当前位置:文档之家› 淬火冷却介质及其应用技术漫谈

淬火冷却介质及其应用技术漫谈

淬火冷却介质及其应用技术漫谈
淬火冷却介质及其应用技术漫谈

淬火冷却介质及其应用技术漫谈

1 前言

十几年来,本文作者一直工作在淬火介质及其应用技术领域。下面介绍的是作者多年工作的一些体会、经验和部分工作成果。首先谈谈冷却介质在淬火冷却技术领域中的地位和作用。接着,介绍淬火介质主要品种的特点、用途和根据情况和需要选择淬火介质的原则方法,以及介质的使用维护知识和经验。最后介绍分析和解决淬火变形问题的三要素和硬度差异法。

2 冷却介质是冷却技术的龙头和中心

冷却是热处理生产的重要组成部分。热处理的冷却包括要求缓慢冷却的退火,以空冷为主的正火,以及通过快冷来获得马氏体组织的淬火等。其中,淬火冷却要求高、技术难度大,一直是热处理生产关注的重点。当前,绝大多数工件的淬火都是在水性淬火介质或油中进行的,因此本文重点讨论通用型的水性和油性介质。

众所周知,如果钢件淬火冷却速度过慢,就不能获得要求的淬火硬度和淬硬层深度;而冷却速度过快,又可能引起淬裂和过深的淬硬层。同时,淬火冷却速度过快或冷却速度不足,都可能引起工件的超差变形。不仅如此,冷却过程中,工件的形状越复杂,不同部位温度差就越大,要得到不淬裂和没有超差变形就越难。

淬火冷却技术的第一步是选择适合的淬火介质。一般说,合适的标准首先是在单件淬火条件下能满足热处理要求。仅仅作单件淬火时,淬火冷却的不均匀性主要表现在同一个工件上。通常采取选择合适的淬火介质,加上适当的淬火操作方式,特别是手工操作方式,来解决单件淬火的均匀性问题。现代的热处理生产则以大量、连续,以及长期不断生产为特点。相应地,淬火冷却的不均匀性也就增加到四个方面。第一,同一工件不同部位在淬火冷却上的差异,这是单件淬火就存在的问题。第二,同批淬火的工件,因放置的部位不同,冷却环境不尽相同所引起的不均匀性。第三,不同批次淬火的工件,因淬火介质的温度和相对流速变化等原因引起的不均匀性。第四,长期生产中,因介质受污染,加上淬火介质本身的变化,所引起的不同时期的淬火效果上的差异。因此,现代热处理大生产的淬火冷却技术,要求在单件淬火冷却技术的基础上,通过采用高质量的冷却介质、与介质配套的设备,以及相关的用法技术,来消除或减小上述四方面的性能差异,以保证获得更高的和始终稳定的热处理质量。

通常,从淬火槽的结构设计、配备循环冷却以及加热系统、安设搅拌装置对介质做合理的搅动、使用工装具和有关的操作技术来改善前三类均匀性问题。而第四类,即介质冷却特性的长期稳定性问题,则要靠选择优良品质的冷却介质,并进行合理的使用维护来解决。

把研究开发不同特性的淬火介质产品、根据情况选择合适淬火介质的品种,以及通过装备和使用技术来改善上述四种均匀性要求结合在一起,就构成了热处理冷却技术的工作内容,或者说基本任务。研究开发能适应不同要求的多种淬火介质,是冷却技术的首要内容。其它配套设备和相关的用法技术都是根据所用介质的特点而选用和发展的。因此,可以说,冷却介质是冷却技术的龙头或中心。

3 淬火冷却介质的基本特性和主要类型

热处理对淬火介质的基本要求是人所共知的,即在钢的Ms点温度以上冷得适当的快,冷到Ms点以下后冷得适当的慢。这又常常被简化成“高温能冷得快,低温能冷得慢”。不同的钢种和不同的工件对上述的“快”和“慢”的程度有不同的要求。为适应多种钢种和多种工件的不同要求,淬火冷却介质有多种类型和等级。在热处理行业,淬火量最大的是碳素结构钢和低合金结构钢制的通用零部件,如齿轮、弹簧、轴承和其它结构件;用得最多的是淬火油、水溶性淬火剂、自来水以及盐水和碱水。

自来水、盐水、碱水以及所谓普通机油通常被称为传统的淬火介质;而把专门为热处理淬火冷却的需要才开发的各种专用淬火油,加上最近几十年才开发出的水性淬火剂合称为新型淬火介质。

专用淬火油几乎多是矿物油基的油,其中使用温度在80℃以下的俗称冷油;使用温度在80℃以上的称为热油。热油再按其使用温度的高低分成不同的品种或等级;冷油则按它的冷却速度快慢分成不同的等级。此外,还有真空淬火油和光亮淬火油等品种。所有淬火油都应当有稳定的冷却特性,并容易清洗。

新型水溶性淬火剂大多属有机聚合物系,因其聚合物种类不同而有PAG类、聚乙烯醇类以及聚丙烯酸钠类等种类。它们大多是被加到自来水中配成淬火液来使用。一般说,水中加入这些淬火剂的主要目的是降低水的低温冷却速度。因此,从应用的角度,我们最关心的是它们能降低水的低温冷却速度的程度。程度不同,应用的范围也不同。除了冷却特性之外,水性介质还需要具备另外两个必不可少的特性。一个是冷却特性的稳定性,另一个是所配制的淬火液的浓度要容易测量和调控。当然,还要求一定的防锈性、抑菌性和不污染环境。

各种专用淬火介质的基本特性和用法都容易从有关的说明书等资料中查找,这里就不做介绍了。

4 传统介质和新型介质的冷却特性对比

4.1 普通机油和自来水在冷却特性上的不足之处

最具代表性的传统淬火介质是水和普通机油。现在,大家多习惯于用符合国际标准(ISO/DIS9950)的冷却特性仪,来测量这些液体淬火介质的冷却特性。图1是自来水和普通机油(N32)的冷却特性曲线。图中,纵坐标表示温度(℃),横坐标表示冷却速度(℃/s)。一般认为,自来水的主要缺点是低温冷却速度过快,使很多工件在其中淬火会开裂。普通机油的主要不足是蒸汽膜阶段长和冷却速度偏慢,这使淬透性较差或者有效厚度较大的工件淬火后硬度不足且变形较大。为此,一般认为,研究开发新型水溶性淬火介质的首要目标是降低水的冷却速度,尤其是水的低温冷却速度;而开发新型淬火油的重要目标则是缩短油的蒸汽膜阶段和提高油的冷却速度。

根据上述改变冷却特性的目标,再结合对淬火介质其它方面的要求,国内外研究开发出了多种新型淬火介质产品,并在热处理生产中得到应用。到目前为止,用得最成功的水性淬火介质是PAG类的产品。而得到广泛应用的新型淬火油主要是快速淬火油和等温分级淬火油。图2是一种PAG淬火剂在不同浓度下的冷却特性与自来水的对比曲线。图3是一种快速淬火油和普通机油的冷却特性对比曲线。图4是一种热油与普通机油的冷却特性对比曲线。

因为工件淬火冷却的需要才使用淬火介质,因此我们首先注意的是它们的冷却特性。为了获得前后一致的产品质量,要求在长期和大量生产中介质的冷却特性保持相对稳定。除了冷却特性及其稳定性之外,对淬火介质还有其它一些辅助性能上的要求。对于淬火用油,这些辅助性能包括不易着火、光亮性、防锈性、消泡性和易清洗等。对于水性淬火剂,包括浓度易测易控、消泡性、防锈性、抑菌性和对环境污染小等。

4.2 自来水的第二大缺点及其克服办法

用自来水作冷却介质,除了它的第一大缺点,即低温冷却速度过快以外,还遇到另外的问题。比如,多个工件采取比较密集的方式同时入水时,淬火后会有显著的硬度差异。为此,现在的多用炉上基本不用水性淬火介质。又如,工件形状复杂、尤其是有较深的内孔时,自来水中淬火后,除了有严重的硬度不均外,常常伴有很大的淬火变形。再如,象大型圆锯片之类的大薄片状工件,在自来水淬火后,往往出现特别大的变形翘屈。同样的情况和工件,在油中淬火时,则不会发生这些问题。引起这些问题的原因是,水的冷却特性对水温变化太敏感。图5是水温对自来水冷却特性的影响曲线。作为对比,图6是油温对油的冷却特性的影响曲线。可以看出,水温对冷却特性的影响是很大的。我们把冷却特性对液温变化太敏感,列为自来水的第二大缺点。有机聚合物水溶液,比如PAG淬火液,也有相同的缺点。应当说,这是多数水性介质都可能存在的缺点。

10%的无机盐(或碱)溶入水中,可以大大减小冷却特性对水温的敏感程度。图7是不同液温下10%硫酸钠水溶液的冷却特性曲线。和单纯自来水相比,液温达到80℃之前,其冷却特性对液温的敏感程度还是比较小的。

把自来水、PAG淬火液、淬火油和熔融盐等液体介质的上述两项特性列在一起,可以作成表1。上述对液温的敏感性,主要是通过液温对冷却的蒸汽膜阶段长短的影响,而最终反映在同一工件的不同部位之间、不同工件之间、以及不同批次淬火工件之间出现大的硬度差异和严重的淬火变形上。

最后,我们再来分析上述液温敏感性对工件淬火变形产生影响的原因。在测量的冷却曲线上,从蒸汽膜阶段到沸腾阶段的过渡期,是冷却速度由慢到快的突变期。通常把这种突变对应的探棒温度,称为所测冷却介质的特性温度。在特性温度以上,介质的冷却能力很弱。而一旦进入沸腾阶段,冷却速度就骤然大增。同一工件的不同部位,有的在特性温度之上,有的已经冷到了特性温度之下,它们之间的冷却速度差异,往往会引起大的淬火变形。工件的淬火温度比介质的特性温度高得越多,复杂工件上的冷却情况差异就越大,且维持时间越长,工件的淬火变形也就越严重。降低介质的特性温度,也有相同的影响。自来水第二大缺点的危害就在于此。可以推知,如果整个淬火过程只在蒸汽膜阶段进行,或者只在沸腾阶段阶段进行,由于没有冷却速度的突变,就不会发生这类因素引起的淬火变形。

综合上述讨论,我们建议用以下七类办法,来克服液体介质的上述第二大缺点:

第一类办法、在单一的冷却阶段内冷却。选用那些特性温度高于工件的淬火加热温度的介质,使整个冷却过程都在沸腾阶段进行。比如,通常使用的硝盐浴等熔融盐浴属于这类。或者完全在介质的特性温度以上冷却,使整个冷却过程都在蒸汽膜阶段进行。比如,在慢速的浆状介质中冷却高合金钢工件,属于此类。我们认为,这是最上等的解决办法。

第二类办法、选用蒸汽膜阶段长短对液温变化不敏感的介质,比如各种淬火油。

第三类办法、加入能缩短介质冷却的蒸汽膜阶段的添加剂。如快速油中的添加剂。

第四类办法、加入能减小介质液温敏感性的添加剂,如自来水中溶入一定量的无机盐或碱。

第五类办法、适当降低工件的淬火加热温度,以缩短工件在蒸汽膜阶段的冷却时间,来减小上述影响的程度。

第六类办法、降低介质的使用温度,以降低淬火中可能的最高液温,来缩短冷却的蒸汽膜阶段。

第七类办法、通过加强介质的流动和增大工件之间的距离等措施,减小工件周围的液温升高值。

5 常用液体介质的选择原则

5.1 常用介质的选择要点

常用淬火介质可分为油性和水性两大类,新型淬火介质也不例外。水性和油性介质各有其特点和使用范围,根据我们的经验,从选择和使用的角度把水和油性介质的特点和用途列成了4张表,供选择时参考。

注:○表示一般可以,×表示不可以,?表示特定条件才可以。

是选择水性介质还是淬火油?首先应从处理的钢种考虑。表3提供了大致的选择原则。在确定了选择油还是水性介质之后,可进一步确定选择哪种水性或油性介质,表4给出了各类水性介质的冷速级别和适用的钢种,表5则给出了不同淬火油的特性和用途。结合4个表的内容即可确定选用何种淬火介质。

5.2 从冷却特性选择淬火介质的原则思路

在图1中已经看到,普通机油和自来水的冷却速度曲线之间有很宽一个空白地带。今有一个工件用普通油淬不硬,用自来水淬又要开裂。在普通机油中加入适当的添加剂来提高它的冷却速度,可以相应提高那个工件的淬火硬度。假定,当冷却速度分布曲线提高到图8中的锯齿线的位置时,该工件便可以得到要求的淬火硬度等要求了。我们就把这条虚线叫做该工件允许的的最低冷却速度分布线。同样的道理,在自来水中加入水溶性添加剂,可以降低水的冷却速度。假定,当水的冷却速度曲线降低到图9中的锯齿线位置时,上述工件在其中淬火后就能达到不淬裂和其它热处理要求了。我们就把这条锯齿线叫做该工件允许的最高冷却速度分布线。把图8和图9中的两条锯齿线作在同一张图中,得到图10。其中,两条锯齿线把图面分成了三个区域,我们把右边的区域叫做过快冷速区,把左边的区域叫做不足冷速区,而把中间部分叫做适度冷速区。表6列出了所用淬火介质的冷却速度分布曲线完全落入任一区内时,该工件在其中淬火后将会获得的淬火效果。

任何一种淬火冷却介质,只要它的的冷却速度分布能完全落入适度冷却速度分布区,不管它在2区内的分布情况如何,就都能满足该工件的热处理要求。这就是说,对于一种工件,可以有多种淬火介质适用于它。相反,如果所用介质的冷却速度分布曲线全部或部分进入了1区或2区,工件在其中淬火就不能完全满足热处理要求。

上述分区图表仅仅告诉我们一种分析问题的思路。实际工件淬火时,因为影响因素很多,很难找出准确的适度分布区。但是,把这一思路与我们的热处理知识相结合,可以从以下五个方面,结合热处理的知识和经验,从冷却特性去选择适合的淬火介质:一是钢的碳含量高低,二是钢的淬透性大小,三是工件的有效厚度,四是工件的形状复杂程度,五是允许的淬火变形量大小。

实际应用场合,一个淬火槽,不装油性介质,就得装水性介质。二者只能选其一。一般工件在

油中淬火时,淬裂危险很小,但油的冷却速度慢了却会引起淬火硬度不足和大的淬火变形。因此,在这种场合,选择淬火油时,要求油的冷却速度分布曲线落在待淬火工件允许的最低冷却速度分布曲线的右边,即应当快于工件的最低冷却速度分布曲线。而当采用水性淬火介质时,主要的危险是淬火液的冷却速度过快而引起淬裂。因此,首先要求在可能采用的最低液温下,配成的淬火液的冷却速度曲线落在待处理工件允许的最高冷却速度曲线的左边,即具有更低的冷却速度。其次,对于水性淬火介质,还有另外一个要求:在选定的生产条件下,淬火槽中特定位置的最高液温下,该淬火液的冷却速度分布曲线仍然不会落到工件允许的最低冷却速度分布曲线的左边。

从冷却特性选择淬火介质时,还应当“当留有余地”。这里说的留有余地,具体做法是:选择的淬火油的冷却速度曲线不能是刚好快到工件允许的最低冷却速度分布曲线的程度,而还要更快一些。选择的水溶性淬火介质的冷却速度分布曲线不能刚好慢到工件允许的最高冷却速度分布曲线的程度,而还要更慢一些。为什么要留有余地?前面谈到,研究水溶性淬火介质的目标是降低水的冷却速度,尤其是水的低温冷却速度;而研究开发淬火油的主要目标是提高油的冷却速度,包括缩短蒸汽膜阶段。在淬火介质的使用过程中,不管所用介质的性能如何稳定,介质的变质都是难免的。只是变质的快慢不同罢了。从冷却速度上看,水性介质变质的方向是冷却速度加快;而油性介质的变质方向则是冷却速度减慢。留有余地,才能保证连续生产中,介质特性稍有衰退的情况下,处理的工件仍然达到要求的性能。此外,钢材的成分波动等也是不可避免的,也需要为之留有余地。

用什么办法来选出稍快一些的油和稍慢一些的水性介质?其实很简单,用稍微大一点的、相同形状的工件或试样去选择油,使能达到要求硬度的中间值;用稍小一些的、相同形状的工件或试样去确定水性介质,使能保证不淬裂。当然,应当还有其它办法可用。

5.3 同时适用多种工件的淬火介质

今有A、B两种待淬火的工件。工件A有一个适度冷速分布区。工件B有另一个适度冷速分布区。把这两个适度冷速分布区叠加在一起。它们相重叠的部分,就是A、B两种工件共同的适度冷速分布区。凡是冷却速度曲线能完全落入这个共同的冷却速度分布区的淬火介质,就都能处理这两种工件。可以推知,同时适用于多种工件的淬火介质,其冷却速度曲线必然能完全落入它们共同的适度冷速分布区。工件种类越多,它们共同的冷速分布区就越窄,甚至没有了共同的冷速分布区。这就是说,任何一种淬火介质都不能适用于所有不同种类的工件。或者说,每种淬火介质都只有一定的适用范围。由于这样的原因,只有产品品种相当单一的生产车间,才只使用一种淬火介质。在一般的生产车间,大多要配备几种淬火介质,才能满足多种不同的工件的需要。

6 关于淬火介质的好坏

6.1 油性介质

对于生产现场来说,油的好坏,第一步看是否选对了油的类型。一般情况下,淬火油按使用的温度范围分成冷油和热油。冷油的冷却速度一般比热油要快。在冷油中,又根据油的冷却速度高低分成快速淬火油和中快速淬火油。油的冷却速度越快,其粘度一般多更低,闪点相应也越低。热油的粘度和闪点多较高。根据所处理工件的材质、大小和热处理要求,该选择冷却速度快的冷油的,如果选择成了冷却速度不够快的热油;那么,不管该油品的质量如何好,工件淬火后也会硬度不足,而且变形很大。相反,该选择热油的场合,如果选成了冷却速度过快的冷油,不管该

油品的质量如何好,工件在其中淬火的结果,变形超差,且心部硬度过高。不仅冷油、热油要选择正确,就是在其中油品的级别,也应选择正确。如果该选快速油而选成了中快速油,也会由于冷却速度不足,使某些工件达不到要求的淬火硬度。热油的级别不同,主要指它们使用温度的不同。使用温度高的品种,一般适用于较小型的工件,其控制变形的能力更好些。但是,对更大一些的工件,或者淬透性稍差点的钢种,就应当选择使用温度更低的油品。

评价的油品种类和级别是否选得正确,最简单的判断方法是用生产中准备采用的工艺参数,加热单一的工件,在该油品中淬火,看看能否得到要求的淬火硬度、淬硬深度、心部硬度,以及变形要求。如果单件淬火能达到工件的热处理要求,该油品的种类和级别就基本上是选对了。剩下来要做的就两件事。一是从设备条件和工艺方法等方面保证多个工件同时淬火时的均匀性,二是了解(或者在使用中考验)该油品的稳定性。

对油的冷却特性,特别要注意它的稳定性。根据我们了解到的情况,不管国内外什么厂家生产的油品,在大量连续处理一般中小型工件的场合,正常使用条件下,油品的稳定性可分成三种水平。

经过短时间使用,比如仅仅使用二、三十天后,冷却能力就已开始衰退。这样的油稳定性不好。经过半年左右的使用,冷却能力的衰退开始表现出来,淬火后工件表面出现污点并逐渐增多;不到一年,淬火油就不得不整槽更换。这样的油稳定性差。

在相同的使用条件下,淬火油可以连续使用二、三年,甚至更长的时间,之后才开始出现冷却能力衰退迹象。这样的油稳定性好。

能在几年的连续使用中保证淬火工件得到要求的淬火硬度、硬化深度、心部组织,且变形不超差,加上淬火后的工件易清洗,这样的油就可以称为好油。就油品而言,是否是好油,实际包括了油的冷却特性合适和稳定性好两方面。

国内外关于淬火用油的标准有多种。各标准对淬火油的理化性能都有较全面的规定,对油的冷却特性也有大致的要求。但是,从标准中看不出油的上述稳定性好坏来。因此,仅仅看说明书,热处理工作者很难选择到好油。一般可以采用的办法是:通过试用来选择冷却特性适合的油品;再从别的工厂的长期使用效果,来评价该油品的稳定性好坏。如果能找到同类工件在别的厂家连续使用了两三年的油品,还可以省去自己试用的麻烦。如果能满足这些要求的油品有好几种(事实上是这样),当然选择廉价的。

在选择淬火油时,前面已经谈到过,这里还需要强调一下:一是任何一种工件都可能在冷却特性有相当差别的油中淬火,且都能满足该工件的热处理要求。二是任何一种淬火油也都可以用来处理相当多不同钢种、大小和要求的工件。淬火油供应商,只需要提供有限的几种油品,就能满足几乎所有工件的需要,道理就在这里。同样的道理,一个热处理厂只需要配备有限的几种油,就能满足几乎所有工件的需要。

6.2 水性介质

一种好的水性淬火剂,首先要能同时满足三项要求:一是冷却特性适合,二是化学稳定性好,三是浓度易测易控。此外,和用淬火油相比,水性介质需要更多的维护管理。因此,供应商的售后服务能力和技术水平,也是一个必须考虑的要素。加在一起,就成为评价水性介质好坏的四个

要求。

7 PAG淬火液在使用中的变化规律

PAG淬火剂是当前国内外使用得最普遍和使用效果最好的水性淬火介质。这类淬火介质在上世纪80年代中期开始进入我国热处理行业。因为实际生产应用效果良好,很快就在一定范围内推广开。但也出过这样一类问题:一些工厂开始时用得好,有的甚至发表了文章。但过了不久,采用的相同的浓度,却有少量工件淬裂;继续用下去,淬裂的比例还逐渐增多。找不到淬裂的原因,最终不得不停用。究其原因,是不了解PAG淬火液在使用中的变化规律,因而没能采取相应的应对措施。

淬火液中的PAG聚合物本身相当稳定,在一般的使用条件下几乎不会被氧化分解,也不会和遇到的酸碱物质发生反应。那么,问题出在什么地方?后来,经过研究发现,上面谈到的问题,实质上是使用中的有效浓度的测定方法问题。

PAG淬火剂是以PAG聚合物为主,加上其它提供辅助性能的添加剂而制成的。在工件淬火过程中,工件周围的液温一旦升到溶液的浊点以上,PAG聚合物就从溶液中脱溶出来,以细小液珠形式悬浮在淬火液中。悬浮的PAG液珠一接触到红热工件,就靠其非常好的润湿性粘附到工件表面上,成富水的包膜把工件包裹起来。PAG淬火介质就是靠这种包膜来调节水的冷却速度,避免工件发生淬火开裂的。工件冷却下来后,黏附在工件上的聚合物又会回溶到淬火液中。回溶需要时间,而生产中往往等不到聚合物回溶干净就将工件从淬火液中取出。这样,工件带出的液体中PAG聚合物含量往往高于所用淬火液中的含量。长期、大量工件淬火后,淬火液中PAG 的相对浓度就必然逐渐降低,而其它添加剂组份的浓度却逐渐相对升高。因为只有PAG才有调节水的冷却特性的作用,它的浓度降低就相应降低了淬火液调节冷却特性的能力。由于一般工厂都采用折光仪来测定淬火液的总浓度,所以,在相同浓度上,使用久了的PAG淬火液冷却速度更快,成为引起淬裂的原因。

解决这类问题的办法,一是改进浓度检测方法,最好是用冷却特性测试仪来调控浓度;二是发现工件的淬火硬度升高,就适当提高淬火液的折光仪浓度,来保证工件不淬裂。

此外,为了减缓有效浓度降低的速度,可以设法延长工件在淬火槽中的浸泡时间,并对工件上带出的淬火液做及时的清洗,而后将清洗用的水补充进淬火槽中。这样做也能减少淬火剂的消耗。

由于水是其中的第一大组份。而水在热处理生产中特别容易挥发。所以水溶性淬火介质的有效浓度测量问题都非常重要。PAG类淬火介质可以用折光仪法检测浓度,但它不适于用比重法测量浓度。聚乙烯醇类淬火介质不适于用比重法,也不适于用折光仪法测量浓度;因此很难做现场浓度调控。无机盐水溶液的浓度检测既可以用折光仪发,也可以用比重法。所有水性淬火液都适宜用冷却特性仪来控制浓度。但采用冷却特性控制浓度不仅需要配备冷却特性测试仪,还需要相关的应用技术和分析能力。

8 淬火介质使用维护中的几个问题

从事热处理生产的人应当维护好所用的淬火介质。一般的管理工作包括:防止介质受污染、保证冷却系统能正常工作、按要求控制好液温、水性介质要经常检测和控制其浓度,以及定期检测

淬火介质的冷却特性等。此外,根据我们的经验,应当注意以下几件事。

1、在新倒入淬火介质前,特别是在旧的淬火槽中做整槽更换时,一定要把淬火槽和冷却系统认真清洗干净。。一些单位图省事,在淬火油做整槽更换时,只把原来的旧油大致放干,便将新油倒入槽中。原来沉在槽底的油污、槽壁上的碳黑油泥,以及残留在冷却系统中的油污,都一齐混进新油中。其结果,一槽新油就给污染了。淬火出来的工件污迹斑斑,清洗十分困难。

2、如果发现淬火油变得容易着火,要赶快找出原因并加以解决。原因之一是油中进了水,尤其是用热油的场合。原因之二是在油温测量或显示上出了故障,实际油温远高于显示的油温。此外,油中混入了低闪点、易挥发的油液,也容易着火。

3、防止加热炉内的碳黑污染淬火油。渗碳与碳氮共渗炉内难免产生碳黑。这些碳黑进入淬火油中,会对油造成污染。少量碳黑逐渐积累,首先损害的是淬火工件的光亮性,随后影响油的冷却特性。碳黑粒子非常小,又多悬浮在油中,一般不可能用过滤和沉降的办法加以分离。定期烧掉加热炉内结存的碳黑,是现行的最好解决办法。

4、对使用中介质变质和整槽更换问题的看法。水性和油性介质都有一定的寿命。到时候都应当做整槽更换。

影响油性介质寿命长短的主要因素,是油的使用温度高低、淬火工件的总表面积大小、油的品质好坏和外来污染情况。油的使用温度(应当包括油的平均温度和工件淬入后的温升程度)越低,油的使用寿命越长。淬火工件的总表面积越大,油的寿命越短。用于小型工件的淬火油,寿命很短,因为所处理工件单位重量的总表面积非常之大;而处理大型工件用的淬火油,由于所处理工件单位重量的总表面积相当小,加上淬火次数少,使用寿命就非常长。油品的质量,包括所用基础油和添加剂的品质。同样的使用条件,品质差的油只能用几个月,而品质好的常常可以用好几年。此外,外来污染,尤其是水的进入和碳黑的积累,对油的使用寿命也有很大的影响。

水性淬火介质的寿命长短,最主要的影响是介质的种类。比如,聚乙烯醇类的淬火介质,一般寿命不超过几个月;而PAG类的介质,一般多可以使用几年。外来污染对水性介质的寿命长短影响也很大。因此,水性介质的维护管理比油性介质更应受到重视,也更费事。PAG淬火液可以通过去污处理而延长其整槽更换时间。

不管是水性还是油性介质,使用中都会逐渐变质,同时也都会受到污染。变质产物和外来污染物逐渐积累,都会影响到介质的使用性能。使用到一定时间后,都应当做整槽更换。据知,除只用于大型工件淬火的油外,大量处理一般中小型基础件的场合,国内外淬火油的使用寿命一般不超过三、五年。如果不做去污处理,就是PAG淬火介质的整槽更换时间一般都比三、五年要短。到了应当整槽更换的时候就做整槽更换,往往能保证热处理质量、提高生产效率、简化管理并减少介质消耗量,从而能降低生产成本。

9 关于淬火变形问题的分析方法

热处理变形,尤其是淬火变形,是当前国内外热处理行业关注的重点课题。由于引起变形的因素很多,使问题变得很复杂。通常,在新产品设计和工艺方法确定阶段,分析和解决变形问题时往往考虑得特别全面,以便综合协调解决方案。但是,当生产中的工件出现变形问题时,采用这

样的思路去分析和解决问题,就违背了抓要点的原则。站在热处理工作者,特别是现场热处理工作者的角度,分析解决所遇到的变形问题,应当用抓主要原因的简便易行的方法。下面介绍的三要素法和硬度差异法就属于这种方法。

9.1 三要素法分析法

这里指的热处理超差变形三要素为:足够大的应力,足够好的塑性,以及足够长的作用时间。

任何热处理超差变形都需要这三个要素,只是三者的大小关系是可以互补的。如果应力很大和材料的塑性好,作用时间虽短,也会引起大的变形。比如红热工件在转移中受到冲撞引起的变形。塑性好,作用时间很长,即便应力不大,也可能引起大的变形。比如淬火加热过程中,工件堆放不当,因叠压或者因自重引起的应力虽然不大,但在长期加热过程中也会造成超差的变形。又如,在淬火冷却中,因介质受到的搅动过于强烈,液流冲击使细长工件发生超差的弯曲变形。这些都是因外力引起的变形。因外力引起的变形问题,其解决办法相对比较简单。和高温时相比,发生马氏体转变前,过冷奥氏体的塑性也相当差了。而且马氏体转变经历的时间也相当的短。虽然如此,马氏体转变前后的比容差引起的应力非常之大,仍然能造成超差的变形。这是内应力引起的变形。

因内应力引起的变形,情况要复杂得多。内应力的来源比较多,但通常可以归成热应力和组织转变应力两类。冷却过程中,组织转变应力又常常和热应力共同存在,相互叠加或抵销。而且都在变化着大小和分布中起作用。加上工件的形状因素,它们的作用情况就更加复杂。其中,值得注意的有三点。一是在液体介质中淬火冷却时,形状较复杂的工件不同部位表面温度差别会很大。冷得快的部分一旦冷到所用液体介质的特性温度以下,就立即从蒸汽膜阶段进入沸腾冷却阶段。这部分表面获得的冷却速度突然大增,和工件上仍然处于蒸汽膜阶段部分的温度差异也就会急剧增大。温差大,热应力也就大。如果该介质的特性温度偏低,这种应力的作用时间还会很长。在介质特性温度附近,过冷奥氏体的塑性一般多也较好。应力大,材料塑性好,加上作用时间长,就容易引起超差变形。二是冷却速度过快时,过冷奥氏体转变成马氏体时的体积膨胀,可能引起很大的内应力,从而引起淬火变形。三是淬火冷却的速度不足时,在马氏体组织的百分比急剧变化的区域,因比容差异常常形成大的内应力,最终引起大的变形且淬火硬度不足。

材料的塑性与材料的温度密切相关。高温下材料的塑性好,容易发生变形。此外,在材料发生相变过程中塑性变形更容易,即具有所谓相变超塑性。因为装放不当,在淬火加热过程中由外力引起的热处理变形,有一部分就是钢材发生加热转变过程中产生的。材料加热中由珠光体转变成奥氏体时有超塑性。过冷奥氏体发生马氏体转变时有超塑性。就连马氏体发生回火转变时也有超塑性。大薄片状工件的淬火变形翘曲,用加压回火来加以校正,靠的主要是回火转变时的相变超塑性。这种办法只在第一次回火时有效,原因就在这里。

作用时间长短是第三个值得注意的要素。在热处理中,为了减小变形量,凡需要比较长的时间才能完成的过程,比如,工件加热过程,应当设法把可能出现的内外应力减至最小。为了缩短热应力引起的变形,使用液体冷却介质时,要设发缩短介质的蒸汽膜阶段,以缩短工件冷却过程中不同部位的表面温度跨在介质特性温度上下的时间。

在制定工艺时,应同时从上述三要素上采取措施来减小热处理变形。其原则是:设法减小内外因素引起的应力,缩短应力的作用时间,尤其是在工件处于塑性好的时期。

在分析已发生的热处理变形时,注意应力大、塑性好和作用时间长的诸因素,会比较容易找到主要原因。

9.2 分析解决淬火变形问题的硬度差异法

热处理变形中,和外力引起的变形相比,由内应力引起变形的影响因素更多,问题更复杂。为了从热处理现场的角度容易解决发生的淬火变形问题,本文作者提出了一种分析和解决这类问题的系统方法,定名为“硬度差异法”。这种方法先检测发生了淬火变形的工件上的硬度值,再由测量出的硬度差异情况,去设法调用可能的工艺参数,来解决工件的变形问题。如果对该文章感兴趣,可以从本公司的冷却技术网站上查看。下面,只介绍硬度差异法中几点不同于常规的做法和观点:

1、把所用钢材的端淬曲线加以改造,把它变成硬度-冷却速度曲线。按冷却速度由慢到快的顺序,把冷却速度划分成硬度很高、硬度足够高、硬度不足和硬度很低四个区。如图11所示。

2、淬火冷却速度过快和冷却速度不足都可能引起超差变形。其中,冷却速度不足引起的变形量更大。

3、根据工件上参与淬火变形部位的淬火硬度差异,以及实际上发生的淬火变形、淬裂等情况,可以从图12中画出对应的冷却速度带,也就确定了该冷却速度带的跨区情况。一种汽车板簧淬火后出现过大的侧弯变形和弧高变化。检测该板簧的硬度,发现硬度不足。相应的冷却速度带就应当落进不足冷速区。如图中虚线冷却速度带所示。解决这个淬火变形问题的办法是,整个提高板簧的淬火冷却速度,使板簧的淬火硬度提高到完全满足要求的程度,使相应的冷却速度带完全落入适度冷速区。如图中实线冷却速度带所示。

4、通过热处理淬火方法使工件上参与淬火变形部位的冷却速度带完全进入它的第二区,就可以消除工件的淬火超差变形。

5、依其对移动工件冷却速度带的作用方向不同,可以把至今所有解决淬火变形问题的热处理措施和方法,分成使冷却速度带左移的措施和使冷却速度带右移的措施(见表7)。在解决淬火变形问题时,可根据工件的冷却速度带的跨区情况,选用同类作用方法的措施来解决淬火变形问题。

6、除热处理工艺方法外,热处理之前改善热处理前的预备组织、调整钢材成分,以及改换钢

种等措施对解决变形问题的作用,是通过移动第2区分界线,以便把冷却速度带包含进第2区。作为例子,图13对改换钢种在解决淬火变形问题中的作用做了解释。图中,上面的是淬透性差的钢材的硬度-冷速曲线。用这种钢材制做的某种工件淬火后硬度不足,而且变形超差。检查淬火态硬度发现,其冷却速度带跨在2、3两区上。如果改用淬透性更好的钢材(对应有下面的硬度-冷速曲线),在其它条件相同的情况下,淬火后硬度满足要求,变形也不超差。原因是后一种钢材的第2区大大加宽,把工件的冷却速度带完全框进去了。

7、文章最后把解决淬火变形问题的所有措施,包括热处理工艺方面的措施、控制钢材的成分以及改换钢种的措施,加上改变零件形状尺寸的措施等分成三类。按本方法的思路,它们的作用不外是移动冷却速度带,使其完全进入第2内;移动第2区的边界,以便把冷却速度带框进第2区。如图14和图15所示。这三类措施在解决淬火变形中的作用,列于表8中。

既然从零件设计、钢材的选用,热处理前的冷热加工工艺,到热处理生产的诸多措施,都会影响工件的冷却速度带和宽窄的位置,以及第2区的宽窄和位置。因此热处理变形问题往往可以同时采用诸多措施去解决。只是要注意各项措施的作用方向,避免它们相互抵消而造成浪费。

中频表面淬火工艺技术报告

关于中频表面淬火工艺的技术报告 热处理是机械制造中热加工工艺的一种。它对保证机械产品的质量,延长使用寿命,有着重大的作用。钢的热处理就是利用钢在加热、保温和冷却作用下,其内部发生组织状态(晶体结构、组织形态)、物理状态(比容、残余内应力等)和化学成分分布的变化,而使工件具有预期的工艺性能、机械性能、物理性能和化学性能,以达到便于冷热加工,提高使用寿命,充分发挥材料潜力的目的。钢的热处理基本工艺包括退火、正火、淬火、回火和化学热处理等。根据在车间实习和工作情况,我将主要负责车间中频表面淬火工序的工艺编制。所以将重点放在中频表面淬火工序上。 一、感应加热原理及分类 中频加热是感应表面加热的一种。感应表面加热是利用导体(零件)在高频磁场作用下产生的感应电流(涡流损耗)以及导体内磁场的作用(磁滞损耗)引起导体自身发热而进行加热的。根据设备的频率不同分为:①高频加热,频率为100~500千赫。淬硬层深度为0.3~3㎜,加工工件最小直径为Φ28㎜;②中频加热,一般采用8000赫兹和2500赫兹二种,淬硬层深度:8000赫兹 1.3-5.5㎜,加工工件最小直径为Φ16㎜;2500赫兹 2.4-10㎜,加工工件最小直径为Φ28㎜;③工频加热,频率为50赫兹,淬硬层深度为17-70㎜,加工工件最小直径为Φ200㎜。目前,我车间使用的设备是中频立式淬火机床,频率为8000赫兹。而多年不用的高频淬火机床在车间搬、拆迁过程中已经拆除了。 二、感应加热表面淬火工艺及选择 感应加热工艺参数包括着热处理参数和电参数。热处理参数包括加热温度、加热时间、加热速度以及淬火层深度。电参数包括设备的频率、零件单位面积功率等。 感应加热淬火工艺中几个主要问题: 1、确定零件的技术要求 表面淬火零件的技术要求包括:表面硬度、淬火层深度及淬硬区分布、淬火层组织等。 ⑴.表面硬度:感应淬火后零件的表面硬度要求与材料的化学成分和使用的条件有关。 ⑵.淬火层深度:淬火层深度主要是根据零件的机械性能确定的。 ⑶.淬硬区分布:按零件的几何形状与工作条件的不同,各种表面淬火零件的硬化区部分和尺寸有不同的要求。 ⑷.金相组织:按零件的材料及工作条件,规定各格的等级范围。按评级标准进行金相评级。 2、加热温度的选择 感应加热速度快,与一般加热相比,必须选用较高的加热速度,适宜的加热温度是与钢材的化学成分、原始组织状态及加热速度等因素有关。我车间由于设备的限制,只能采取目测加热温度的方法。 3、设备频率的选择 频率的选择主要是根据淬火层深度和零件的尺寸大小来确定。当设备给定或选定以后,设备的频率就是一个不可调的参数。我车间的设备只有立式淬火机床一台,故工艺选择中不再考虑设备频率。 4、感应加热方法及工艺操作 感应加热方法基本分为两种: ⑴.同时加热法,这种加热法是被加热的表面同时共热升温,零件需要加热的整个部分都被感应器包围着。在大批量生产时,为充分发挥设备潜力,提高生产效率,只要设备输出功率足够的条件下,尽可能采用同时加热。 ⑵.连续加热法,零件表面的加热和冷却时连续不断进行的。连续加热生产率较低,但加

淬火介质的冷却特性曲线究竟说明了什么

第28卷第2期2007年4月热处理技术与装备 RECHUL I J I SHU Y U ZHUANG BE I Vol .28,No .2Ap r,2007 收稿日期:2006-11-28 作者简介:张克俭(1945-),男,工学博士,主要从事淬火介质产品开发及其应用技术的研究工作 ?试验研究? 淬火介质的冷却特性曲线究竟说明了什么 张克俭 (北京华立精细化工公司 北京 102200) 摘 要:在用标准测试仪检测淬火介质冷却特性的同时,用摄像机摄录了探棒周围的状况。对比发 现,按测得的冷却特性曲线的形状划分的冷却阶段,与探棒表面实际发生的冷却情况大不相同。说明了产生这种差异的原因。通过分析和推理,得出了结论:不能从淬火介质的冷却特性曲线去划分探棒所处的冷却阶段;凭测出的冷却特性曲线不可能准确推算实际工件可能获得的冷却情况;淬火介质的冷却特性曲线只宜用在介质冷却特性的相互对比中。 关键词:淬火介质;冷却特性曲线;冷却特性检测;冷却过程计算;热处理工艺中图分类号: TG154.4 文献标识码: B 文章编号: 1673-4971(2007)02-0025-04 W ha t Cooli n g Ra te Curve of Quench i n g M ed i a I m pli es Zhang Ke 2jian (Beijing Huali Fine Che m ical Company L td .Beijing 102200,China ) Abstract:The visual phenomena occurred ar ound the quench p r obe were recorded with digital video ca 2mera during standard test of quenching media .It was found that partiti on of cooling p r ocess according t o the measured cooling rate curve is not t otally corres ponding t o what were visually observed .The reas ons of this discrepancy are discussed .It is concluded the cooling p r ocess of actual quenched parts can not be ac 2curately p redicted by merely using the measured cooling rate curves of quenching media,which are only app licable f or comparis on of characteristics of different quenching media . Key words:quenchant;cooling curve;cooling curve test;si m ulati on of quenching p r ocess;heat treat m ent technol ogy 1 淬火介质冷却特性曲线的应用情况与存在的疑问 近二十年来,淬火介质冷却特性曲线的应用给热处理行业带来了不小的技术进步。现在,淬火介质的开发研究,介质的比较和选择,热处理生产中的产品质量控制,甚至分析和解决生产中遇到的热处理质量和技术问题,都已离不开淬火介质的冷却特性曲线了。但是,这些冷却特性曲线究竟能告诉我们些什么?对这个问题,行业内已经有了基本一致 的答案。极具权威性的美国金属手册[1] 上,以及行 业内知名专家G .E .T otten 的专著[2] 上提供的解释很具代表性,如图1所示。图中阶段A 通称冷却的 蒸汽膜阶段(也称膜沸腾阶段),阶段B 通称沸腾阶段(也称泡沸腾阶段),阶段C 称为对流阶段。在蒸汽膜阶段,整个试块被蒸汽膜包围着。图中,在沸腾冷却阶段,整个试块表面都在发生沸腾。而到了对流冷却阶段,则通过对流传热使试块冷却。曲线上的点,都可以通过时间或者温度坐标找到另一曲线上的对应点。一般的书刊资料上,液态淬火介质的冷却特性曲线,不管采用什么样的检测标准,都按图1所示的方式划分冷却的阶段和解释各阶段的冷却机理。 在淬火介质的研究和评价中,通常用图1所示的

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。 1

常用淬火介质分析

常用淬火介质分析 2006-12-30 关键字:淬火介质 1.水 水是应用最早、最广泛、最经济的淬火介质,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力强。通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场作用等,均可以改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果。但由于这些方法需增加专门设备,且工件淬火后性能不是很稳定,所以没有能得到广泛推广应用。所以说。纯水只适合于少数含碳量不高、淬透性低且形状简单的钢件淬火之用。 2.淬火油 用于淬火的矿物油通常以精制程度较高的中性石蜡基油为基础油,它具有闪点高、粘度低、油烟少,抗氧化性与热稳定性较好,使用寿命长等优点,适合于作淬火油使用。淬火油只使用于淬透性好、工件壁厚不大、形状复杂、要求淬火变形小的工件。淬火油对周围环境的污染大,淬火时容易引起火灾。 影响淬火油冷却能力的主要因素是其粘度值,在常温下低粘度油比高粘度油冷却能力大,温度升高,油的流动性增加,冷却能力有所提高。适当提高淬火油的使用温度,也能使油的冷却能力提高。 3.熔盐,熔碱 这类淬火介质的特点是在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火变形小,基本无裂纹产生,但是对环境污染大,劳动条件差,耗能多,成本高,常用于形状复杂,截面尺寸变化悬殊的工件和工模具的淬火。熔盐有氯化钠,硝酸盐,亚硝酸盐等,工件在盐浴中淬火可以获得较高的硬度,而变形极小,不易开裂,通常用作等温淬火或分级淬火。其缺点是熔盐易老化,对工件有氧化及腐蚀的作用。熔碱有氢氧化钠,氢氧化钾等,它具有较大的冷却能力,工件加热时若未氧化,淬火后可获得银灰色的洁净表面,也有一定的应用。但熔碱蒸气具有腐蚀性,对皮肤有刺激作用,使用时要注意通风和采取防护措施。 4.新型淬火介质及其应用 有机聚合物淬火剂 近年来,新型淬火介质最引人注目的进展是有机聚合物淬火剂的研究和应用。这类淬火介质是将有机聚合物溶解于水中,并根据需要调整溶液的浓度和温度,配制成冷却性能能满足要求的水溶液,它在高温阶段冷却速度接近于水,在低温阶段冷却速度接近于油。其优点是无毒,无烟无臭,无腐蚀,不燃烧,抗老化,使用安全可靠,且冷却性能好,冷却速度可以调节,适用范围广,工件淬硬均匀,可明显减少变形和开裂倾向,因此,能提高工件的质量,改善工作环境和劳动条件,给工厂带来节能、环保、技术和经济效益。目前有机聚合物淬火剂在工件大批量、单一品种的热处理上用得较多,尤其对于水淬开裂,变形大,油淬不硬的工件,采用有机聚合物淬火剂比淬火油更经济、高效和节能。从提高工件质量、改善劳动条件、避免火灾和节能得角度考虑,有机聚合物淬火剂有逐步取代淬火油的趋势,是淬火介质的主要发展方向。 有机聚合物淬火剂的冷却速度受浓度,使用温度和搅拌程度3个基本参数的影响。一般来说,浓度越高,冷却速度越慢;使用温度越高,冷却速度越慢;搅拌程度越激烈,冷却速度越快。搅拌的作用很重要;1使溶液浓度均匀;2加强溶液的导热能力从而保证淬火后工

淬火介质的淬火冷却过程

淬火介质的淬火冷却过程 1 蒸汽膜冷却阶段 当红热的工件浸入淬火介质后,淬火介质会受热发生汽化并立即在其表面形成一层蒸汽膜,这层蒸汽膜的导热率很低,工件的热量主要通过蒸汽膜的辐射和传导作用来传递出去.因此工件在该阶段冷却速度比较缓慢. 蒸汽膜阶段持续时间的长短,主要取决于淬火介质的构成成份.淬火介质具有非常短的蒸汽膜阶段是非常重要和必需的.首先可以有效避免被处理零件发生不希望的组织转变(非马氏体组织);其次,可以实现零件上不同位置的均匀冷却,能够有效降低组织转变应力,从而减少变形. 2 沸腾冷却阶段 经过一段时间,零件表面上的蒸汽膜开始破裂(蒸汽膜维持的时间主要取决于淬火介质的构成成份及被处理零件的几何形状尺寸)并迅速进入沸腾冷却阶段.此时工件与淬火介质直接接触,淬火介质在工件表面产生强烈沸腾,工件的热量被介质汽化所吸收,散热速度加快,冷却速度很快达到最大值.工件表面温度迅速下降,而后液体沸腾逐渐减弱直至工件表面温度低于液体沸点,沸腾冷却阶段结束. 3 对流冷却阶段 当淬火工件的表面温度低于介质沸点时,进入对流冷却阶段,此时工件与介质之间的散热是以对流传导方式进行.介质本身由于温度差则产生自然对流及介质与工件之间的温差产生的热传导将工件的热量带走,这一阶段的冷却速度通常比较缓慢,但是搅拌速度的大小对其有着很大的影响. 淬火液的几个重要参数 a 蒸汽膜冷却阶段的持继时间 b 沸腾冷却阶段的温度范围 c 对流冷却阶段的冷却速度及其开始的温度 最大冷却速度并不能反映出淬火介质冷却性能的优劣, 因为它只是温度-时间曲线上的最大斜率值,而非对应于TTT转变相图上C 曲线的位置(特别是鼻尖温度位置). 淬火介质具有一个短暂的蒸汽膜阶段是相当重要和必需的,因为,当零件浸入淬火介质的最初几秒钟(有些情况下甚至在一秒钟之内)温度就会降低到500~600度左右的临界温度,此时如果蒸汽膜阶段过长,非马氏体的一些软组织如珠光体,贝氏体,托氏体等就会产生.对于合金含量较高的材料,其在TTT相图上的C曲线会右移,有时淬火介质蒸汽膜阶段较长也不会影响其最终淬火冷却效果,但是,蒸汽膜阶段的缩短有助于整个工件不同位置得到均匀冷却,能够减少应力,降低淬火变形.

激光淬火技术工艺介绍及应用

激光淬火技术是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。 激光淬火前后工件的变形几乎可以忽略,因此特别适合高精度要求的零件表面处理。激光淬硬层的深度依照零件成分、尺寸与形状以及激光工艺参数的不同,一般在0.3~2.0mm 范围之间。对大型齿轮的齿面、大型轴类零件的轴颈进行淬火,表面粗糙度基本不变,不需要后续机械加工就可以满足实际工况的需求。 激光淬火现已成功地应用到冶金行业、机械行业、石油化工行业中易损件的表面强化,特别是在提高轧辊、导卫、齿轮、剪刃等易损件的使用寿命方面,效果显著,取得了很大的经济效益与社会效益,近年来在模具、齿轮等零部件表面强化方面也得到越来越广泛的应用。 一:激光淬火的特点 1.淬火零件不变形、激光淬火的热循环过程快、中碳钢、大型轴类; 2.几乎不破坏表面粗糙度、采用防氧化保护薄涂层、模具钢、各种模具; 3.激光淬火不开裂、精确定量的数控淬火、冷作模具钢、模具、刃具; 4.对局部、沟、槽淬火、定位精确的数控淬火、中碳合金钢、减振器;

5.激光、淬火清洁、高效、不需要水或油等冷却介质、铸铁材料、发动机汽缸; 6.淬火硬度比常规方法高、淬火层组织细密、强韧性好、高碳合金钢、大型轧辊。 二:激光淬火工业应用实例 激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。适用材料为中、高碳钢,铸铁。 南京中科煜宸激光技术有限公司专业从事激光增材制造装备(3D打印、激光修复)、智能激光焊接装备、自动化生产线、核心器件(工艺软件、送粉器、加工头)和金属粉末材料的研发与制造,感兴趣的用户可以咨询了解一下。

淬火介质冷却曲线测定数据处理

淬火介质冷却曲线测定数据处理 一、三种介质在20℃模拟淬火冷却曲线 1、20度水淬火冷却 温度850 800 750 700 650 600 550 500 450 400 时间0.00 1.25 2.90 3.75 4.10 4.45 4.75 5.15 5.50 6.00 温度350 300 250 200 150 100 50 时间 6.55 7.25 8.25 9.70 11.60 14.90 19.95 2、20度油淬火冷却 温度850 800 750 700 650 600 550 500 450 400 时间0.00 2.00 3.65 4.50 4.95 5.30 5.85 6.40 7.15 8.15 温度350 300 250 200 150 100 50 时间10.15 12.65 17.60 27.65 44.30 69.30 119.30

3、20度10%硫酸钠溶液淬火冷却 二、20℃时三种介质冷却速度特性曲线 4、20℃水,油,10%42SO Na 冷却速度特性曲线 温度 850 800 750 700 650 600 550 500 450 400 时间 0.00 0.30 0.50 0.70 0.88 1.08 1.30 1.54 1.82 2.14 温度 350 300 250 200 150 100 50 时间 2.52 3.02 3.70 4.70 6.36 11.36 21.36 20 ℃冷却速度特性曲线 淬火介质 温度/℃ 850 800 750 700 650 600 550 500 450 水 速度/1 -?s m 10.00 10.00 12.58 24.82 55.70 88.46 91.67 87.12 81.17 油 25.00 27.65 44.56 84.97 126.98 116.88 90.91 78.79 58.33 10%42SO Na 166.67 208.33 250.00 263.89 263.89 238.64 217.80 193.45 167.41 淬火介质 温度/℃ 400 350 300 250 200 150 100 50 水 速度/1 -?s m 66.96 55.06 41.67 31.02 20.62 12.47 7.51 5.00 油 37.50 22.50 15.05 7.54 3.99 2.50 1.50 1.00 10%42SO Na 143.91 115.79 86.76 61.76 40.06 20.06 7.50 5.00

淬火冷却介质的种类及其优缺点

淬火冷却介质的种类及其优缺点 [发布人]恒鑫化工[时间]2011-3-14 20:09:11 浏览:136 次 淬火冷却介质的类型及其优缺点 烟台恒鑫化工专业生产PAG淬火液 自来水、盐水、碱水以及普通机油通常被称为传统的淬火介质;而把专门为热处理淬火冷却的需要才开发的各种专用淬火油,加上新型水性淬火剂合称为新型淬火介质。 1、自来水作为淬火介质的主要优缺点: 优点:水是应用最早、最广泛、最经济的淬火介质,它价廉易得、无毒、不燃烧、物理化学性能稳定、冷却能力强。通过控制水的温度、提高压力、增大流速、采用循环水、利用磁场作用等,均可以改善水的冷却特性,减少变形和开裂,获得比较理想的淬火效果 缺点: ①、冷却能力对水温的变化极其敏感,水温升高,使最大冷速对应的温度移向低温; ②、在碳素钢过冷奥氏体的最不稳定区(500~600℃左右),水处在蒸汽膜阶段,冷速较低,奥氏体易发生高温转变。而在马氏体转变区的冷速太大,易使工件严重变形甚至开裂; ③、水处在蒸汽膜阶段不易破泡,使工件表面淬火硬度不均匀或产生软点; ④、参入不容物或微溶杂质时,会影响其冷却能力,也会使工件产生软点。 2、盐水作为淬火介质的主要优缺点: 优点:盐水在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火边形小,基本无裂纹产生 缺点:水中加入适量的盐,在500~600℃区间的冷却能力明显高于水,但在100~300℃区间冷速仍然很大,且对工件、设备有一定的腐蚀作用。 3、碱水作为淬火介质的主要缺点: 优点:盐水在冷却过程中不发生物态变化,工件淬火主要靠对流冷却,通常在高温区域冷却速度快,在低温区域冷却速度慢,淬火性能优良,淬透力强,淬火边形小,基本无裂纹产生 缺点:水中加入适量的盐,在500~600℃区间的冷却能力明显高于水,但在100~300℃区间冷速仍然很大,且对工件、设备有一定的腐蚀作用。 缺点:碱水在高温区的冷却速比盐水高,而在低温区的冷速比盐水低。但碱水的缺点依然是在100~300℃区间冷速仍然很大,并极易使工件、设备产生锈蚀。

冷却特性曲线

淬火介质的冷却特性曲线究竟说明了什么 摘要:在标准测试仪检测淬火介质冷却特性的同时,用摄像机摄录了探棒四周的状况。对比发现,按测得的冷却特性曲线的外形划分的冷却阶段,与探棒表面实际发生的冷却情况大不相同。说明了产生这种差异的原因。通过分析和推理,得出了结论:不能从淬火介质的冷却特性曲线往划分探棒所处的冷却阶段;凭测出的冷却特性曲线不可能正确推算实际工件可能获得的冷却情况;淬火介质的冷却特性曲线只宜用在介质冷却特性的相互对比中。 关键词:淬火介质;冷却特性曲线;冷却特性检测;冷却过程计算;热处理工艺 一、淬火介质冷却特性曲线的应用情况与存在的疑问 近二十年来,淬火介质冷却特性曲线的应用给热处理行业带来了不小的技术进步。现在,淬火介质的开发研究,介质的比较和选择,热处理生产中的产品质量控制,甚至分析和解决生产中碰到的热处理质量和技术题目,都已离不开淬火介质的冷却特性曲线了。但是,这些冷却特性曲线究竟能告诉我们些什么对这个题目,行业内已经有了基本一致的答案。极具权威性的美国金属手册[1]上,以及行业内着名专家的专著[2]上提供的解释很具代表性,如图1所示。图中阶段A通称冷却的蒸汽膜阶段(也称膜沸腾阶段),阶段B通称沸腾阶段(也称泡沸腾阶段),阶段C称为对流阶段。在蒸汽膜阶段,整个试块被蒸汽膜包围着。在沸腾冷却阶段,整个试块表面都在发生沸腾。而到了对流冷却阶段,则通过对流传热使试块冷却。图中任一曲线上的点,都可以通过期间或者温度坐标找到另一曲线上的对应点。其它的书刊资料上,液态淬火介质的冷却特性曲线,不管采用什么样的检测标准,都按图1所示的方式划分冷却的阶段和解释各阶段的冷却机理。 在淬火介质的研究和评价中,通常用图1所示的两种曲线来表示和比较介质的冷却特性。从冷却速度曲线上,指出淬火介质的特性温度、出现最高冷却速度的温度和最高冷却速度值,以及对流开始温度。从冷却过程曲线上,通常指出从800℃冷却到400℃(或者300℃)所需的时间。有人还把冷却速度曲线上各温度对应的冷却速度值,直接或间接作为实际生产中工件在相同温度下获得的冷却速度值来加以利用。

激光加热表面淬火简介

激光加热表面淬火简介: (1)定义:利用聚集后的激光束快速加热钢铁材料表面,使其发生相变形成马氏体淬硬层的热处理工改错为激光加热表 面淬火。 (2)特点:与普通热处理相比,它具有如下特点: ①加热速度极快,工件热变形极小。由于激光功率密度高,加 热速度可达1010℃/s,因而热影响区小,工件热变形小,劳动条件好。 ②其冷却速度很高,在工件有足够质量前提下,冷速可达1023℃ /s;不需冷却介质,靠热量由表向里的传导自动淬火。 ③由于激光束扫描(加热)面积很小,可十分精确地对形状复 杂的工件(如有盲孔、小孔、小槽、薄壁零件等)进行处理或局部处理,也可根据需要在同一零件的不同部位进行不同的处理。 ④能精确控制其加工条件,操作简单,可实现在线加工,也易 于与计算机连接,便于实现自动化生产。 ⑤不需要加热介质,有利于环境保护;工件经激光淬火后表面 硬度高(比普通淬火硬度值高15%~~20%)、疲劳强度高(表面具有4000Mpa以上的残余压应力)。 ⑥节省能源,并且工件表面清洁,处理后不需修磨,可作为工 件精机械加工的最后一道工序。 其不足之处在于:只能改变工件表面性能,但不能改善心部

性能;不能用于重负荷工件,也不适用于大型工件。 (3)原理:用于热处理的激光淬火装置主要是CO2气体激光器,它所发生的激光波长为10.6μm,此波长具有很好的大气透过率,很多物质对此波长的辐射线具有一定吸收率;它具有输出功率大(20~~100kW)、效率高(可达20%~~40%)、持续工件时间长等优点。 激光加热金属主要是通过光子同金属材料表面的电子和声子的能量交换,使处理层材料温度升高,在10-7~~10-9s之内就能使作用深度内达到局部热平衡,在金属材料表面形成的这层高温“热层”继而又作为内部金属的加热热源,并以热传导方式进行传热。 激光加热表面淬火就是以高能量激光作为能源以极快速度加热工件并自冷淬火的工艺。其实质就是利用激光产生的热量对工件表面进行处理的过程,它是一种新型的热处理工艺技术。 应当注意事项的是激光加热表面淬火效果与材料表面的反射率、密度和热导率等密切相关,由于所有金属都是10.6μm波长和CO2激光的良好反射体,反射率可高达70%~80%,对于反射率高的材料,激光能量不能被充分,所以激光淬火前要对金属表面施加吸光涂层(黑化处理)以增加吸收率。常用的黑化方法,主要有磷化、氧化等,或在金属表面涂覆一层可大师吸收激光的涂料(如碳素墨汁、胶体石墨、粉状金属氧化物、黑色丙烯酸、氨基屏光漆等)。 (3)工艺参数及应用:钢铁材料进行激光淬火的主要工艺参数

淬火介质的知识总结的也这么全,拿走不谢!

淬火介质的知识总结的也这么全,拿走不谢! 工件进行淬火冷却所使用的介质称为淬火冷却介 质(或淬火介质)。理想的淬火介质应具备的条件是使工件既能淬成马氏体,又不致引起太大的淬火应力。这就要求在 C 曲线的“鼻子”以上温度缓冷,以减小急冷所产生的热应力;在“鼻子”处冷却速度要大于临界冷却速度,以保证过冷奥氏体不发生非马氏体转变;在“鼻子”下方,特别使Ms 点一下温度时,冷却速度应尽量小,以减小组织转变的应力。 常用的淬火介质有水、水溶液、矿物油、熔盐、熔碱等。 水是冷却能力较强的淬火介质。来源广、价格低、成分 稳定不易变质。缺点是在C曲线的“鼻子”区(500?600 C左右),水处于蒸汽膜阶段,冷却不够快,会形成“软点”;而在马氏体转变温度区(300?100C),水处于沸腾阶段,冷却太快,易使马氏体转变速度过快而产生很大的内应力,致使工件变形甚至开裂。当水温升高,水中含有较多气体或水中混入不溶杂质(如油、肥皂、泥浆等),均会显著降低其冷 却能力。因此水适用于截面尺寸不大、形状简单的碳素钢工 件的淬火冷却。? 盐水和碱水在水中加入适量的食 盐和碱,使高温工件浸入该冷却介质后,在蒸汽膜阶段析出盐和碱的晶体并立即爆裂,将蒸汽膜破坏,工件表面的氧化

皮也被炸碎,这样可以提高介质在高温区的冷却能力。其缺点是介质的腐蚀性大。 般情况下,盐水的浓度为10 %,苛性钠水溶液的浓度 为10 %?15 %。可用作碳钢及低合金结构钢工件的淬火介质,使用温度不应超过60 C,淬火后应及时清洗并进行防锈处理。 冷却介质一般采用矿物质油(矿物油)。如机油、变压 器油和柴油等。机油一般采用10 号、20 号、30 号机油,油 的号越大,黏度越大,闪点越高,冷却能力越低,使用温度 相应提高。目前使用的新型淬火油主要有高速淬火油、 光亮淬火油和真空淬火油三种。高速淬火油是在高 温区冷却速度得到提高的淬火油。获得高速淬火油的基本途径有两种,一种是选取不同类型和不同黏度的矿物油,以适当的配比相互混合,通过提高特性温度来提高高温区冷却能力;另一种是在普通淬火油中加入添加剂,在油中形成粉灰状浮游物。添加剂游磺酸的钡盐、钠盐、钙盐以及磷酸盐、硬脂酸盐等。生产实践表明,高速淬火油在过冷奥氏体不稳定区冷却速度明显高于普通淬火油,而在低温马氏体转变区冷速与普通淬火油相接近。这样既可得到较高的淬透性和淬硬性,又大大减少了变形,适用于形状复杂的合金钢工件的淬火。 光亮淬火油能使工件在淬火后保持光亮表面。在矿物油 中加入不同性质的高分子添加物,可获得不同冷却速度的光亮淬火油。这些添加物的主要成分是光亮剂,其作用是将不溶解于油的老化产物悬浮起来,防止在工件上积聚和沉淀。 另外,光亮淬火油添加剂中还含有抗氧化剂、表面活性剂和催冷剂等。 真空淬火油是用于真空热处理淬火的冷却介质。真空淬 火油必须具备低的饱和蒸汽压,较高而稳定的冷却能力以及良好的光亮性和热稳定性,否则会影响真空热处理的效果。 盐浴和碱浴淬火介质一般用在分级淬火和等温淬火中。

激光表面淬火的应用领域

激光表面淬火的应用领域 激光表面淬火技术原理 激光淬火,也称激光热处理、激光硬化,即利用聚焦后的激光束快速加热金属材料表面,使其发生相变,形成马氏体淬硬层的一种高新技术,分为激光相变硬化、激光熔凝硬化和激光冲击硬化三种工艺方法。 技术特点 1.激光淬火马氏体晶粒更细、位错密度更高,硬度更高,耐磨性更好。 2.变形极小,甚至无变形,适合于高精度零件处理,部分场合可作为材科和零件的最后处理工序。 3.无需回火,淬火表面得到压应力,不易产生裂纹。 4.如工柔牲好,适用面广,可方便地处理大尺寸工件和沟、槽、深孔、内孔、盲孔等局部区域。 5可根据需要调整硬化层深浅。 6.硬度梯度非常小,硬度基本不随激光硬化层深变化而变化。 7.适合的材料广泛,包括各种中高碳钢、工具钢、模具钢以及铸铁材料等。 8.加工过程自动化控制,工期短,质量稳定。 9.低碳环保,无需冷却介质,无废气废水排放。 技术参数 适合材质:各类中高碳钢、铸铁 淬火硬度:一般可比感应淬火高1-5HRC 淬火深度:0.1-1.2mm 应用领域 激光淬火技术解决了许多常规热处理工艺无法解决的难题,已大量应用于冶金、汽车、模具、五金、轻工、机械制造等行业。适合各类型零件的热处理: 1.难以进入热处理炉的大型工件。 2.仅需对沟、槽、孔、边、刃口等局部表面进行热处理的工件。 3.常规热处理工艺难以处理到的部位。 4.对热处理变形量要求高的精密零件。 5.铸铁工件表面的热处理。 6.常规热处理工艺易产生裂纹的零件。 7.常规热处理工艺达不到硬度要求的零件。 模具钢激光淬火技术及应用 模具钢激光淬火技术,是利用聚焦后的激光束快速加热钢铁材料表面,使其发生相变,形成马氏体淬硬层的过程。模具钢激光淬火的功率密度高,冷却速度快,不需要水或油等冷却介质,是清洁、快速的淬火工艺。与感应淬火、火焰淬火、渗碳淬火工艺相比,激光淬火淬硬层均匀,硬度高(一般比感应淬火高1-3HRC),工件变形小,加热层深度和加热轨迹

先进的淬火介质及冷却技术

先进的淬火介质及冷却技术 I 淬火介质 一、石油基淬火油 根据冷速分为常规淬火油、中速淬火油、快速淬火油,常规淬火油用于高淬透性钢的淬火冷却,而中等冷速的淬火油用于中高淬透性的钢淬火冷却,而快淬火油用于低淬透性钢。 钢中的Me 含量不仅影响到钢的淬透性,同时也因增加了相当的C 的当量,而改变了其Ms 。 /5/5/10/10eq C C Mn Mo Cr Ni =++++ 当C%变化时,Ms 也将发生变化: 0.2%~430℃;0.4%~360℃;1.0%~250℃ 另一类主要的石油基淬火油是分级淬火油,它可以被加热到(100~200℃)接近Ms 点的热油中均温以减少温差应力。它具有优异的热稳定性,(精制加高效的组合氧化剂),使用温度一般要低于其闪点50℃。 二、植物油基淬火油 石油基淬火油性能稳定,但它是不可再生的一次性资源,更是地下水的主要污染源。 而植物油淬火油基可以克服这些缺点,它有如下优点和不足。 1、优点:①容易生物降解;②低无毒性;③良好润滑性;④资源能再生;⑤供应充足;⑥闪点和燃点高。 2、缺点:①水解稳定性差;②氧化稳定性差;③表面粘附;④粘度范围窄;⑤有不同的气味;⑥价格偏高。 和矿物油的比较,植物油的稳定性差,但可利用现代添加剂技术可改善它的水解稳定性和氧化稳定性。比如好富顿公司开发的以Canola 植物油为基础油添加抗氧化剂的植物基淬火油①具有良好的抗氧化稳定性。②其降解性比石油基淬火油高5倍。③而且几乎没有蒸位膜阶段,在1300~110F 温度范围为V 冷↑(这对大多数钢而言正是要求快冷区)。④900~250F 温度范围内具有较慢的V 冷从而可减少淬火的变形。⑤闪点高达332℃(630F )而一般石油基淬火油的闪点为177~232℃(350~450F )燃点也比石油基的高约160℃。 三、聚合物淬火介质 它是有机聚合物和防锈添加剂,杀菌剂、消泡剂等组成水溶液,淬火时在热

淬火介质相关知识汇总(☆☆☆☆☆)

淬火介质相关知识汇总 一、主要技术参数 1、冷却特性 1.1、冷却速度曲线 当前,国内外多以国际标准方法(ISO9950)测定,并用冷却速度曲线来表征淬火介质的冷却特性。但是,对特定工件(即在钢种、形状大小和热处理要求一定)的情况下,如何从冷却特性上去选择合适的淬火介质?在生产现场,一个淬火槽中往往要淬多种不同钢种、形状、大小和热处理要求的工件。在这种情况下,如何选定它们共同适用的一种淬火液? 从普通机油和自来水的冷却速度分布(如图1)可以看出,普通机油的冷却速度慢,因而不少工件在其中淬不硬;而自来水的冷却速度又太快,以致于多数钢种不能在其中淬火。如果将机油的冷却速度提高,该工件淬火硬度也会相应提高,当机油的冷却速度提高到图2中带齿线水平时,该工件刚好可以得到要求的淬火硬度,我们把它叫做允许的最低冷速分布线。 同时,研究表明,自来水引起淬裂和变形,是自来水冷却太快,尤其是钢件冷到其过冷奥氏体发生马氏体转变的温度范围时受到的冷却太快的缘故。于是又可以推知,如果能降低自来水的冷却速度,尤其是在工件冷到较低的温度以后的淬火冷却速度,就可以减小工件淬裂的危险。假定自来水冷却速度降到图3中带齿线所示的水平时,该类工件便不会再淬裂了,我们把这条线叫做此工件已确定条件下允许的最高冷速分布线。

把图2和图3 两条曲线之间的区域内,不管是快速淬火油还是水溶性淬火液,也不管这些淬火介质的冷却速度分布有何不同,上述工件在其中淬火都可以同时获得所希望的淬硬而又不裂的效果。 1.2淬火介质的冷却过程分三个阶段:蒸汽膜阶段、沸腾冷却阶段、对流冷却阶段(见下图所示) 用符合ISO9950标准的ivf冷却特性测试仪测出的冷却特性曲线(如下图)有几个特征值对淬火油的淬硬能力有重要影响。 第一个是油蒸汽膜冷却阶段向沸腾冷却阶段转变的温度,即图中A点对应的温度,叫做(上)特征温度; 第二个是出现最高冷却速度的温度,即图中B点对应的温度; 第三个是最高冷却速度值,即B点对应的冷却速度值;

热处理--表面淬火技术

我所关注的表面工程领域——表面淬火技术 一、表面淬火技术的原理和分类 采用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上,然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程,就称为表面淬火技术。实际上,不仅仅是钢铁,凡是能通过整体强化的金属材料,原则上都可以进行表面淬火。需要注意的是,表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织,使其表面硬度、耐磨性和疲劳强度均高。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些合金钢。 对于表面淬火的使用材料,原则上,碳的质量分数在0.35%--1.20%的中、高碳钢及基体相当于中碳钢的普通灰铸铁、球墨铸铁、可锻铸铁、合金铸铁均可以实现表面淬火,但中碳钢与球墨铸铁是最适宜于表面淬火的材料。 根据加热方法不同,表面淬火可分为感应加热(高频、中频、工频)表面淬火、火焰加热表面淬火、激光加热表面淬火、电子束表面淬火、接触电阻加热表面淬火、电解液加热表面淬火等。工业上应用最多的为感应加热、火焰加热、激光加热表面淬火。这里我主要介绍了感应加热、激光加热表面淬火技术,以及感应加热表面淬火国内外的发展现状及趋势。 二、感应加热表面淬火 感应加热表面淬火法是采用一定方法使工件表面产生一定频率的感应电流,将零件表面迅速加热,然后迅速淬火冷却的一种热处理操作方法。生产中把工件放入由空心铜管绕成的感应线圈中,当感应线圈通以交流电时,便会在工件内部感应产生频率相同、方向相反的感应电流。感应电流在工件内自成回路,故称为“涡流”。涡流在工件截面上的分布是不均匀的,表面电流密度最大,心部电流密度几乎为零,这种现象称为集肤效应。由于钢本身具有电阻,因而集中于工件表面的涡流,几秒种可使工件表面温度升至800~1000℃,而心部温度仍接近室温,在随即喷水(合金钢浸油)快速冷却后,就达到了表面淬火的目的。 根据输出加热电流频率的不同可将感应加热表面淬火分为高频感应加热淬

表面淬火材料的硬度及淬火深度检测方法

上海中研仪器制造厂 https://www.doczj.com/doc/739654830.html,/ 钢铁零件表面淬火硬度及淬火深度检测方法 A、首先熟悉以下两个名词: 1、有效硬化层深度(DS):是指从零件表面到维氏硬度等于极限硬度那一层之间的距离。 2、极限硬度:是指零件表面所要求的最低硬度乘以系数,通常HV1试验力系数可以选用 0.8,也可以选用0.9或者更高(如零件表面硬度320HV,那么极限硬度 =320X0.8=256HV)。 B、试验力的选择 通常选用显微维氏硬度计,试验力通常选用HV1(9.807N),也可选用4.9N-49N范围内。 C、检测 1、检测应在规定试样表面的一个或者多个区域内进行,并在图纸上注明。 2、检测试样的制备: 应在垂直淬硬面切取试样,切断面作为检测面。检测面应做好磨抛处理,使其达到光洁如镜。在切割、磨抛过程中要注意避免工件过热、变形、出现倒角等。详见上海中研仪器制造厂技术文章栏目内的《金相试样制备流程》,这里不做过多阐述。 3、硬度检测: 硬度压痕应当打在垂直于表面的一条或多条平行线上,而且宽度为1.5mm区域内,最靠近表面的压痕中心与表面的距离为0.15mm,从表面到各逐次压痕中心的距离应每次增加0.1mm。当表面硬化层深度大时,各压痕中心的距离可以大一些,但在接近极限硬度区域附近,仍应保持压痕中心之间的距离为0.1mm。 4、测量结果: 用垂直表面横截面上的硬度变化曲线来确定有效硬化层深度。由绘制的硬度变化曲线,确定从零件表面到硬度值等于极限硬度的距离,这个距离就是感应淬火或火焰淬火后有效硬化层深度。 备注:一个区域内有多条硬度变化曲线时,应取各曲线测得的硬化层深度平均值,作为有效硬化层深度。有效硬化层深度用字母DS表示,深度单位为mm,例如硬化层深度0.5mm 可以写成DS0.5。 技术支持邮箱:zhongyanyiqi@https://www.doczj.com/doc/739654830.html,

淬火冷却介质的特性曲线及应用

冷却特性曲线的说明 淬火介质的冷却过程分三个阶段:蒸汽膜阶段、沸腾冷却阶段、对流冷却阶段(见下图所示)。用符合ISO9950标准的ivf冷却特性测试仪测出的冷却特性曲线(如下图)有几个特征值对淬火油的淬硬能力有重要影响。第一个是油蒸汽膜冷却阶段向沸腾冷却阶段转变的温度,即图中A点对应的温度,叫做(上)特征温度;第二个是出现最高冷却速度的温度,即图中B点对应的温度;第三个是最高冷却速度值,即B点对应的冷却速度值;第四个是对流开始温度,即C点对应的温度。 如何从冷却特性选用淬火介质 热处理淬火介质,用的首先是它的冷却性能。因此,在确定介质的类别后,我们主张按介质的冷却特性来选择介质的品种。比如,当我们确定应当选用快速淬火油后,具体的品种就应当根据工件特点和热处理要求从油的冷却速度分布上去选。 不管选用何种淬火介质,大致都可以按以下五条原则进行选择。 一看钢的含碳量多少── 含碳量低的钢有可能在冷却的高温阶段析出先共析铁素体,其过冷奥氏体最易发生珠光体转变的温度(即所谓"鼻尖"位置的温度)较高,马氏体起点(Ms)也较高。因此,为了使这类钢制的工件充分淬硬,所用的淬火介质应当有较短的蒸汽膜阶段,且其出现最高冷却速度的温度应当较高。相反,对含碳量较高的钢,淬火介质的蒸汽膜阶段可以更长些,出现最高冷却速度的温度也应当低些。 二看钢的淬透性高低——淬透性差的钢要求用冷却速度快的淬火介质,淬透性好的钢则可以用冷却速度慢一些的介质。通常,随着钢的淬透性提高,过冷奥氏体分解转变的“C”曲线会向右下方移动。所以,对淬透性差的钢,选用的淬火介质出现最高冷却速度的温度应当高些;而淬透性好的钢则低些。有些淬透性好的

加热温度回火温度及冷却速度对碳钢性能的影响

淬火加热温度的选择:对于亚共析钢采用Ac3+30~50°,对于共析钢和过共析钢采用Ac1+20~40°。 对于亚共析钢如果淬火温度过高,奥氏体晶粒就会粗大,淬火后严重影响和降低塑性和韧性,如果淬火温度过低,奥氏体化就会不完全,淬火后会有铁素体,导致淬火硬度不够,强度降低。 对于共析钢和过共析钢,淬火温度高了,同样奥氏体晶粒就会粗大,同时碳化物溶入奥氏体过多,淬火后容易变形开裂,同时严重降低硬度和强度,如果温度低了,碳化物溶入奥氏体过少,大部分碳化物保留下来,淬火后也容易变形开裂,奥氏体化后奥氏体含碳量过低,导致淬不上火,导致淬火后马氏体硬度不够,强度降低。 (1)低温回火 工件在150~250℃进行的回火。 目的是保持淬火工件高的硬度和耐磨性,降低淬火残留应力和脆性回火后得到回火马氏体,指淬火马氏体低温回火时得到的组织。 力学性能:58~64HRC,高的硬度和耐磨性。 应用范围:刃具、量具、模具、滚动轴承、渗碳及表面淬火的零件等。 (2)中温回火 工件在350~500 ℃之间进行的回火。 目的是得到较高的弹性和屈服点,适当的韧性。回火后得到回火屈氏体,指马氏体回火时形成的铁素体基体内分布着极其细小球状碳化物(或渗碳体)的复相组织。 力学性能:35~50HRC,较高的弹性极限、屈服点和一定的韧性。 应用范围:弹簧、锻模、冲击工具等。 (3)高温回火 工件在500℃以上进行的回火。 目的是得到强度、塑性和韧性都较好的综合力学性能。回火后得到回火索氏体,指马氏体回火时形成的铁素体基体内分布着细小球状碳化物(包括渗碳体)的复相组织。 力学性能:200~350HBS,较好的综合力学性能。 应用范围:广泛用于各种较重要的受力结构件,如连杆、螺栓、齿轮及轴类零件等。工件淬火并高温回火的复合热处理工艺称为调质。调质不仅作最终热处理,也可作一些精密零件或感应淬火件预先热处理。

相关主题
文本预览
相关文档 最新文档