运行管理;问题及解决措施; 手册适用于厌氧反应器操作人员、污水站技工、化验人员和管理人员,亦可供相关人员参考。 3、厌氧反应概述: 利用微生物生命过程中的代谢活动,将有机物分解为简单无机物,从而去除水中有机物污染的过程,称为废水的生物处理。根据代谢过程对氧的需求,微生物又分为好氧、厌氧和介于两者间的兼性微生物。厌氧生物处理就是利用厌氧微生物的代谢过程,在无需提供氧的情况下,把有机物转化为无机物和少量的细胞物质,这些无机物包括大量的生物气(即沼气)和水。 厌氧是一种低成本废水处理技术,把废水治理和能源相结合,特别适合发展中国家使用。 4、厌气处理技术的优势和不足: 优势:

4.1可作为环境保护、能源回收和生态良性循环结合系统的技术,具有良好的社会、经济、环境效益。 4.2耗能少,运行费低,对中等以上(1500mg/L)浓度废水费用仅为好氧工艺1/3. 4.3回收能源,理论上讲1kgCOD可产生纯甲烷0.35m3,燃值(3. 93×10-1J/m3),高于天然气(3.93×10-1J/m3)。以日排10tCOD工厂为例,按COD去除80%,甲烷为理论值80%计算,日产沼气2240m3,相当于2500m3天然气或3.85t煤,可发电5400Kwh. 4.4设备负荷高、占地少。 4.5剩余污泥少,仅相当于好氧工艺1/6~1/10. 4.6对N、P等营养物需求低,好氧工艺要求C:N:P=100:5:1,厌氧工艺为C:N:P=(350-500):5:1。 4.7可直接处理高浓有机废水,不需稀释。 4.8厌氧菌可在中止供水和营养条件下,保留生物活性和沉泥性一年,适合间断和季节性运行。 4.9系统灵活,设备简单,易于制作管理,规模可大可小。 厌氧不足: 1、出水污染浓度高于好氧,一般不能达标;

uasb运行调试经验总结

厌氧处理技术调试经验总结 在废水的厌氧生物处理过程中,废水中的有机物经大量微生物的共同作用,被终极转化为甲烷、二氧化碳、水、硫化氢和氨。在此过程中,不同的微生物的代谢过程相互影响、制约,形成复杂的生态系统,此生态系统在UASB反应系统中直观表现为颗粒污泥。有机物在废水中以悬浮物或胶体的形式存在,它们的厌氧降解过程可分为四个阶段。(1)水解阶段,微生物利用酶将大分子切割成小分子;(2)发酵(或酸化)阶段,小分子有机物被发酵菌利用,在细胞内转化为简单的化合物,这一阶段的主要产物有挥发酸、醇类、乳酸、二氧化碳、氢气、氨和硫化氢等;(3)产乙酸阶段,此阶段中上一阶段的产物被进一步转化为乙酸等物质;(4)产甲烷阶段,在此阶段乙酸、氢气、碳酸等被转化为甲烷、二氧化碳。上述四个阶段的进行,大分子有机物被转化为无机物,水质变好,同时微生物得到了生长。 1.UASB升流式厌氧污泥床反应器 升流式厌氧污泥床反应器即UASB其基本特征是在反应器的上部设置气、固、液三相分离器,下部为污泥悬浮层区和污泥床区。污水从底部流进,向上升流至顶部流出,混合液在沉淀区进行固液分离,污泥可自行回流到污泥床区,使污泥床区保持很高的污泥浓度。从构造和功能上划分,UASB反应器主要由进水配水系统、反应区(污泥床区和污泥悬浮层区)、沉淀区、三相分离器、集气排气系统、排泥系统及出水系统和浮渣清除系统组成。其工作的基本原理为:在厌氧状态下,微生物分解有机物产生的沼气在上升过程中产生强烈的搅动,有利于颗粒污泥的形成和维持。废水均匀地进进反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床,在与污泥颗粒的接触过程中发生厌氧反应,经过反应的混合液上升活动进进三相分离器。沼气泡和附着沼气泡的污泥颗粒向反应器顶部上升,上升到气体反射板的底面,沼气泡与污泥絮体脱离。沼气泡则被收集到反应器顶部的集气室,脱气后的污泥颗粒沉降到污泥床,继续参与进水有机物的分解反应。在一定的水力负荷下,尽大部分污泥颗粒能保存在反应区内,使反应区具有足够的污泥量。 2.厌氧生物处理的影响因素 (1)温度。厌氧废水处理分为低温、中温顺高温三类。迄今大多数厌氧废水处理系统在中温范围运行,在此范围温度每升高10℃,厌氧反应速度约增加一倍。中温工艺以30-40℃最为常见,其最佳处理温度在35-40℃间。高温工艺多在50-60℃间运行。在上述范围内,温度的微小波动(如1-3℃)对厌氧工艺不会有明显影响,但假如温度下降幅度过大(超过5℃),则由于污泥活力的降低,反应器的负荷也应当降低以防止由于过负荷引起反应器酸积累等题目,即我们常说的“酸化”,否则沼气产量会明显下降,甚至停止产生,与此同时挥发酸积累,出水pH下降,COD值升高。 注:以上所谓温度指厌氧反应器内温度 (2)pH。厌氧处理的这一pH范围是指反应器内反应区的pH,而不是进液的pH,由于废水进进反应器内,生物化学过程和稀释作用可以迅速改变进液的pH值。反应器出液的pH一般即是或接近于反应器内的pH。对pH值改变最大的影响因素是酸的形成,特别是乙酸的形成。因此含有大量溶解性碳水化合物(例如糖、淀粉)等废水进进反应器后pH将迅速降低,而己酸化的废水进进反应器后pH将上升。对于含大量蛋白质或氨基酸的废水,由于氨的形成,pH会略上升。反应器出液的pH一般会即是或接近于反应器内的pH。pH值是废水厌氧处理最重要的影响因素之一,厌氧处理中,水解菌与产酸菌对pH有较大范围的适应性,大多数这类细菌可以在pH为5.0-8.5范围生长良好,一些产酸菌在pH小于5.0时仍可生长。但通常对pH敏感的甲烷菌适宜的生长pH为6.5-7.8,这也是通常情况下厌氧处理所应控制的pH范围。我公司要求厌氧反应器内pH控制在6.8-7.2之间。进水pH条件变态首先表现在使产甲烷作用受到抑制(表现为沼气产生量降低,出水COD值升高),即使在产酸过程中形成的有机酸不能被正常代谢降解,从而使整个消化过程各个阶段的协调平衡丧失。假如pH持续下降到5以下不仅对产甲烷菌形成毒害,对产酸菌的活动也产生抑制,进而可以使整个厌氧消化过程停滞,而对此过程的恢复将需要大量的时间和人力物力。pH值在短时间内升高过8,一般只要恢复中性,产甲烷菌就能很快恢复活性,整个厌氧处理系统也能恢复正常。同时可以查看中国污水处理工程网更多技术文档。 (3)有机负荷和水力停留时间。有机负荷的变化可体现为进水流量的变化和进水COD值的变化。厌氧处理系统的正常运转取决于产酸和产甲烷速率的相对平衡,有机负荷过高,则产酸率有可能大于产甲烷的用酸率,从而造成挥发酸的积累使pH迅速下降,阻碍产甲烷阶段的正常进行,严重时可导致“酸化”。而且假如有机负荷的进步是由进水量增加而产生的,过高的水力负荷还有可能使厌氧处理系统的污泥流失率大于其增长率,进而影响整个系统的处理效率。水力停留时间对于厌氧工艺的影响主要是通过上升流速来表现出来的。一方面,较高的水流速度可以进步污水系统内进水区的扰动性,从而增加生物污泥与进水有机物之间的接触,进步有机物的往除率。另一方面,为了维持系统中能拥有足够多的污泥,上升流速又不能超过一定限值,通常采用UASB法处理废水时,为形成颗粒污泥,厌氧反应器内的上升流速一般不低于0.5m/h。

相关主题
文本预览
相关文档 最新文档