当前位置:文档之家› 无功功率补偿装置及作用分析知识讲解

无功功率补偿装置及作用分析知识讲解

无功功率补偿装置及作用分析知识讲解
无功功率补偿装置及作用分析知识讲解

无功功率补偿装置及作用分析

摘要: 无功补偿是一项投资少、收效快的降损节能措施,对于降损节电、用电系统的安全可靠运行有着极为重要的意义。在我国配网和农网平均功率因数偏低的地区进行合理的无功补偿,能较大幅度地降低线损、提高设备利用率、改善电压质量、提高功率因数。我们要积极采用补偿电容器进行合理的补偿,以取得显著的经济效益。

关键词: 无功功率补偿;效益;功率因数

无功补偿可以提高功率因数,是一项投资少、收效快的降损节能措施。在电网中安装并联电容器等无功补偿设备以后,可以提供感性电抗所消耗的无功功率,减少电网电源向感性负荷提供、由线路输送的无功功率。减少了无功功率在电网中的流动,可以降低线路和变压器因输送无功功率造成的电能损耗,形成无功补偿。装设无功补偿设备,提高功率因数,对于降损节电、用电系统的安全可靠运行有着极为重要的意义。

一、无功补偿概述

电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。无功功率补偿装置的主要作用是:提高负载和系统的功率因数,减少设备的功率损耗,稳定电压,提高供电质量。在长距离输电中,提高系统输电稳定性和输电能力,平衡三相负载的有功和无功功率等。电网中常用的无功补偿方式包括:在变电所母线集中安装并联电容器组;在高低压配电线路中分散安装并联电容器组;在配电变压器低压侧和用户车间配电屏安装并联补偿电容器;在单台电动机处安装并联电容器等。从无功补偿通常采用的方法来看,主要有低压个别补偿、低压集中补偿、高压集中补偿。这三种补偿方式的适用范围及优缺点分别如下:

1.低压个别补偿

低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,因此不会造成无功倒送。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。

2.低压集中补偿

低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。

3.高压集中补偿

高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。同时便于运行维护,补偿效益高。

4.合理选择配变容量,改善配变运行

对负载率比较低的配变,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

二、无功功率补偿装置

无功功率补偿装置的主要作用是提高负载和系统的功率因数,减少设备的功率损耗,稳定电压,提高供电质量。目前,国内电网采用的电容补偿技术主要是集中补偿与就地补偿技术。就地补偿技术主要适用于负荷稳定,不可逆且容量较大的异步电动机补偿,如风机、水泵等,其它各种场合仍主要采用集中补偿技术。在长距离输电中,提高系统输电稳定性和输电能力,平衡三相负载的有功和无功功率等。

1.同步调相机

早期的无功功率补偿装置主要为同步调相机,多为高压侧集中补偿。同步调相机目前在现场仍有少量使用。

2.静止补偿装置

静止补偿器的基本作用是连续而迅速地控制无功功率,即以快速的响应,通过发出或吸收无功功率来控制它所连接的输电系统的节点电压。静止补偿器由于其价格较低、维护简单、工作可靠,在国内仍是主流补偿装置。静止补偿器先后出现过不少类型,目前来看,有发展前途的主要有直流助磁饱和电抗器型、可控硅控制电抗器型和自饱和电抗器型三种。其中,可控硅控制电抗器型又可分为固定连接电容器加可控硅控制的电抗器;可控硅开关操作的电容器加可控硅控制的电抗器。实际上,由断路器(电磁型交流接触器)操作的电容器和电抗器在电网中正在大量使用,可以说这种补偿技术是静态的,因为它不能及时响应无功功率的波动。这种装置以电磁型交流接触器为投切开关,由于受电容器承受涌流能力、放电时间及电容器分级以及接触器操作频率、使用寿命等因素制约,因而无法避免以下不足:

(1)补偿是有级的、定时的,因而补偿精度差,跟随性不强,不能适应负荷变化快的场合;受交流接触器操作频率及寿命的限制,静态补偿装置一般均设有投切延时功能,其延时时间一般为30s。对一般稳定负荷,即负荷变化周期大于30s的负荷,这类补偿装置是有效的,但对一些变化较快的负荷,如电梯、起重、电焊等,这类补偿装置就无法进行跟踪补偿。(2)不能做到无涌流投入电容器,对于接触器加电抗器方案,增加损耗较大,对于容性接触器方案,事故率较大,对金属化电容器的使用寿命影响很大;目前,低压电力电容器以金属化自愈式电容器为主,这种电容器的引线喷金属端面对涌流承受能力有限,因此,涌流的大小及次数是影响电容器使用寿命的主要因素。

(3)运行噪声较大。

(4)由于控制部分的负载是接触器的线圈,在投切过程中,造成火花干扰,影响补偿装置的可靠性和使用寿命。

3.静止无功发生器

静止无功发生器又称静止同步补偿器,是采用GTO构成的自换相变流器,通过电压电源逆变技术提供超前和滞后的无功,进行无功补偿。与SVC相比,其调节速度更快且不需要大容量的电容、电感等储能元件,谐波含量小,同容量占地面积小,在系统欠压条件下无功调节能力强。其变压器与补偿器可看作逆变器电路。当逆变器基波电压比交流电源电压高时,逆变器就会产生一个超前无功电流。反之,当逆变器基波电压比交流电源电压低时,则会产生一个滞后无功电流,因此能与系统进行有功、无功之间的交换。若控制方法得当,SVG在补偿无功功率的同时还可以对谐波电流进行补偿。在稳态情况下,SVG的直流侧和交流侧之间没有有功功率交换,无功功率在三相之间流动,因此直流只需要较小容量的电容即可。此外,SVG装置用铜和铁较少,且有优良的补偿特性,是新一代无功补偿装置的代表,有很大的发展前途。

三、无功补偿作用分析

1.改善电能质量

电网中无功补偿设备的合理配置,与电网的供电电压质量关系十分密切。合理安装补偿设备

1、为什么需要无功补偿及补偿的基本知识

产品技术特点--- 一、为什么需要无功补偿及补偿基本知识 企业中由于大量的用电负荷是感性负荷,因此企业的自然功率因数较低,如不采用人工补偿、提高功率因数,将造成如下不良影响: a、让发电机大量发无功,消耗发电机的功率,降低发电机的输出功率,当发电机需提高无功输出,低于额定功率因数运行时,将使发电机有功输出降低; b、无功在输配电网络中传输,占据了传输容量,降低了变电、输电设备的供电能力; c、加大了网络的传输容量,使网络电力损耗增加(网络中的电能损失与功率因数平方数成反比); d、功率因数愈低,线路的电压降愈大,使得用电设备的运行条件恶化; e、月均功率因数低于0.9(小型低压用户或农业用电为0.8),将受到“电力罚款”。 上述可见,提高功率因数不仅对电力系统,而且对企业经济运行有着重大意义。无功补偿应本作:无功在哪理发生,就在那里就地补偿的原则。因此,广泛的低压配电系统使用大量低压补偿装置。 补偿的基本知识 补偿就是用电容器的容性无功(Q C)去减小用户配电网络中的感性无功(Q L), 减小功率因数角(φ),以提高功率因数(COSφ)。从下面的功率三角形可形象的看出这种关系。 功率三角形 例:一用户4、5、6三月的用电:(电业局数据)

1)计算每月功率因数: 4月S=(419000^2+375640^2)^5=562731((KV A.h) COSΦ=P/S=419000/562731=0.7445 5月S=(440920^2+388820^2)^5=587870((KV A.h)COSΦ=P/S=440920/587870=0.75 6月S=(444286^2+473480^2)^5=649287((KV A.h) COSΦ=P/S=444286/649287=0.684 2) 将月均功率因数提高到0.9以上,应补偿多少电容器: 按有功不变来进行计算:为确保0.9,按0.92计算 A、4月:有功419000(KW.h)视在功 =419000/0.92=450978(KV A.h) 允许无功Q=(450978^2-419000^2) ^0.5=166794(Kvar.h) 现有无功375640(Kvar.h) 应补偿375640-166794=208846(Kvar.h),换算为每小时功 率:208846/30/24=290(Kvar) B、5月:有功440920(KW.h)视在功 =440920/0.92=479261(KV A.h)

无功功率补偿装置的几种方式

无功功率补偿装置的几种方式 国家认监委于2007年4月18日发布的2007年第9号公告《强制性认证产品目录描述与界定表》,明确将低压无功功率补偿装置列入强制性产品认证。 于2007年8月6日发布的国家认监委2007年第21号公告《关于部分电子电器产品发布新版实施规则的公告》,其中包括了《CNCA-01C-010;2007低压成套开关设备强制性认证实施规则》。该实施规则对低压无功功率补偿装置的各项要求进行了明确的规定。 中国质量认证中心于2007年7月20日发布了《低压无功功率补偿装置实施CCC认证的原则和程序》明确了低压无功功率补偿装置的认证原则及申请、受理、资料等要求。 因此,本文针对已列入强制性产品认证的无功功率补偿装置的关键环节-保护问题,进行进一步较深入的讨论,以期使无功功率补偿装置的功能和性能得到进一步的提高,确保认证产品的性能安全可靠。 2.无功功率补偿装置的主回路构成 一般无功功率补偿装置主回路的典型构成,如下图所式 体积小.其缺点是对电网存在污染,易损坏, 过载能力低,成本高,对工作环境要求较高.此种投切方式适用于负载变化大,功率因数变化快,控制精度高的场所. 这种投切方式是近几年才开发出来的产品,其构成就是把机电开关和电力电子开关复合在一起,以求把这两种投切方式的优点进行组合,抑制缺点. 其结构就是将机电开关和电力电子开关并联在一起,进行工作.其工作原理是先将晶闸管投入运行,待电流稳定后,在投入机电开关,然后晶闸管撤除工作,完成投入.断开时,先将晶闸管投入工作,机电开关停止工作,晶闸管在停止工作,完成切除.这种将机电开关和电力电子开关的复合投切方式,可以说,尽可能的利用各自的优点,降低缺点. 目前,此种投切方式在目前的市场上,使用量还是比较大的.但一些固有的缺 点仍然存在,例如对电网的污染问题. 此外, 电力电子开关方式和复合式开关方式的制造商,还在其制造的产品上,增加了一些辅助和保护功能.还须视各产品分别看待.

无功补偿装置几种常见类型比较

无功补偿装置几种常见类型比较 常见的动态无功补偿装置有四种:调压式动态无功补偿装置、磁控式动态无功补偿装置、相控式(TCR型)动态无功补偿装置、SVG 动态无功发生器。 ① 调压式动态无功补偿装置 调压式动态补偿装置原理是:在普通的电容器组前面增加一台电压调节器,利用电压调节器来改变电容器端部输出电压。根据 Q=2πfCU2改变电容器端电压来调节无功输出,从而改变无功输出容量来调节系统功率因数,目前生产的装置大多可分九级输出。该装置为分级补偿方式,容易产生过补、欠补。由于调压变压器的分接头开关为机械动作过程,响应时间慢(约3~4s),虽能及时跟踪系统无功变化和电压闪变,但跟踪和补偿效果稍差。但比常规的电容器组的补偿效果要好的多;在调压过程中,电容器频繁充、放电,极大影响电容器的使用寿命。由于有载调压变压器的阻抗,使得滤波效果差。虽然价格便宜, 占地面积小,维护方便,一般年损耗在0.2%以下。 ② 磁控式(MCR型)动态无功补偿装置 磁控式动态无功补偿装置原理是:在普通的电容器组上并联一套磁控电抗器。磁控电抗器采用直流助磁原理,利用附加直流励磁磁化铁心,改变铁心磁导率,实现电抗值的连续可调,从而调节电抗器的输出容量,利用电抗器的容量和电容器的容量相互抵消,可实现无功功率的柔性补偿。 能够实现快速平滑调节,响应时间为100-300ms,补偿效果满足风场工况要求。

磁控电抗器采用低压晶闸管控制,其端电压仅为系统电压的1%~2%,无需串、并联,不容易被击穿,安全可靠。设备自身谐波含量少,不会对系统产生二次污染。占地面积小,安装布置方便。装置投运后功率因数可达0.95以上,可消除电压波动及闪变,三相平衡符合国际标准。免维护,损耗较小,年损耗一般在0.8%左右。 ③相控式动态无功补偿装置(TCR) 相控式动态无功补偿装置(TCR)原理是:在普通的电容器组上并联一套相控电抗器(相控电抗器一般由可控硅、平衡电抗器、控制设备及相应的辅助设备组成)。相控式原理的可控电抗器的调节原理见下图 所示。 通过对可控硅导通时间进行控制,控制角(相位角)为α,电流基波分量随控制角α的增大而减小,控制角α可在0°~90°范围内变化。控制角α的变化,会导致流过相控电抗器的电流发生变化,从而改变电抗器输出的感性无功的容量。 普通的电容器组提供固定的容性无功,感性无功和容性无功相抵消,从而实现总的输出无功的连续可调。 i 相控式原理图 优点: 响应速度快,≤40ms。适合于冶金行业。 一般年损耗在0.5%以下。缺点:晶闸管要长期运行在高电压和大电流工况下,容易被

工厂无功功率因数的补偿

工厂无功功率因数的补 偿 Document number:BGCG-0857-BTDO-0089-2022

许多企业一般都是在企业内部配电室里二次侧的千伏母线上集中安装一些电容器柜,对变配电系统的无功功率进行补偿,这对于提高企业内部的供电能力,节约变配电损耗都有积极作用。可是,由于企业内部的电动机大都通过低压导线连接,即在供配电线路的未端,分散在各个生产车间里面,形成了企业内部的输配电网络,其结果造成大量的无功电流仍然在企业内部的输配电线路中流动,所造成很大的损耗。由此,企业尽可能提高自然功率因数外,还必须采取分组补偿和就地补偿等措施,来提高功率因数,最终实现节能降耗的目的。 二、现状 在二十五家企业中,抽查了他们的变压器和总共119条输配电线路运行情况,绝大多数企业能将自己变电系统中的功率因数补偿到以上的规定指标,以免被罚款。这就是说在功率因数的补偿工作中,他们的集中补偿做的不错,但仍有部分企业的分组补偿和就地补偿做的就差些了,或根本就没做,补偿好的单位,其主变压器的二次端至各车间的输配电线路的功率因数基本上在以上,而补偿差些的单位其输配电线路大部分功率因数在以下,如温州某皮革有限公司(以下简称A公司)抽查七条输配电线路,有五条在以下的,而温州某钢业有限公司(以下简称B公司)的一条输配电线路的功率因数只有。综合这些单位被抽查的输配电线路的功率因数,在以上的约占52%,在~之间的约占27%,在以下的约占21%。 可见分组补偿和就地补偿做得远远不够,这主要是企业对功率因数认识不足引起的,如B公司企业规模较大,企业内有二级变压从35KV变 10KV,到车间再变至380V,有企业变电站,中心控制室,全电脑控制显示,其设施和环境可谓一流,但检查发现其补偿就有问题,将无功补偿

无功补偿及功率因数知识

交流电在通过纯电阻的时候,电能都转成了热能,而在通过纯容性或者纯感性负载的时候,并不做功。也就是说没有消耗电能,即为无功功率。当然实际负载,不可能为纯容性负载或者纯感性负载,一般都是混合性负载,这样电流在通过它们的时候,就有部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿。 电网中的电力负荷如电动机、变压器等,大部分属于感性电抗,在运行过程中需要向这些设备提供相应的无功功率。在电网中安装并联电容器、同步调相机等容性设备以后,可以供给感性电抗消耗的部分无功功率小电网电源向感性负荷提供无功功率。也即减少无功功率在电网中的流动,因此可以降低输电线路因输送无功功率造成的电能损耗,改善电网的运行条件。这种做法称为无功补偿。 配电网中常用的无功补偿方式有哪些? 无功补偿可以改善电压质量,提高功率因数,是电网采用的节能措施之一。配电网中常用的无功补偿方式为:在系统的部分变、配电所中,在各个用户中安装无功补偿装置;在高低压配电线路中分散安装并联电容机组;在配电变压器低压侧和车间配电屏间安装并联电容器以及在单台电动机附近安装并联电容器,进行集中或分散的就地补偿。 1、就地补偿 对于大型电机或者大功率用电设备宜装设就地补偿装置。就地补偿是最经济、最简单以及最见效的补偿方式。在就地补偿方式中,把电容器直接接在用电设备上,中间只加串熔断器保护,用电设备投入时电容器跟着一起投入,切除时一块切除,实现了最方便的无功自动补偿,切除时用电设备的线圈就是电容器的放电线圈。 2、分散补偿 当各用户终端距主变较远时,宜在供电末端装设分散补偿装置,结合用户端的低压补偿,可以使线损大大降低,同时可以兼顾提升末端电压的作用。 3、集中补偿 变电站内的无功补偿,主要是补偿主变对无功容量的需求,结合考虑供电压区内的无功潮流及配电线路和用户的无功补偿水平来确定无功补偿容量。35KV变电站一般按主变容量的10%-15%来确定;110KV变电站可按15%-20%来确定。 4、调容方式的选择 (1)长期变动的负荷 对于建站初期负荷较小,以后负荷逐渐增大的情况,组装设无载可调容电容器组。户外安装时可选用可调容集合式电容器;户内安装时可选用可调容柜式电容器装

无功补偿控制器及动态补偿装置工作原理

无功功率补偿装置在电子供电系统中所承担的作用是提高电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。合理的选择补偿装置,可以做到最大限度的减少网络的损耗,使电网质量提高。反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。 一、按投切方式分类: 1.延时投切方式 延时投切方式即人们熟称的”静态”补偿方式。这种投切依靠于传统的接触器的动作,当然用于投切电容的接触器专用的,它具有抑制电容的涌流作用,延时投切的目的在于防止接触器过于频繁的动作时,电容器造成损坏,更重要的是防备电容不停的投切导致供电系统振荡,这是很危险的。当电网的负荷呈感性时,如电动机、电焊机等负载,这时电网的电流滞带后电压一个角度,当负荷呈容性时,如过量的补偿装置的控制器,这是电网的电流超前于电压的一个角度,即功率因数超前或滞后是指电流与电压的相位关系。通过补偿装置的控制器检测供电系统的物理量,来决定电容器的投切,这个物理量可以是功率因数或无功电流或无功功率。 下面就功率因数型举例说明。当这个物理量满足要求时,如COSΦ超前且》0.98,滞后且》0.95,在这个范围内,此时控制器没有控制信号发出,这时已投入的电容器组不退出,没投入的电容器组也不投入。当检测到COSΦ不满足要求时,如COSΦ滞后且《0.95,那么将一组电容器投入,并继续监测COSΦ如还不满足要求,控制器则延时一段时间(延时时间可整定),再投入一组电容器,直到全部投入为止。当检测到超前信号如COSΦ《0.98,即呈容性载荷时,那么控制器就逐一切除电容器组。要遵循的原则就是:先投入的那组电容器组在切除时就要先切除。如果把延时时间整定为300S,而这套补偿装置有十路电容器组,那么全部投入的时间就为30分钟,切除也这样。在这段时间内无功损失补只能是逐步到位。如果将延时时间整定的很短,或没有设定延时时间,就可能会出现这样的情况。当控制器监测到COSΦ〈0.95,迅速将电容器组逐一投入,而在投

无功功率补偿容量计算方法

论文:无功功率补偿容量计算方法 一、概述 在电力系统的设计和运行中,都必须考虑到可能发生的故障和不正常的运行情况,因为它们会破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。按照传统的计算方法有标么值法和有名值法等。采用标么值法计算时,需要把不同电压等级中元件的阻抗,根据同一基准值进行换算,继而得出短路回路总的等值阻抗,再计算短路电流等。这种计算方法虽结果比较精确,但计算过程十分复杂且公式多、难记忆、易出差错。下面根据本人在实际工作中对短路电流的计算,介绍一种比较简便实用的计算方法。 二、供电系统各种元件电抗的计算 通常我们在计算短路电流时,首先要求出短路点前各供电元件的相对电抗值,为此先要绘出供电系统简图,并假设有关的短路点。供电系统中供电元件通常包括发电机、变压器、电抗器及架空线路(包括电缆线路)等。目前,一般用户都不直接由发电机供电,而是接自电力系统, 因此也常把电力系统当作一个“元件”来看待。 假定的短路点往往取在母线上或相当于母线的地方。图1便是一个供电系统简图,其中短路点出前的元件有容量为无穷大的电力系统,70km 的110kV架空线路及3台15MVA的变压器,短路点d2前则除上述各元 件外,还有6kV, 0.3kA,相对额定电抗(XDK%)为4的电抗器一台。

下面以图1为例,说明各供电元件相对电抗(以下“相对”二字均略)的计算方法。 1、系统电抗的计算 系统电抗,百兆为1,容量增减,电抗反比。本句话的意思是当系统短路容量为100MVA时,系统电抗数值为1;当系统短路容量不为100MVA,而是更大或更小时,电抗数值应反比而变。例如当系统短路容量为200MVA时,电抗便是0.5(100/200=0.5);当系统短路容量为50MVA时,电抗便是2(100/50=2),图1中的系统容量为“』,则100/oo=0,所以其电抗为0。图1供电系统图 本计算依据一般计算短路电流书中所介绍的,均换算到100MVA基准容量条件下的相对电抗公式而编出的(以下均同),即X*xt=习z/Sxt (1) 式中:Sjz为基准容量取100MVA. Sxt为系统容量(MVA)O 2、变压器电抗的计算 若变压器高压侧为35kV,则电抗值为7除变压器容量(单位MVA, 以下同);若变压器高压侧为110kV,则电抗值为10.5除变压器容量;若变压器高压侧为10(6)kV,则电抗值为4?5除变压器容量,如图1中每台变压器的电抗值应为10.5/15=0.7,又如一台高压侧35kV, 5000kVA 及一台高压侧6kV, 2000kVA的变压器,其电抗值分别为7/5=1.4, 4.5/2=2.25 本计算依据公式为:X*b=(ud%/100).⑸z/Seb) (2) 式中ud%为变压器短路电压百分数,Seb为变压器的额定容量(MVA) 该公式中ud%由变压器产品而定,产品变化,ud%也略有变化。计算方法中按10⑹kV、35kV、110kV电压分别取ud%为4.5、7、10.5。

成套低压电容补偿柜详解

成套电容补偿柜详解 1、课题内容简介 1.1、实训目的 (2) 1.2、主要内容 (2) 1.3、工作原理 (2) 2、电容器补偿柜的及其作用 2.1、电容器柜功能及其结构 (3) 2.2、电容器补偿柜的作用 (3) 3、一次电路原理分析及安装 3.1、电容器柜一次电路原理介绍 (4) 3.2、一次电路的工作原理过程 (4) 3.3、元器件的作用分析 (5) 3.4、一次电路的的安装图 (9) 3.5、一次电路连接母线安装及其安装实物图 (10) 4、二次回路原理图分析及安装 4.1、二次原理图 (16) 4.2、二次电路工作原理的过程 (17) 4.3、二次电路元器件布置图 (17) 4.4、二次电路安装接线图 (18) 4.5、二次电路的安装工艺 (18) 4.6、安装步骤 (19) 5、绝缘电阻测试、介电强度试验 5.1、以500伏绝缘摇表测试法测试绝缘电阻 (20) 5.2、工频及冲击耐压 (20) 附1图表 (21) 保护电路有效性 绝缘电阻及交流耐压

1、课题内容简介 1.1、实训目的 1、学会电容器补偿柜操作使用,并知道它们的作用。 2、进一步认知电容补偿柜的类型及其结构。 3、进一步认知各种电器元器件外形、结构、参数。 4、学会阅读和绘制电容器补偿柜的主电路图、二次电路图、安装接线图。 5、学会选用开关元器件,并学会母排、母线、电线规格选择。 1.2、主要内容 1、电容器补偿柜柜主电路介绍 2、主电路元器件介绍 3、一次电路元器件安装 4、一次电路元器件安装 5、二次电路元器件安装 1.3、工作原理 合上刀熔开关和断路器,无功功率补偿控制器根据进线柜电压和电流的相位差输出控制信号,控制交流接触器闭合和断开,从而控制电容器投入和退出。

无功功率补偿原理及方法分析

无功功率补偿原理及方法分析 摘要:无功功率补偿是保障电力系统能源质量的有效方法,其在降低电能消耗以及能源节约方面的效果是非常明显的,所以其在长距离电能运输中的作用是不可忽视的。为保障电网系统运行的效益,我国加大了对无功功率补偿技术研究的力度,本文通过对电网系统进行研究,探讨一下无功功率补偿的原理和方法以及其在电网系统中的应用。 关键词:无功功率补偿补偿原理补偿方法 无功功率补偿是当今电气自动化技术及电力系统研究领域所面临的一项重大课题,正在受到越来越多的关注。电网中无功功率不平衡主要有以下两个为一面的原因:一为一面是供电部门传送的电力质量不高;另一为一面是用户的电气性能不够好,这两为一面的综合原因导致无功功率的不均匀分布和各种问题的产生。显然,这此需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的为一法是在大量需要无功功率的地为一安装无功补偿装置并进行无功功率的就地补偿。 1 无功补偿的原理 电流在电感元件中做功时,电流滞后于电压90o;而电流在电容元件中作功时,电流超前于电压90o。在同一电路中,电感电流与电容电流方向相反,互差180o。如果在电磁元件电路中安装一定的电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能做功的能力,这就是无功补偿的道理。图1和图2分别为感性阻抗和容性阻抗中电流、电压和功率的波形变化规则。在第一个四分之一周期内,电流由零逐渐增大,此时,电感吸收功率,转化为磁场能量,而电容放出储存在电场中的能量;第二个四分之一周期,电感放出磁场能量,电容吸收功率,以后的四分之一周期重复上述循环。 从图3可以看出并联电容器无功补偿原理。将并联电容器C与供电设备(如变压器)或负荷(如电动机)并联,则供电设备或负荷所需要的无功功率,可以全部或部分由并联电容器供给,即并联电容器发出的容性无功,可以补偿负荷所消耗的感性无功。

可控硅动态无功功率补偿装置

可控硅动态无功功率补偿装置(TSC型) 技 术 报 告 山东科技大学 2009年4月9日

按照山东科技大学与益和电气集团股份有限公司签订的《可控硅动态无功功率补偿装置(TSC 型)》技术开发(委托)合同,山东科技大学项目组负责该项目装置中控制器部分的设计,并配合益和电气的产品设计、项目最终产品的型式试验工作。项目组在整个开发设计过程中,严格执行了新产品开发程序,在技术问题上及时与益和电气联系,确保达到预期的技术经济性指标。现就该项目整个开发过程的有关情况总结分析如下: 第一章 控制策略与控制算法设计 1.1控制器的控制策略 本设计的无功补偿控制器分为手动模式和自动模式。在手动模式下直接按照手动的设置投切即可,在自动模式下控制器根据控制策略和控制算法自动运行。本无功补偿控制器控制策略采用以电网电压、无功功率作为控制量的复合控制策略,控制算法采用的是传统的比较判断算法,实行三相共补与分补相结合的补偿方式。在以往的控制器设计中,多采用单纯的功率因数做为判据,在并联电容器投切的过程中容易产生投切振荡,会对电网造成不利影响,因此本次设计统筹考虑了无功及无功功率这两个因素,综合分析控制电容器组的投切,本控制器控制电容器组分为两方面内容: 1、什么情况下对电容器组进行投切 控制器首先检测电网中的无功功率,判断是进行三相共补还是各相分补,然后计算当前状态下按照刚才的判断进行控制后对电网电压造成的影响,如果超过了所设定的电压门限,并且投切间隔时间未到,则不发出控制信号,否则,发出控制信号。控制策略分区如图1.1所示,对应控制策略如表1.1所示。能共不分220+_10%+18V 过压回差。投门限1.2Qc ,切0.1Qc 。 Q U U 上限 U 下限 Q 上限 Q 下限

配电网无功功率补偿方法的

第04期2011年2月 企业研究Business research No.04FEB.2011 1引言 无功功率补偿是当今电气自动化技术及电力系统研究领域所面临的一项重大课题,正在受到越来越多的关注。电网中无功功率不平衡主要有以下两个方面的原因:一方面是供电部门传送的电力质量不高;另一方面是用户的电气性能不够好。这两方面的综合原因导致无功功率的不均匀分布和各种问题的产生。显然,这些需要补偿的无功功率如果都要由发电端产生和提供并经过长距离传输是不可能的,最有效的方法是在大量需要无功功率的地方安装无功补偿装置并进行无功功率的就地补偿。 2SVC 补偿原理 静态无功功率补偿装置(SVC)是对电力系统中的无功功率进行快速动态补偿,不仅可以实现对动态无功功率因数的修正、提高电力系统的静态和动态稳定性使系统能够抵御的大的故障诸如单相接地短路、两相短路和三相短路,还可以减少电压和电流的不平衡。 图2-1a)所示为系统、负载和补偿器的单相等效电路图。其中,U 代表电路的电压,R 和X 分别代表电路的电阻和电抗。设负载变化很小,故有,则当时,表示电路电压与无功功率变化的特性曲线如图2-1b)中所示,由于电路电压变化率较小,其横 坐标也可以换为无功功率的电流。由此可以得出,该特性曲线 是向下倾斜的,即随着系统供给的无功功率Q 的不断增加,系统电压逐渐逐级下降。 3TCR 型无功补偿装置3.1晶闸管控制电抗器(TCR) TCR 是SVC 中最重要的组成部分之一,其单相基本结构是两个反并联的晶闸管与一个电抗器相串联。如图3-1所示,串联的晶闸管要求同时触发导通。这样的电路并联到电网上, 相当于电感负载的交流调压电路的结构。IEEE 将晶闸管控制电抗器(TCR)定义为一种并联型晶闸管控制电抗器,通过控制晶闸管的导通时间,进而可以使其有效电抗连续变化。反并联的两个晶闸管就像一个双向开关,晶闸管阀T1在电压的正半周期导通,而晶闸管阀T2在电压的负半周期导通。 通过改变晶闸管的触发角α,可以 改变电抗器电流的大小,即可以达到连续调节电抗器的基波无功功率的目的。由于电感的存在,在TCR 触发角α<90°时触 发的晶闸管中包含直流分量,且不对称;因此,TCR 型晶闸管的触发角的有效范围在90°-180°。当α=90°时,晶闸管完全导通,相当于与晶闸管串联的电抗直接接到了电力网络中,这时其吸收的无功功率最大。当触发角在90°-180°之间时, 配电网无功功率补偿方法的研究 李学勤 作者简介:李学勤,河北电力设备厂,河北,邯郸,056004) 装置的电路图 无功补偿原理 图2-1无功功率动态补偿原理 图3-1TCR 的基本结构 127 ··

低压无功补偿技术规格书

低压无功补偿技术规格书. 低压自动无功补偿装置技术要求 1、总则 1.1、本技术规范书适用于变电所内配置的RNT低压动态无功功率补偿装置,它提出了该动态无功功率补偿装置本体及附属设备的功能设计、结构、性能、调试和试验等方面的技术要求。 1.2本技术规格书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,供方须提供一套满足本技术规格书和相关标准规范要求的高质量产品及其相应

服务,以保证的安全可靠运行。 1.3、供方须执行现行国家标准和电力行业标准。有矛盾时,按技术要求较高的标准执行。主要的标准如下: GB/T 15576-2008 《低压成套无功功率补偿装置》 GB50227-95 《并联电容器成套装置设计规范》 JB5346-1998 《串联电抗器》 GB191 《包装贮运标准》 GB11032-2000 《交流无间隙金属氧化锌避雷器》 GB/T 2681-1981 《电工成套装置中的导体颜色》 GB/T 2682-1981 《电工成套装置中的指示灯和按钮的颜色》 GB1028 《电流互感器》 GB10229 《电抗器》 DL/T620-1997 《装置过电压保护和绝缘配合》 GB 4208-93 《外壳防护等级》(IP代码) GB/T14549-93 《电能质量-公用电网谐波》 另外,尚应符合本技术规格书规定的技术要求和买方的要求。 1.4、未尽事宜,供需双方协商确定。 2、设备环境条件 2.1、周围空气温度 ℃38.4最高气温: 低压无功补偿设备 技术协议 29.3℃最低气温: - 6.8~10.6℃年平均气温: 1500米2.2、海拔高度:不大于0.05g 6度区,动峰值加速度:2.3、地震烈度:户内2.4、安装地点:、电容补偿柜技术参数3400V 额定电压:1) AC 660V 额定绝缘电压: 2500V 额定工频耐受电压:1min 8kV 冲击耐压: TMY 主母线:)2TMY 母线:PE 系统容量与无功补偿设备等应达到设计要求;3) 外形尺寸:具体见附图4)电压等级下的动态电容无功380V采用)无功功率补偿全部采用动态补偿方式:5 补偿柜,补偿容量具体见附表。%的电抗器,从根本7 对控制器、电抗器、驱动器进行特殊设计,要求选用6)上解决与系统发生串联、并联谐振,避免使谐波放大,实现无功补偿和谐波抑制并举的功能;控制应具有高可靠性,而且操作简单,与系统联结时,不需要考虑交流系统)7 相序,不会因为相序接错而带来烧坏可控硅或其他器件的现象;实现电流过零投切,电容投切过程中无涌流冲击、无操作过电压、无电弧重8)燃现象,使用寿命长;控制器实现全数字化,液晶显示,具有联网通讯功能;9)根据负载无功和负荷波动情况,在规定的动态响应时间内,多级补偿一次到)10位;

对无功功率的几点认识

文献综述 课题入门: 1.对无功功率的几点认识: 1.1什么是电力系统中的无功功率? 1、电力系统从源头发电机到终端设备都是由非纯阻性元件组成的,因此必然存在无功功率的交换。 2、电感元件或电容元件虽然不消耗功率,但功率P瞬时值按正弦规律正负交替变化,这说明元件与外电路在不断的进行着能量交换。因此电感电容元件的瞬时功率又称为交换功率。元件交换功率的幅值越大,表面同样时间内“吞吐”的能量就越多,也即能量交换的规模越大。基于上面的分析,可得如下结论:电感元件的瞬时功率的幅值,可以作为衡量电感或电容元件与外电路能量交规模的指标,并称之为电感或电容元件的无功功率,用符号Q 表示。则Q=UI无功功率的单位为var。 3、然而电力系统中大部分的无功功率并非无用的功率,相反在电力传输当中起着什么重要的作用。许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递,磁场交变就需要与电源进行能量交换。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。 1.2为什么要进行无功补偿? 一、减低电力系统网络损耗。 当电力系统运行时,在线路和变压器中将要产生功率损耗和电能损耗。通常配电网的损耗是由两部分组成的:一部分是与传输功率有关的损耗。它产生在输电线路和变压器的串联阻抗上,传输功率愈大则损耗愈大,这种损耗叫变动损耗,在总损耗中所占比重较大;另一部分损耗则仅与电压有关,它产生在输电线路和变压器的并联导纳上,如输电线路的电晕损耗、变压器的励磁损耗等,这种损耗叫固定损耗。 电力系统的有功功率损耗不仅大大增加了发电厂和变电所的设备容量,同时也是对动力资源的额外浪费。电能损耗还密切影响到电能成本,从而影响整个国民经济的效益。 电力系统各元件中的无功功率损耗相对来说较有功功率损耗还大,由于无功功率损耗要有发电机或其他无功电源来供给,因此在众多发、输电设备视在容量为一定的条件下,无功功率的增大势必相应减少发、输电的有功功率,即减少发、输电容量。而且,当通过输电线路和变压器输送无功功率时。也将引起有功功率损耗,这些对于电力系统来说都是非常不经济的。 我们应尽力采取措施去降低功率损耗和电能损耗,这从节约能源、降低电能成本、提高设备利用率等方面来看都是非常必要的。 配电网的降损措施只要有 1合理的使用变压器,采用节能型的变压器,同时避免经多级变压; 2重视和合理进行无功补偿。合理地选择无功补偿方式、补偿点及补偿容量,能有效地稳定系统的电压水平,避免大量的无功通过线路远距离传输而造成有功网损。对电网的无功补偿通常采用集中、分散、就地相结合的方式,具体选择要根据负荷用电特点来确定。一般的电网中,无功补偿装置安装在变压器的低压侧; 3对电力线路改造,扩大导线的载流水平 4调整用电负荷。保持均衡用电。调整用电设备运行方式,合理分配负荷,降低电网高

低压电气-无功补偿基础知识

低压电气-无功补偿基础知识

无功补偿基础知识与应用案例 一、功率的概念2 二、需要无功补偿的原因 2 三、无功补偿的一般方法 2 四、无功补偿装置的分类 3 五、采用无功补偿的优点 5 六、无功补偿的应用例子 6

一、功率的概念 1、视在功率:视在功率是指发电机发出的总功率,其中可以分为有功部分和无功部分。 2、有功功率:有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。 3、无功功率:是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。无功功率不做功,但是要保证有功功率的传导必须先满足电网的无功功率。 二、需要无功补偿的原因 在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。 但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中要设置一

安装容易、配置方便灵活、维护简单、事故率低等优点。 (2)低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 (3)高压集中补偿 高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。同时便于运行维护,补偿效益高。

低压无功补偿的几个问题

低压无功补偿的几个问题 1、补偿柜有那些标准?电容器有那些标准? 2、为什么要在系统安装电力电容补偿装置? 3、用于补偿的电力电容器现行的标准是什么? 4、为什么电容器的保护控制电器和导线要求按照电容器额定电流的1.5倍来选择? 5、补偿柜中熔断器为何不能用微型断路器来代替? 6、补偿柜中热继电器何种情况下可省略? 7、XD1电抗器与滤波电抗器一样吗? 低压无功补偿的几个问题 1、补偿柜有那些标准?电容器有那些标准? (a)机械部相关标准: JB7115-1993低压无功就地补偿装置 JB7113-1993低压并联电容器装置 (b)电力部相关标准: DL/T 597—1996低压无功补偿控制器订货技术条件-有效版本 (c)国标 GB 12747.2-200410KV及以下交流电力系统用自愈式并联电容器第2部分:老化试验、自愈性试验和破坏试验-有效版本 GBT 12747.1-2004标称电压1kV及以下交流电力系统用自愈式并联电容器第1部分:总则-有效版本 2、为什么要在系统安装电力电容补偿装置? 工业生产广泛使用的交流异步电动机、电焊机、电磁炉等设备都是感性负载,这些感性的负载在进行能量转换过程中,使加在其上的电压超前电流一个角度,这个角度的余弦cosΦ叫做功率因数。当功率因数即无功功率很大时,会有以下危害: (1)增大线路电流,使线路损耗加大,浪费电能; (2)因线路电流增大,一旦输电线路较远,线路上的电压降就大,电压过低就可能影响设备正常使用; (3)对变压器或者发电机而言,无功功率大,变压器或者发电机输出的电流也大,往往是输出电流已达额定值,这时负荷若再增加就需要加多一台变压器或者发电机组,浪费资源;补偿了电容后,同样负荷下变压器或者发电机输出电流大大降低,再增加负荷机组也能承受,无需再加一台变压器或者发电机,可节省资源。 (4)月平均功率因数工业用户低于0.92、普通用户低于0.9要被供电管理部门处于不同额度的罚款。 增加并联电容补偿柜是补偿功率因数的方法之一(另外还有采用过激磁的同步电动机、调相机、异步电动机同步化等方法)。 3、用于补偿的电力电容器现行的标准是什么? 现行的两个标准是: GB 12747.2-200410KV及以下交流电力系统用自愈式并联电容器第2部分:老化试验、自愈性试验和破坏试验-有效版本 GBT 12747.1-2004标称电压1kV及以下交流电力系统用自愈式并联电容器第1部分:总则-有效版本

TSC型动态无功功率补偿装置

1.性能描述: 九洲电气PowerSolver TM系列高压动态无功补偿SVC装置是综合应用现代电力电子技术、电能控制技术、以及计算机技术而研制开发的高科技产品,是一种能够为电力系统快速而连续地提供容性或感性无功功率的电力电子装置。其中PowerSolver TM-TSC是采用成熟、可靠、先进、实用的晶闸管投切电容器组的方式,实现分组、分级进行补偿,即TSC的分组、分级的典型结构,能准确迅速地跟踪电网或负荷的波动,通过TSC支路的快速投切,对变化的无功功率进行动态补偿,装置控制响应时间不低于20~50ms,实现功率因数补偿至0.92以上。 我公司生产的PowerSolver TM系列TSC+HVC装置具有动态调节无功功率补偿和谐波抑制的双重功能,技术先进、性能卓越、运行可靠。已经被广泛地应用于电力工业、冶金工业、城市建设、煤炭、石油、化工等行业中,真正起到1)提高功率因数,降损节能;2)提高电网输送能力和减少电网的配变容量;3)改善用户的电压质量,减小电压波动及电压闪变;4)抑制谐波的作用,可以给用户带来巨大的经济效益和社会效益。 2.PowerSolver TM-TSC型 SVC的技术特点及优势 具有全数字化智能控制系统,采用先进的DSP数字处理器,由微机实时监测、智能调节;实时跟踪负荷变化,响应时间小于20~50ms,具有过流速断、限时过流、过载、过压、欠压及不平衡等保护; 采用晶闸管串联组成高压交流无触点开关,对电容器组的快速过零投切,实现无触点、无涌流、无过渡投切; 实现电流过零投切,通过过零触发系统对TSC支路的电压、电流信号进行采集,并经过零触发控制器实时计算,结合收到的投入指令对电容器实现过零投切,投切过程中无涌流冲击、无操作过电压、无电弧重燃现象,使用寿命长; 阀控系统设有动态保护电路,对阀组开关元件的工作状态实时监测,并通过液晶屏幕显示阀组工作电压、电流、阀组温度,具有阀组过压、过流、欠压、超温等保护。一旦过零触发器检测出故障,保护电路立刻封锁触发脉冲,使三相阀组停止导通,并发出报警信号,实现对阀组开关元件的保护。 可多路TSC与TSC之间结合,实现有级差的无功调节功能。 高品质的电抗器设计,主回路电抗器采用环氧树脂真空浇注工艺,抑制谐波,保护设备安全运行。

PGJ系列低压无功功率自动补偿柜

PGJ系列低压无功功率自动补偿柜 ■应用范围 适用于各行各业额定电压380V供电系统的无功功率补偿装置。 ■性能特点 ●采用具有内部保险装置、可靠性和效率都很高的自愈式金属化并联电容器; ●降低用户无功损耗,改善电网电压质量,降低线损; ●提高变压器负载率和电气设备的效率; ●采用干式自愈电容,体积小,重量轻,容量大; ●根据功率因数自动分级投入和切除。 ■主要技术参数 ●功率因数可提高到0.95以上,无功功率下降60%以上; ●具有自放电功能,施加电压断开1分钟后,残留电压降至50V以下。 ■使用环境条件 ●环境温度:-40℃~+50℃; ●空气相对湿度不超过95%; ●海拔高度不超过2000m(海拔2000m以上的可根据具体工况特殊设计); ●最高工作电压不超过额定电压的110%(过渡过程除外); ●最大工作电流不超过额定电流的1.3倍(过渡过程除外)。 注:若有特殊使用条件,请在订货时与制造商申明、协商。 ■型号说明 ■一次方案图

■安装基础图

PGJ系列低压无功功率自动补偿柜系列之——WBJ智能精确补偿节电系统 ■应用范围 WBJ智能精确补偿节电系统可广泛应用于大型工矿企业,各中小型企业;供电系统的低压输变电线路,特别适合于多个配电车间的企业使用。 ■工作原理 WBJ智能精确补偿节电系统是为满足各企业节能降耗的要求,根据企业自身用电状况量身定做的节能降耗产品,其采用先进的共分补控制器作为其控制核心,结合可靠的电容对于低压电网进行就地补偿节能的新产品。其最大限度的降低企业的无功损耗、提高功率因数、稳定电压、消除电网中由于多负载造成的三相不平衡现象及三相不平衡带来的电网容量利用率低下等现象。其核心控制器采用交流采样,内部程序进行FFT 快速傅里叶变换,谐波分析等高性能的配电监控系统的电容补偿控制器,具有高性能数字信号处理器DSP为核心,LCD液晶汉字显示,功能齐全,运行可靠,功率因数达到0.99,采用实现电容补偿量精确补偿,使线路无功电流最小,降低电力设备损耗。 ■主要性能特点 ●具有完善功能: a、实时显示三相电参量:电压/电流/有功功率/无功功率/频率 /投切状态; b、自动鉴相:自动识别感性负载或容性负载,不必交换电流互感器二次线; c、试验功能:在试验状态下,自动的逐路循环投入和切除; d、保护功能,具备过压保护、欠压保护、谐波电压超限保护功能; e、输出线数:最多16位,路数可设,可设分相补偿路数和三相共补路数; f、LCD液晶汉字显示,功能齐全,运行可靠; ●采用分相补偿,补偿单元安装在负荷附近; ●对于具有电机类感性负载的电网可降低用电电流20%以上; ●采用共分补方式的结合方式降低三相不平衡的状况。 ■主要技术参数 ●工作电压:AC220V±20% 50±10%; ●取样电压:AC3×220V±20% 50±10%(三相四线); ●取样电流:AC3×(0-5A) (三个电流互感器,与电压的相序对应相接); ●测量精度:电压:±0.2级电流:±0.2级; ●功率因数:±0.2级有功功率:±0.5级; ●无功功率:±0.5级频率:0.2级。 ■使用环境条件 ●工作温度:-5oC~+40oC; ●相对湿度:最大90%(温度为20 oC时); ●安装地点无为灾、爆炸危险、化学腐蚀、灰尘多及剧烈震动;

无功功率补偿装置及作用分析知识讲解

无功功率补偿装置及作用分析 摘要: 无功补偿是一项投资少、收效快的降损节能措施,对于降损节电、用电系统的安全可靠运行有着极为重要的意义。在我国配网和农网平均功率因数偏低的地区进行合理的无功补偿,能较大幅度地降低线损、提高设备利用率、改善电压质量、提高功率因数。我们要积极采用补偿电容器进行合理的补偿,以取得显著的经济效益。 关键词: 无功功率补偿;效益;功率因数 无功补偿可以提高功率因数,是一项投资少、收效快的降损节能措施。在电网中安装并联电容器等无功补偿设备以后,可以提供感性电抗所消耗的无功功率,减少电网电源向感性负荷提供、由线路输送的无功功率。减少了无功功率在电网中的流动,可以降低线路和变压器因输送无功功率造成的电能损耗,形成无功补偿。装设无功补偿设备,提高功率因数,对于降损节电、用电系统的安全可靠运行有着极为重要的意义。 一、无功补偿概述 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。无功功率补偿装置的主要作用是:提高负载和系统的功率因数,减少设备的功率损耗,稳定电压,提高供电质量。在长距离输电中,提高系统输电稳定性和输电能力,平衡三相负载的有功和无功功率等。电网中常用的无功补偿方式包括:在变电所母线集中安装并联电容器组;在高低压配电线路中分散安装并联电容器组;在配电变压器低压侧和用户车间配电屏安装并联补偿电容器;在单台电动机处安装并联电容器等。从无功补偿通常采用的方法来看,主要有低压个别补偿、低压集中补偿、高压集中补偿。这三种补偿方式的适用范围及优缺点分别如下: 1.低压个别补偿 低压个别补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。低压个别补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,因此不会造成无功倒送。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。 2.低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功负荷而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 3.高压集中补偿 高压集中补偿是指将并联电容器组直接装在变电所的6~10kV高压母线上的补偿方式。适用于用户远离变电所或在供电线路的末端,用户本身又有一定的高压负荷时,可以减少对电力系统无功的消耗并可以起到一定的补偿作用;补偿装置根据负荷的大小自动投切,从而合理地提高了用户的功率因数,避免功率因数降低导致电费的增加。同时便于运行维护,补偿效益高。 4.合理选择配变容量,改善配变运行 对负载率比较低的配变,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

相关主题
文本预览
相关文档 最新文档