当前位置:文档之家› 实验一用有限差分法解静电场边值问题

实验一用有限差分法解静电场边值问题

实验一用有限差分法解静电场边值问题
实验一用有限差分法解静电场边值问题

用有限差分法解静电场边值问题

一、目的

1.掌握有限差分法的原理与计算步骤;

2.理解并掌握求解差分方程组的超松弛迭代法,分析加速收敛因子α的作用; 3.学会用有限差分法解简单的二维静电场边值问题,并编制计算程序。

二、方法原理

有限差分法是数值计算中应用得最早而又相当简单、直观的一种方法。应用有限差分法通常所采取的步骤是:

⑴ 采用一定的网格分割方式离散化场域。

⑵ 进行差分离散化处理。用离散的、只含有限个未知数的差分方程组,来近似代替场域内具有连续变量的偏微分方程以及边界上的边界条件(也包括场域内不同媒质分界面上的衔接条件)。

⑶ 结合选定的代数方程组的解法,编制计算机程序,求解由上面所得对应于待求边值问题的差分方程组,所得解答即为该边值问题的数值解。

现在,以静电场边值问题

?????==??+??)

2(

)

()1(02

2

22s f D y x L ?

?

?中

为例,说明有限差分法的应用。f (s )为边界点s 的点函数,二位场域D 和边界L 示于图5.1-1中。

x

图5.1-1 有限差分的网格分割

1. 离散化场域

应用有限差分法时,首先需从网格划分着手决定离散点的分布方式。通常采用完全有规律的方式,这样在每个离散点上可得出相同形式的差分方程,有效地提高解题速度。如图5.1-1所示,现采用分别与x ,y 轴平行的等距(步距为h )网格线把场域D 分割成足够多的正方形网格。各个正方形的顶点(也即网格线的交点)称为网格的结点。这样,对于场域内典型的内结点0,它与周围相邻的结点1、2、3和4构成一个所谓对称的星形。

2.差分格式

造好网格后,需把上述静电场边值问题中的拉普拉斯方程(1)式离散化。设结点0上的电位值为?0。结点1、2、3和4上的电位值相应为?1、?2、?3和?4,则基于差分原理的应用,拉普拉斯方程(1)式在结点0处可近似表达为

?1+?2+?3+?4-4?1=0 (3)

这就是规则正方形网格内某点的电位所满足的拉普拉斯方程的差分格式,或差分方程。对于场域内的每一个结点,关系式(3)式都成立,都可以列出一个相同形式的差分方程。

但是,对于近邻边界的结点,其边界不一定正好落在正方形网格的结点上,而可能如图5.1-2所示。其中1、2为边界线上的结点,p 、q 为小于1的正数。仿上所述,可推得对这些近邻边界结点的拉普拉斯方程的差分格式为

0)11(

11)

1()

1(04

3

2

1

=-

-++

++

++

+?????q

p

q

p

q q p p

(4) 式中:?1和?2分别是给定边界条件函数f (s )在对应边界点处的值,是已知的。

1

23

4

图5.1-2 近邻边界的结点

3.边界条件的近似处理

为了求解给定的边值问题,还必须对边界条件,以及具体问题中可能存在的分界面上的衔接条件,进行差分离散化处理,以构成相应的差分边值问题。这里,我们只考虑正方形网格分割下的边界条件的近似处理。

⑴ 第一类边界条件 如果网格结点正好落在边界L 上,因此对应于边界条件(2)式的离散化处理,就是把点函数f (s )的值直接赋予对应的边界结点。如果边界L 不通过网格分割时所引进的结点(例如图5.1-2中的1、2结点是边界线L 与网格线的交点,并不是网格分割时所引进的网格结点),那末在紧邻边界的结点的差分格式应选用(4)式,这时,把点函数f (s )的值直接赋予边界线L 与网格线的交点1和2。

⑵ 第二类边界条件

应当指出,从实际电场问题的分析出发,如图5.1-3所示,以电力线为边界的第二类齐次边界条件是常见的一种情况。

0=??L

n

?

(5)

这时,可沿着场域边界外侧安置一排虚设的网格结点,显然,对于边界结点0,由于该处

=??n

?,故必有?1=?3,因此相应于边界条件(5)式的差分计算格式为

2?1+?2+?4-4?0=0 (6)

边界s

设点

图5.1-3 第二类齐次边界的一种情况 图5.1-4对称线上结点的差分格式

同样,在许多工程问题中,常常能够判定待求电场具有某些对称性质,这样只需要计算某一对称部分的场就能完全决定整个场的分布。为此,还必须导出位于场的对称线上的结点所满足的差分计算格式。以对称线与网格结点相重合为例(见图5.1-4),设'AA 线为一对称线,对于位于对称线上的任一结点0,由拉普拉斯方程(因对称性,必有?1=?3)可得相应的差分计算格式是

2?1+?2+?4-4?0=0 (7)

⑶ 媒质分界面上的衔接条件

在此选取两种情况进行差分离散化的处理。

分界面与网格线相重合的情况;设分界面L 与网格线相重合,如图5.1-5所示,在两种媒质a ε和b ε中电位都满足拉普拉斯方程。容易导得,两种媒质分界面上衔接条件在结点0的差分格式为

0412*******=-+++

++?????K

K K

(8)

其中

b

a εε=

K 。

图5.1-5 分界面与网格线相重合 图5.1-6 分界面L 对网格呈对角线形态 分界面对于网格呈对角线形态的情况:如图5.1-6所示,分界面L 对于网格呈对角线形态,在两种媒质a ε和b ε中电位?都满足拉普拉斯方程。容易导得,两种媒质分界面上衔接条件在结点0的差分格式为

04)(12)(1204321=-+++

++?????K

K K

(9)

其中

b a εε=

K 。

总之,类似以上的分析处理方法,可以逐个导得各种类型的边界条件和衔接条件差分离散化的计算格式。限于篇幅,在此不再展开。

4.差分方程组的求解 在对场域D 内各个结点(包括所有场域内点和有关的边界结点)逐一列出对应的差分方程,组成差分方程组后,就可选择一定的代数解法,以算出各离散结点上待求的电位值。注意到差分方程组的系数一般是有规律的,且各个方程都很简单,包含的项数不多(最多不超过5项),因此,对于有限差分法,通常都采用逐次近似的迭代方法求解。

在迭代法的应用中,为加速迭代解收敛速度,一般采用的是超松弛迭代法。由于编写计算机程序的需要,每一网格结点的位置由双下标(i ,j )予以识别,如图5.1-7所示。对于差分方程(3)式,采用超松弛迭代法(规定迭代的运算顺序是:从左下角开始做起,即i 小的先做;对固定的i ,j 小的先做。),则关于结点0迭代到第(n +1)次时的近似值,应由如下迭代公式算得

)

(),()1()1,()1(),1()()1,()(),1()(),()1()

,(4(4

n j i n j i n j i n j i n j i n j i n j i ???????-+++α+=+-+-+++) (10)

j

i+1,j )

图5.1-7 结点的双下标(i ,j )标号

式中:α 称为加速收敛因子,其取值范围是1≤α<2,当α≥2时,迭代过程将不收敛。 加速收敛因子α有一个最佳取值问题,但随具体问题而异。对于第一类边值问题,若一正方形场域由正方形网格分割(每边结点数为m +1),则最佳收敛因子α0可按下式计算

m

π+=

αsin

120 (11) 在更一般的情况下,α0只能凭借经验取值。

应当指出,为加速迭代解收敛速度,在迭代运算前,恰当地给定各内点的初始值(即所谓第0次近似值)也是一个有效的途径。

5.迭代解收敛程度的检验

在超松弛迭代法的应用中,还必须涉及迭代解收敛程度的检验问题。对此,通常的处理方法是:迭代一直进行到所有内结点上相邻两次迭代解的近似值满足修正条件

W n

j i n j i <-+),()1(),(?? (12)

时,终止迭代。将式(12)作为检查迭代解收敛程度的依据。其中:W 是指定的最大允许误差。

6.有限差分法的程序框图

图5.1-8 程序框图

三、上机作业

设有一个长直接地金属矩形槽,(a =2b ),如题5.1-1图所示,其侧壁与底面电位均为零,顶盖电位为100V (相对值),求槽内的电位分布。

x

题5.1-1图 矩形接地金属槽

具体要求:

⑴ 编写一个计算机程序(用你熟悉的程序语言)

⑵ 求相邻两次迭代值的指定的最大允许误差小于10-5

的迭代收敛解。 ⑶ 以步距40

a h

=的正方形网格离散化场域,然后应用有限差分法求电位?的数值解。

⑷ 根据场分布的对称性,试以半场域为计算对象,并以步距40

a h

=

将该半场域由正方

形网格予以分割,然后用有限差分法求电位?的数值解。

⑸ 分别取α为n 个不同的值和最佳值α0,求电位?的数值解,以此分析加速收敛因子的作用。从迭代收敛时的迭代次数和最终数值解这两方面总结自已的看法。

⑹ 用计算机描绘等位线分布。 ⑺ 取中心点)2

,2(b

a P 处电位的精确解(解析解)与数值解进行比较,说明误差范围。

物理人教版高中选修3-1关于静电感应演示实验的一些想法

静电感应演示实验的改进 高中物理新课标(选修1-1和选修3-1)安排了一个关于“静电感应”的演示实验,原实验如图所示。 由于实验室没有下部带有金属箔片的金属导体,所以按照教材介绍的方法来演示很困难,现改进为: 取一对箔片验电器A和B,使它们用带鱼夹的导线相连,起初它们不带电,里面的金属箔片是闭合的。 把带正电荷的球C移近导体A,金属箔有什么变化? 先把验电器A和验电器B相连导线的一端拿掉,然后移去C,金属箔又有什么变化? 再把验电器A和验电器B相连的导线接上,又会看到什么现象? 利用上面的实验,解释看到的现象。

巧用肥皂泡做静电演示实验 在高中物理(必修加选修)第117和118页,有图13-1和图13-2两个静电演示实验。可是要在课堂上做好这两个演示实验比较难,且对学生来说可见度不好,趣味性不强。笔者在长期的教学实践中,摸索了一种用肥皂泡演示静电的实验,其可见度好,趣味性强。现介绍如下,以供同仁们参考。 一、材料准备 (1)儿童玩的吹肥皂泡的筒和肥皂水或一般的肥皂水;(2)铁架台;(3)直径为5mm两端弯曲的玻璃管;(4)手捏式橡皮打气囊和20cm~30cm长的乳胶管;(5)带绝缘手柄的方形或圆形金属板;(6)内径为5mm长5mm的小金属环;(7)静电起电机和若干节导线。 二、制作方法 如图1所示,将玻璃管固定在铁架台的直柱上,把乳胶管和小金属环分别套在玻璃管的两端,打气囊套在乳胶管的

另一端;在金属环和金属板上分别接上导线,导线的另一端接到起电机的金属球上去。 三、演示方法及过程 1.演示同种电荷相斥现象 将金属环和金属板上的两根引线接到起电机的同一个金属球上,在金属环上蘸上肥皂水,捏打气囊使金属环出现肥皂泡,待肥皂泡出现时摇动起电机,金属环上的肥皂泡和金属板就会带上同种电荷。再用打气囊给肥皂泡突然充气,气流冲击肥皂泡使之脱离金属环,形成一个带电的能够在空中自由下落的肥皂泡,如果这时用带同种电荷的金属板去接近肥皂泡,我们就会看到肥皂泡明显地受到排斥,如图2所示。 若在空中一定位置上,肥皂泡受到重力、浮力和静电斥力而平衡。这时我们可以使其托起在空中漫游,肥皂泡将随着球拍的升降而沉浮。在空中的存留时间可达到一分多钟,特别生动有趣。 2.演示异种电荷相吸现象

高中物理演示实验练习

高中物理演示实验练习 1(如图23-1所示,在用横截面为椭圆形的墨水瓶演示坚硬物体微小弹性形变的演示实验中,能观察到的现象是:( ) A(沿椭圆长轴方向压瓶壁,管中水面上升;沿椭圆短轴方向压瓶壁,管中水面下降 B(沿椭圆长轴方向压瓶壁,管中水面下降;沿椭圆短轴方向压瓶壁,管中水面上升 C(沿椭圆长轴或短轴方向压瓶壁,管中水面均上升 D(沿椭圆长轴或短轴方向压瓶壁,管中水面均下降 2((1989年广东高考题)如图23-2所示,物体A放在水平桌面上,被水平绳拉着处于静止状态,则 ( ) A(A 对桌面的压力和桌面对A的支持力总是平衡的 B(A 对桌面的摩擦力的方向是水平向右的 C(绳子对A的拉力小于A受的静摩擦力 D(A受的重力和桌面对A的支承力是一对作用力和反作用力 3(用抽成真空的毛线管演示不同质量的物体下落快慢的实验时,所观察到的现象是__ __ ___,说明有空气阻力足够小时,所有物体从同一高度自由下落所需时间是__ ___的。 4(平抛运动物体的规律可以概括为两点: (1)水平方向做匀速运动;

(2)竖直方向做自由落体运动。为了研究平抛物体的运动,可做下面的实验:如图23-3所示,用小锤打击弹性金属片,A球就水平飞出,同时B 球被松开,做自由落体运动,两球同时落到地面,这个实验( ) A(只能说明上述规律中的第(1)条 B(只能说明上述规律中的第(2)第 C(不能说明上述规律的任何一条 D(能同时说明上述两条规律 5(在光滑水平桌面上固定一根钉子,把绳的一端套在钉子上,另一端系一个小球,使小球在光滑的桌面上做匀速圆周运动,将钉子拔掉,可以看到 ( ) A(小球沿径向远离圆心飞出 B(小球沿曲线远离圆心飞出 C(小球沿圆周的切线飞出 D(小球仍沿原轨道做匀速圆周运动 1 6((1996年全国高考题)如果下表中给出的是做简谐运动的物体的位移x 或速度v,与时刻的对应关系,T是振动周期,则下列选项中正确的是: ( ) A(若a表示位移x ,则c表示相应的速度v B(若d表示位移x,则a表示相应的速度v C(若c表示位移 x,则 a 表示相应的速度v D(若b表示位移x,则c表示相应的速度v 7(图23-7是研究受迫振动的实验装置,当用不同转速匀速转动把手时,把手就给弹簧振子以周期性的驱动力使振子做受迫振动,可以看到 ( )

物理演示实验

大连海事大学 《物理演示实验》课程教学大纲 Syllabus for INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT 课程编号新 000000000 原13012200 学时/学分18/1 开课单位物理系考核方式考查 适用专业全校各专业执笔者牟恕德 编写日期 2008年3月 一、本课程的性质与任务 物理学是一门实验科学。所有物理定律的形成和发展都是建立在对客观自然现象的观察和研究的基础上,物理演示实验可以使学生加深对物理教学内容的理解,巩固记忆,激发兴趣,诱导思考,纠正错误观念,能使学生真实感地看到支配物理现象的规律如何起作用,通过对实验现象的观察分析,学习物理实验知识,从理论和实践的结合上加深对物理学原理的理解。 1、培养和提高学生基本的科学实验能力,其中包括: 自学能力:通过自行阅读实验教材和其它资料,能正确概括出实验内容、方法和要求,做好实验前的准备; 动手能力:借助教材《物理演示实验》和仪器说明书,正确调整和使用仪器;安排实验操作顺序,把握主要实验技能,排除实验故障;掌握常规物理实验仪器的使用,掌握科学实验的数据处理方法和科学实验报告的形成,为进一步学习和从事科学实验研究打下坚实的基础。 分析能力:运用所学物理知识,对实验现象和结果进行观察分析判断,得出结论; 表达能力:正确记录和处理实验数据,绘制曲线,正确表达实验结果,撰写合格的实验报告; 2、培养和提高学生科学实验素养:要求学生养成理论联系实际和实事求是的科学作风,严肃认真的工作态度,主动研究的探索精神和创新意识,遵守纪律、遵守操作规程、爱护公共材物、团结协作的优良品德。 物理演示实验是面向全校各年级学生的开放式实验选修课,共18学时;学生可自主安排在计划课表内任何时段来上课。 二、课程简介 《物理演示实验》将日常生活或生产实践中不易观察到的或习以为常而未引起注意的物理现象突出地显示出来,把实际较为复杂的现象,在课堂演示的条件下分解出有意义的部分,从兴趣和提高关注度出发,培养学生的探索精神,引导学生观察、思考、建立物理思想,培养学生根据物理原理分析解决实际问题的能力。演示实验片广开学生眼界,介绍现代科学技术前沿的新技术、新发明、新材料、新探索、新成果,分享现代科学技术飞跃发展的喜悦。 INTRODUCTION OF PHYSICAL DEMONSTRATION EXPERIMENT displays the physical phenomenon which is unobservable in daily life and production practice, or is accustomed and thus not given attention. It draws out the significative parts from real complex phenomenon through the demonstration in class. In view of the students' interest,physical demonstration experiement may cultivate students' exploring spirit and inducts them to observe and think so that they can found physical idea and possess the abilities to analyse and solve questions according the physical theories. Physical demonstration experiment introduces new technique, new invention, new exploration and new production in modern technology and so widen students' eyereach and make students enjoy the flying development of modern technology

有限差分法

利用有限差分法分析电磁场边界问题 在一个电磁系统中,电场和磁场的计算对于完成该系统的有效设计师极端重要的。例如,在系统中,用一种绝缘材料是导体相互隔离是,就要保证电场强度低于绝缘介质的击穿强度。在磁力开关中,所要求的磁场强弱,应能产生足够大的力来驱动开关。在发射系统中进行天线的有效设计时,关于天线周围介质中电磁场分布的知识显然有实质性的意义。 为了分析电磁场,我们可以从问题所涉及的数学公式入手。依据电磁系统的特性,拉普拉斯方程和泊松方程只能适合于描述静态和准静态(低频)运行条件下的情况。但是,在高频应用中,则必须在时域或频域中求解波动方程,以做到准确地预测电场和磁场,在任何情况下,满足边界条件的一个或多个偏微分方程的解,因此,计算电池系统内部和周围的电场和磁场都是必要的。 对电磁场理论而言,计算电磁场可以为其研究提供进行复杂的数值及解析运算的方法,手段和计算结果;而电磁场理论则为计算电磁场问题提供了电磁规律,数学方程,进而验证计算结果。常用的计算电磁场边值问题的方法主要有两大类,其每一类又包含若干种方法,第一类是解析法;第二类是数值法。对于那些具有最简单的边界条件和几何形状规则的(如矩形、圆形等)问题,可用分离变量法和镜像法求电磁场边值问题的解析解(精确解),但是在许多实际问题中往往由于边界条件过于复杂而无法求得解析解。在这种情况下,一般借助于数值法求解电磁场的数值解。 有限差分法,微分方程和积分微分方程数值解的方法。基本思想是把连续的定解区域用有限个离散点构成的网络来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 差分运算的基本概念: 有限差分法是指用差分来近似取代微分,从而将微分方程离散成为差分方程组。于是求解边值问题即转换成为求解矩阵方程[5]。 对单元函数 ()x f而言,取变量x的一个增量x?=h,则函数()x f的增量可以表示为 ()x f? = ()h x f+-()x f 称为函数()x f 的差分或一阶差分。函数增量还经常表示为 ()x f? = ? ? ? ? ? + 2 h x f - ? ? ? ? ? - 2 h x f

淘气的静电球、静电滚球-科技馆推荐展品设计策划概念深化方案(科教展品制作源头-上海惯量自动化有限公司

淘气的静电球/淘气的静电/静电滚球--科技馆展品展项方案 科学原理 摩擦生电 由摩擦引起的电荷的重新分布,以及由于电荷的相互吸引而引起的电荷的重新分布,特别是因为物质由原子组成,这些原子具有带负电的电子和带正电的原子核。在正常情况下,原子核的正电荷等于电子的负电荷,以及正负平衡,因此并不重要。但是,如果电子在外力作用下离开轨道,导致电子分布不平衡,例如,摩擦电荷是导致正负电荷失衡的过程。科技馆展品制作生产源头工厂-上海惯量自动化有限公司提示大家当两个不同的物体相互接触并相互摩擦时,一个物体的电子被转移到另一个物体,由于缺少电子,该物体带正电,而另一个物体得到一些负电子并带负电静电。 表现形式 机电互动 操作说明 ①参与者旋转玻璃罩的底部,使展底座小球之间的摩擦产生静电; ②观看小球轻轻飘起; ③将手指靠近玻璃罩,可以看到小球避开手指的样子;

上海惯量自动化有限公司是一家依托于完善的工业生产流水线及领先的机械自动化技术水平、专注于科教展品定制化设计生产的专业化设备制作公司,主要专业生产省市地县区科技馆展品、科普器材,校园、社区科普馆和科学探究实验室的教学仪器、用具。产品质量过硬,多次受到有关领导、专家、教授的好评与赞赏,一次性通过验收。产品经过不断地创新、改进完善,它将以更卓越的性能、优异的品质、高档次的配置及操作简单、功能齐全、优惠的价格和其良好的售后服务质量奉献给广大客户。 公司占地面积数千平,拥有剪板机、切割机、激光雕刻机、折弯机、刨床、冲床、钻铣床、数控车床、木工推台锯、木工雕刻机、打包设备等,形成完善的工业化生产流水线;公司拥有喷漆喷塑车间及设备,通过国家环保部门认可的完整排放标准与手续,可以最大化的本公司全程完成生产制作,提高生产效率,保证订单展品的及时发货交付。 公司现拥有两千多种产品,涵盖航空航天、能源、力学、声学、电学、磁学、数学、自然、生命、人机交互、多媒体等多个品种,畅销全国多个省和地区,包含转动惯量、水世界、小球旅行记、机械墙、奥运悬浮球、伯努利原理、八音琴、风洞试验、尾翼、穿越火线、光控飞机、雅各布天梯、电磁加速

静电摆球演示实验()

静电摆球演示实验() 一、实验目的: 演示静电感应,电场分布和电荷间的相互作用装置结构及技术参数 二、演示仪器 1、静电电源(维氏起电机) 2、静电摆球装置 3、 4、避雷针工作原理装置 5、静电除尘装置 6、静电滚筒 操作方法: 1、静电跳球: 将两极板分别与静电起电机相连接,摇动起电机,使两极板分别带正、负电荷,这时小金属球也带有与下板同号的电荷。同号电荷相斥,异号电荷相吸,小球受下极板的排斥和上极板的吸引,跃向上极板,与之接触后,小球所带的电荷被中和反而带上与上极板相同的电荷,于是又被排向下极板。如此周而复始,可观察到球在容器内上下跳动。当两极板电荷被中和时,小球随之停止跳动。2、静电摆球:

将两极板分别与静电起电机相接。调节细有机玻璃棒,使球略偏向一极板。摇动起电机,使两极分别带正、负电荷。这时导体小球两边分别被感应出与邻近极异号的电荷。球上感应电荷又反过来使极板上电荷分布改变,从而使两极板间电场分布发生变化。球与极板相距较近的这一侧空间场强较强,因而球受力较大,而另一侧与极板距离较远,空间场强较弱,受力较小,这样球就摆向距球近的一极板。当球与这极板相接触时,与上面同样的道理使球又摆回来。不断摇动起电机,球就在两板间往复摆动,并发出乒乓场。起电机放电后,则导体小球会因惯性,在一段时间内做微小摆动,最后停止在平衡位置。将乒乓球调节在两极间的电场力几乎相等,故球不动。 3、尖端放电: 将起电机的一极接在针形导体上,摇动起电机,使针形导体带电。由于导体尖端处电荷密度最大,所以附近场强最强。在强电场的作用下,使尖端附近的空气中残存的离子发生加速运动,这些被加速的离子与空气分子相碰撞时,使空气分子电离,从而产生大量新的离子。与尖端上电荷异号的离子受到吸引而趋向尖端,最后与尖端上电荷中和;与尖端上电荷同号的离子受到排斥而飞向远方形成“电风”,把际近的蜡烛火焰吹向一边,甚至吹灭。

高中物理实验大全

高中物理实验大全——目录 中央电教馆推出的《高中物理实验大全》、《高中化学实验大全》、《高中生物实验大全》就是为了改变我国实验教学的现状而研发的一项科学研究成果。“大全”内容全面、科学、严谨,以满足高中教师对学生实验的要求。“大全”所展示的不是课本的简单再现,而是对实验重新“整合”、组合,适当“加深”和“拓宽”,并把实验能力与计算机技术相结合,从深层上揭示出实验的科学原理。 01.气垫导轨介绍 02.数字计时仪介绍 03用数字计时仪测气垫导轨上滑块的即时速度 04匀速直线运动及其速度 05测运变速直线运动的加速度 06电磁打点记时器 07用打点计时器演示匀速直线运动 08电火花打点计时器 09用打点计时器测匀加速直线运动的加速度 10初速度为零的匀加速直线运动的路程和时间的关系 11用牛顿管演示空气阻力很小时不同物体同事下落 12用悬挂法确定薄板的重心 13用大玻璃瓶演示玻璃微小形变 14用形变演示器演示形变产生弹力 15用激光镜面反射演示桌面微小形变 16静摩擦 17最大摩擦力 18验证滑动摩擦定律 19滑动摩擦 20滚动摩擦与滑动摩擦的比较 21力合成的平行四边形定则 22合力的大小于分力间夹角的关系 23力的分解 24三角衍架演示力的分解 25共点力的平衡条件 26力矩的平衡 27惯性(1) 28惯性(2) 29惯性(3) 30牛顿第一定律 31牛顿第二定律(1) 32牛顿第二定律(2) 33牛顿第三定律 34静摩擦力的相互性 35弹力的相互性 36作用力于反作用力的关系

37失重 38用测力计演示超重于失重 39用微小压强计演示超重于失重 40物体做曲线运动的条件 41曲线运动中速度的方向 42互成角度的两个直线运动的合成43平抛运动与自由落体运动的等时性44平抛运动与水平匀速运动的等时性45平抛运动的轨迹 46决定向心力大小的因素 47弹簧振子的振动 48简谐振动的图象 49阻尼振动的图象 50单摆的等时性 51单摆的振动周期与摆球的质量无关52单摆的周期与摆长有关 53用计时器研究单摆周期与摆长关系54受迫振动和共振(1) 55受迫振动和共振(2) 56用示波器观察发声物的振动 57物体的动能 58重力势能 59动能与重力势能的转化 60动能与弹性势能的转化 61动量守恒 62完全非弹性碰撞 63完全弹性碰撞(1) 64完全弹性碰撞(2) 65完全弹性碰撞(3) 66斜碰 67碰撞球(1) 68碰撞球(2) 69碰撞球(3) 70单摆小车 71反冲(1) 72反冲(2) 73反冲(3) 74气体的扩散 75液体的扩散速度与温度有关 76布朗运动 77布朗运动的成因 78分子间的相互作用力(1) 79分子间的相互作用力(2) 80压燃实验

数学实验“微分方程组边值问题数值算法(打靶法,有限差分法)”实验报告(内含matlab程序)

西京学数学软件实验任务书

实验二十七实验报告 一、实验名称:微分方程组边值问题数值算法(打靶法,有限差分法)。 二、实验目的:进一步熟悉微分方程组边值问题数值算法(打靶法,有限差分法)。 三、实验要求:运用Matlab/C/C++/Java/Maple/Mathematica 等其中一种语言完成程序设计。 四、实验原理: 1.打靶法: 对于线性边值问题 ?? ?==∈=+'+''β α)(,)(] ,[) ()()(b y a y b a x x f y x q y x p y (1) 假设L 是一个微分算子使:()()Ly y p x y q x y '''=++ 则可得到两个微分方程: )(1x f Ly =,α=)(1a y ,0)(1 ='a y ?)()()(111 x f y x q y x p y =+'+'',α=)(1a y ,0)(1='a y (2) 02=Ly ,0)(2=a y ,1)(2 ='a y ?0)()(222 =+'+''y x q y x p y ,0)(2=a y ,1)(2='a y (3) 方程(2),(3)是两个二阶初值问题.假设1y 是问题(2)

的解,2y 是问题(3)的解,且2()0y b ≠,则线性边值问题(1)的解为:1122() ()()()() y b y x y x y x y b β-=+ 。 2.有限差分法: 基本思想是把连续的定解区域用有限个离散点构成的网格来代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组 , 解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。 五、实验内容: %线性打靶法 function [k,X,Y,wucha,P]=xxdb(dydx1,dydx2,a,b,alpha,beta,h) n=fix((b-a)/h); X=zeros(n+1,1); CT1=[alpha,0]; Y=zeros(n+1,length(CT1)); Y1=zeros(n+1,length(CT1)); Y2=zeros(n+1,length(CT1)); X=a:h:b; Y1(1,:)= CT1; CT2=[0,1];Y2(1,:)= CT2; for k=1:n k1=feval(dydx1,X(k),Y1(k,:)) x2=X(k)+h/2;y2=Y1(k,:)'+k1*h/2;

变分法的发展与应用

变分法的发展与应用 应用数学11XX班XXX 104972110XXXX 摘要:变分法是研究泛函卡及值的数学分支,其基本问题是求泛函(函数的雨数)的极值及相应的极值函数。变分法是重要的数学分支,与诸如微分方程、数学物理、极小曲面用论、微分几何、黎曼几何、积分力‘程、拓扑学等许多数学分支或部门均有密切联系。变分法有着广泛的应用:变分法构成了物理学中的种种变分原理,成为物理学理论不可缺少的组成部分,是研究力学、弹性理论、电磁学、相对论、量子力学等许多物理学分支的重要工具;变分法通过“直接方法”而成为近似计算的有效于段,为微分方程边值问题的数值解法开辟了一条途径,形成了有限元方法的基础之一。近年来,变分法又在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 关键词:起源;发展;应用 1.引言 变分法是17世纪末发展起来的一门数学分支,是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。它最终寻求的是极值函数:它们使得泛函取得极大或极小值。变分法起源于一些具体的物理问题学问题,最终由数学家研究解决。变分法在科学与技术的各个领域尤其是在物理学中有着十分重要的作用,它提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。它们在材料学中研

究材料平衡中大量使用。微分几何中的测地线的研究也是显然的变分性质的领域。 近年来,变分法在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 2.变分法的起源 物理学中泛函极值问题的提出促进了变分学的建立和发展,而变分学的理论成果则不断渗透到物理学中。 费马从欧几里得确立的光的反射定律出发提出了光的最小时间原理:光线永远沿用时最短的路径传播。他原先怀疑光的折射定律,但在1661年费马发现从他的光的最小时间原理能够推导出折射定律,不仅消除了早先的怀疑,而且更加坚信他的原理。 受费尔马的影响,约翰伯努利研究了“最速降线”问题:给 定空间中的两个点,a b,其中a比b高,求一条连接两点的曲线使得一个质点从a沿曲线下降到b用时最少。 变分法对于几何的应用在早期主要是对曲面上的测地线和欧氏空间中给定边界的极小曲面(Plateau问题)的研究。但在很长时间内仅限于一些特殊情形,没有重要进展。 3.变分法的发展 18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题。19世纪人们把变分法广泛应用到数学物理中去,建立了极值函数的充分条件。20世纪伊始,希尔伯

两点边值问题的有限差分法

学生实验报告 实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计2班学生姓名学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年月日

[]0max N i i c i N e u u <<=-,[]1 2 1 N N i i i e h u u -== -∑及收敛阶 ( )2ln ln 2 N N e e ,将计算结果填入 第五部分的表格,并对表格中的结果进行解释? 4. 将数值解和精确解画图显示,每种网格上的解画在一张图。 三.实验原理、方法(算法)、步骤 1. 差分格式: =-1/h^2(-( ) + )+ ( )/2h+ = A, 2. 局部阶段误差: (u)=O(h^2) 3.程序 clear all N=10; a=0;b=1; p=@(x) 1; r=@(x) 2; q=@(x) 3; alpha=0;beta=1; f=@(x) (4*x^2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); H(i,i+1)=-(2*p(a+(i+1/2)*h)/h-r(a+i*h)); g(i)=2*h*f(a+i*h)+(2*p(a+(i-1/2)*h)/h+r(a+i*h))*alpha; end

五.实验结果及实例分析 N N c e 收敛阶 N e 收敛阶 10 0.00104256 …… 0.00073524 …… 20 0.00026168 1.9341 0.00018348 1.4530 40 0.00006541 2.0001 0.00004585 2.0000 80 0.00001636 1.9993 0.00001146 2.0000 160 0.00000409 2.0000 0.00000287 2.0000 N 越大 只会使绝对误差变小,方法没变,所以收敛阶一致。 图示为:(绿线为解析解,蓝线为计算解) N=10 N=20

高中物理 实验十静电场中等势线的描绘解析

实验十静电场中等势线的描绘 第一关:基础关展望高考 基础知识 (一)实验目的 用描迹法画出电场中一个平面上的等势线. (二)实验原理 利用导电纸中的恒定电流场模拟真空中的静电场,当在场中与导电纸接触的两探针尖端的电势差为零时,与探针相连的电流计中电流强度为零.从而可以通过探针找出电流场中的等势点,并依据等势点描出等势线. (三)实验器材 学生用低压电源或电池组、灵敏电流计、开关、导电纸、白纸、复写纸、圆柱形金属电极2个、探针2个、图钉、导线若干、木板. (四)实验步骤 (1)安装 在平整的木板上依次铺放白纸、复写纸、导电纸各一张,导电纸有导电物质的一面向上,再用图钉把它们一起固定在木板上(如图).在导电纸上放两个跟它接触良好的圆柱形电极.两极间距离约为10 cm,电压约为6 V.再从一个灵敏电流计的两个接线柱引出两个探针. (2)选基准点 在导电纸平面两极的连线上,选取间距大致相等的5个点作为基准点,并用探针把它们的位置复印在白纸上. (3)探测等势点 将两个探针分别拿在左、右手中,用左手中的探针跟导电纸上的某一基准点接触,然后在导电纸平面两极连线的一侧,距此基准点约1 cm处再选1个点,在此点将右手拿着的探针跟导电纸接触,这时一般会看到电流表的指针有偏转,再左右移动探针的位置,直至找到一点,使电流表指针没有偏转为止,说明这个点跟基准点的电势相等,用探针把这个点的位置复印在白纸上.照上述方法,在这个基准点的两侧,各探测出5个等势点,每个等势点大

约相距1 cm.用同样的方法,探测出另外4个基准点的等势点. (4)画等势线 取出白纸,根据5组等势点画出5条平滑的曲线,它们就是等势线(下图). 第二关:技法关解读高考 解题技法 一、如何判断探针的移动方向 技法讲解 在寻找某一点的等势点时,若发现电流表指针不为零,可依据指针的偏转方向判断探针的移动方向:先由指针偏转方向判断电流的流向,由此可知两探针所接触的两点的电势高低,再由电场的分布特点来判断探针的移动方向. 典例剖析 例1 如图所示为描绘电 场中平面上等势线的装置,图 中A、C、P、D、B等相邻两点间 距相等,其中A、B为金属圆柱. 当电流从正接线柱流入电流表 G时,其指针向正接线柱一侧 偏转.

有限差分法解微分方程两点边值问题

使用有限差分方法解边值问题: 由两点边值问题的一般形式: 根据差分方程: 当网格划分均匀,即有,化简差分方程: 代入再次化简: 用方程组展开写成矩阵形式: MATLAB编程:

运行后算出的结果:0 0.00376645934479969 0.00752341210586145 0.0112613555020809 0.0149707943560995 0.0186422448923756 0.0222662385306948 0.0258333256736017 0.0293340794862392 0.0327590996670822 0.0360990162080584 0.0393444931425513 0.0424862322797872 0.0455149769241112 0.0484215155776656 0.0511966856249889 0.0538313769980622 0.0563165358203363 0.0586431680282822 0.0608023429690169

0.0627851969725639 0.0645829368973219 0.0661868436473210 0.0675882756598612 0.0687786723621374 0.0697495575954688 0.0704925430057619 0.0709993313988528 0.0712617200593841 0.0712716040318917 0.0710209793627865 0.0705019463019362 0.0697067124625652 0.0686275959382091 0.0672570283754778 0.0655875580013963 0.0636118526041142 0.0613227024657904 0.0587130232464804 0.0557758588178718 0.0525043840457360 0.0488919075199819 0.0449318742312199 0.0406178681927653 0.0359436150070336 0.0309029843752992 0.0254899925498146 0.0196988047273101 0.0135237373829146 0.00695926054356603 0 与精确解比较:

两点边值问题的有限差分法

盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 学生实验报告 实验课程名称偏微分方程数值解 _________________ 开课实验室___________ 数统学院 ____________________ 学院数统年级2013专业班信计2班 学生姓名_________ 学号________ 开课时间2015至2016学年第2 学期

数学与统计学院制 .实验内容 考虑如下的初值问题: 定常数。 部分。 0, b 1 , p 3,r 1,q 2 , 0 , 1,问题(1)的精确解 ux x 2e x 1 , 及p 1,r 2,q 3带入方程(1)可得f x 。分别取 并能通过计算机语言编程实现。 .实验目的 通过该实验,要求学生掌握求解两点问题的有限差分法, 开课学院、实验室: 数统学院 实验时间:2016年 月 日 Lu d du x —p x ------------ dx dx du x dx q f x , x a, b (1) 其中 p x C 1 a,b , x ,q a,b P min 0 , q x 0 ,,是给 将区间N 等分, 网点x 1.在第三部分写出问题( 1)和 (2)的差分格式,并给出该格式的局部截断 2.根据你写出的差分格式, 编写一个有限差分法程序。将所写程序放到第四 3.给定参数a 其中将u x

N 10,20,40,80,160 ,用所编写的程序计算问题 (1)和⑵。将数值解记为 5 , i 1,...,N 1,网点处精确解记为i 1,…,N 1。然后计算相应的误差 1 l N /I 2 Nil h u i U i 2及收敛阶 n e : e 11,将计算结果填入 I i In 2 第五部分的表格,并对表格中的结果进行解释? 4.将数值解和精确解画图显示,每种网格上的解画在一张图。 三?实验原理、方法(算法)、步骤 1. 差分格式: L L .i=-1/h A 2O |] (% 曲汀—):i.「)/2h+w = 応=A,匕 2. 局部阶段误差: n (u)=O(hA2) 3. 程序 clear all N=10; a=0;b=1; P=@(x) 1; r=@(x) 2; q=@(x) 3; aIpha=0;beta=1; f=@(x) (4*xA2-2)*exp(x-1); h=(b-a)/N; H=zeros(N-1,N-1);g=zeros(N-1,1); % for i=1 H(i,i)=2*(p(a+(i+1/2)*h)+p(a+(i-1/2)*h))/h+2*h*q(a+i*h); max u i c 0 i N i i U i N e

大学物理演示实验报告

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨 道上滚的现象,使学生加深了解在重力 场中物体总是以降低重心,趋于稳定的 运动规律。 2.说明物体具有从势能高的位置向势能 低的位置运动的趋势,同时说明物体势 能和动能的相互转换。 【实验仪器】:锥体上 滚演示仪 【实验原理】:能量最 低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。 【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚; 2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.不要将锥体搬离轨道。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。 实验二避雷针 【实验目的】:气体放 电存在多种形式,如电晕放电、电弧放 电和火花放电等,通过此演示实验观察 火花放电的发生过程及条件。 【实验仪器】:高压电 源、一个尖端电极、一个球型电极及平 板电极。 【实验原理】:首先让 尖端电极和球型电极与平板电极的距离

相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 【实验步骤】: 1、将静电高压电源正、负极分别接在避雷针演示仪的上下金属板上,接通电源,金属球与上极板间形成火花放电,可听到劈啪声音,并看到火花。若看不到火花,可将电源电压逐渐加大。演示完毕后,关闭电源并放电。 2、用手按下绝缘柄,使顶端呈圆锥状(尖端)的金属物体,可听到金属球放电的声音明显减小,而尖端金属物体放电声音不断增大。可以看到尖端与上极板之间形成连续的一条放电火花细线。 3、让当尖端的金属缓慢下降,观察金属球何时发生明显放电现象。 4、演示完毕后,关闭电源并放电。 【注意事项】: 1、实验时,身体不能碰触仪器的金属部分。 2、实验过程中,应注意关闭电源后再对仪器进行相关操作。 3、实验完毕,应先关闭电源并及时放电。 实验三弹性碰撞仪 【实验目的】: 1、演示等质量球的弹性碰撞过程,加深 对动量原理的理解。 2、演示弹性碰撞时能量的最大传递。 3、使学生对弹性碰撞过程中的动量、能 量变化过程有更清晰的理解。 【实验仪器】:弹性碰 撞仪 【实验原理】:由动量 守恒和能量守恒原理可知:在理想情况 下,完全弹性碰撞的物理过程满足动量 守恒和能量守恒。当两个等质量刚性球 弹性正碰时,它们将交换速度。多个小 球碰撞时可以进行类似的分析。事实上, 由于小球间的碰撞并非理想的弹性碰 撞,还是有能量损失的,故最后小球还 是要静止下来。 【实验步骤】:

山东省日照市香河实验学校高二物理选修1-1人教版导学案:1.3生活中的静电现象

青岛五十八中高二物理选修1——1导学案 课题:《生活中的静电现象》导学案 课型:新授课时:1课时 2009年9月日 [学习目标]: 一.放电现象 二.雷电和避雷 三.静电的防止和应用 【课前预习与思考】阅读课本思考下列问题: 一.放电现象 问题:什么是放电现象?有哪些种类 二.雷电和避雷 问题:雷电属于哪一种放电现象?电荷分布与放电的关系? 三.静电的防止和应用 问题:静电有哪些表现?危害?怎么防止?应用? 【课堂点拨与交流】 一.放电现象 1.接地放电:.如果用导线将带电导体与地球相连,电荷将从带电体流向地球,直到导体带电特别少,可以认为它不再带电。 2.火花放电:当高压带电体与导体靠得很近时,强大的电场会使它们之间的空气瞬间电离,电荷通过电离的空气形成电流.由于电流特别大,产生大量的热,使空气发声发光,产生电火花.这种放电现象叫火花放电. 二.雷电和避雷 1.通常情况下空气是不导电的,但是如果电场特别强,空气分子中的正负电荷受到方向相反的强电场力,有可能被“撕”开,这个现象叫做空气的电离。 由于同种电荷相互排斥,导体上的静电荷总是分布在表面上,而且一般说来分布是不均匀的,导体尖端的电荷特别密集,所以尖端附近空气中的电场特别强,使得空气中残存的少量离子加速运动。这些高速运动的离子撞击空气分子,使更多的分子电离。这时空气成为导体,于是产生了尖端放电现象. 2. 闪电:带电云层之间或带电云层和地面之间发生强烈放电时,产生耀眼的闪光和巨响,这就是

闪电.闪电的放电电流可以高达几十万安培,会使建筑物遭受严重损坏.这就是雷击。 三.静电的防止和应用 为了避免雷击,人们设计了避雷针。静电的防止摩擦产生的静电,在生产生活上会给人们带来很多麻烦,甚至造成危害。●印刷厂里,纸页之间的摩擦起电,会使纸页粘在一起难于分开,给印刷带来麻烦。●印染厂里棉纱、毛线、人造纤维上的静电,会吸引空气中的尘埃,印染质量下降。●在制药生产中,由于静电吸引尘埃,会使药品达不到标准的纯度。●在电子计算机的机房中,人体带电可能妨碍电子计算机正常运行。●在家庭中,带静电很多的人从电视机旁走过,会给电视的图像和声音带来干扰。●静电荷积累到一定程度,会产生火花放电。在地毯上行走的人,与地毯摩擦而带的电如果足够多,他伸手去拉金属门把手时,手与金属把手间会产生火花放电,严重时会使他痉挛。●在空气中飞行的飞机,与空气摩擦而带的电在着陆过程中如果没有导走,地勤人员接近机身时,人与飞机间会产生火花放电,严重时能将人击倒。●静电对现代高精密度、高灵敏度的电子设备颇有影响。带静电很多的人甚至可以使那些灵敏、脆弱、小巧玲珑的电子器件因火花放电而被击穿,毁坏一部电子仪器。

两点边值问题的有限元解法【文献综述】

文献综述 信息与计算科学 两点边值问题的有限元解法 有限元方法已成为当前求解偏微分方程数值解的一个重要方法, 从数学上看, 这种方法起源于变分法, 是古典的变分法与分片多项式插值相结合的产物, 20世纪50年代初, 从事航空工程、土木结构、水利建设的工程师们开始应用和发展一种用离散模型代替连续模型的方法求解各种结构力学问题, 并且逐渐波及各个连续场领域, 1960年美国人Ray Clough教授首先给出了“有限元方法”]1[这一名称. Clough教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”, 即有限元法是Rayleigh Ritz法的一种局部化情况.不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法, 有限元方法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数), 且不考虑整个定义域的复杂边界条件, 这是有限元法优于其他近似方法的 原因之一.对于不同物理性质和数学模型的问题, 有限元求解法的基本步骤是相同的, 只是具体公式推导和运算求解不同.有限元求解问题的基本步骤通常为:首先讨论问题的求解域, 根据实际问题近似确定求解域的物理性质和几何区域.并求解域离散化, 将求解域近似为具有不同有限大小和形状且彼此相连的有限个单 元组成的离散域, 习惯上称为有限元网络划分; 然后确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示, 为适合有限元求解, 通常将微分方程化为等价的泛函形式;接下来进行单元推导:对单元构造一个适合的近似解, 即推导有限单元的列式, 其中包括选择合理的单元坐标系, 建立单元试函数, 以某种方法给出单元各状态变量的离散关系, 从而形成单元矩阵.最后将单元总装形成离散域的总矩阵方程, 反映对近似求解域的离散域的要求, 即单元函数的连续性要满足一定的连续条件.并联立方程组求解, 有限元法最终导致联立方程常用的求解方法如直接法、选代法和随机法.求解结果是单元结点处状态变量的近似值. 我国著名数学家冯康先生说过, 同一物理问题可以有许多不同的数学形式, 它们在数学上是等价的, 但在实践中并不等效, 从不同的数学形式可能导致不同的数值计算方法, 原问

高中物理-静电现象及其微观解释教案

高中物理-静电现象及其微观解释教案 【教学目的】 (1)掌握两种电荷,了解摩擦起电和感应起电,定性了解自然界仅有的两种电荷间的作用特点 (2)了解静电现象及其在生产和生活中的运用 (3)了解电荷守恒规律。能用原子结构和电荷守恒规律解释静电现象 【教学重点】 感应起电的方法和原理/电荷守恒定律 【教学难点】 感应起电的原理——运用电场有关知识,分析、推理出实验现象的成因 【教学媒体】 1. 实验器材:有机玻璃棒、丝绸、碎纸片、毛皮、橡胶棒、验电器、AB筒,摩擦起电机 2. 课件:视频——静电使长发飘起来;文档——人身静电高达七八千伏【来源:《新民晚报》】 【教学安排】 【新课导入】 演示摩擦起电机的人造闪电(激发学生的兴趣),让学生分析原因。这是一种静电现象,我们不少同学觉得电既神秘又危险,对电存在很多错误的认识,甚至觉得带电就不能碰。其实不然,播放视频——静电使长发飘起来。反之在某节目中主持人说电流电死人大约要1A左右,其实只要几个mA就能电死人了。所以作为现代生活在电器时代的我们更要好好学习电学。因为这不仅是常识,还是生存的能力。 人类从很早就认识了磁现象和电现象,例如我国在战国末期就发现了磁铁矿有吸引铁的现象。在东汉初年就有带电的琥珀吸引轻小物体的文字记载,但是人类对电磁现象的系统研究却是在欧洲文艺复兴之后才逐渐开展起来的,到十九世纪才建立了完整的电磁理论。 电磁学及其应用对人类的影响十分巨大,在电磁学研究基础上发展起来的电能生产和利用,是历史上的一次技术革命,是人类改造世界能力的飞跃,打开了电气化

时代的大门。 工农业生产、交通、通讯、国防、科学研究和日常生活都离不开电。在当前出现的新技术中,起带头作用的是在电磁学研究基础上发展起来的微电子技术和电子计算机。它们被广泛应用于各种新技术领域,给人们的生产和生活带来了深刻的变化。为了正确地利用电,就必须懂得电的知识。在初中我们学过一些电的知识,现在再进一步较深入地学习。 【新课内容】 (二) 研究两种电荷及摩擦起电的成因(主要是回顾初中的知识) 1. 实验一:用橡胶棒与毛皮摩擦后,放于碎纸片附近观察橡胶棒吸引碎纸片情况。 提问一:为什么橡胶棒会吸引碎纸片? 答:橡胶棒与丝绸摩擦后就带电了,带电物体会吸引轻小物体。 若将橡胶棒摩擦过的毛皮靠近碎纸片,会出现什么现象? 答:毛皮带上正电,也会吸引轻小物体。 教师用实验验证学生的判断。 提问二:注意观察带电橡胶棒吸引碎纸片情况,会发现被橡胶棒吸起的纸片中,较大的纸片先落下来,这是为什么? 答:带电体在空气中不断放电,使它带电量不断减少,因而吸引轻小物体的力也相应减小,所以较大纸片先落下来。 师:在初中的学习中,我们已经知道,自然界存在两种电荷,叫做正电荷与负电荷。用毛皮摩擦橡胶棒,用丝绸摩擦有机玻璃棒后,橡胶棒带负电,毛皮带正电,有机玻璃棒带正电,丝绸带负电。物体带电后,能吸引轻小物体,而且带电越多,吸引力就越大,这种摩擦起电是怎么形成的呢? 答:物体是由带正电的原子核和核外电子构成的。摩擦使物体中的正负电荷分开。(不带电物体,正负电荷等量)失去一些电子的物体带正电。得到一些电子的物体带负电。 师:对,我们可以看到这又是一个守恒的过程。即:电荷守恒:电荷不能创造,不能消灭,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分。反之,如果正电荷和负电荷相接触呢?

相关主题
文本预览
相关文档 最新文档