当前位置:文档之家› 滤波器的频率响应

滤波器的频率响应

滤波器的频率响应
滤波器的频率响应

无源低通滤波器的测量数据:

幅频特性:

有源低通滤波器的测量数据:

F(kHz) 0.1 0.2 0.5 0.8 1 2 3 f=4 U1(V) 1 1 1 1 1 1 1 1 U2(V) 1

1

1

1

0.99

0.95

0.90

0.83

F(kHz) 5 6 7 8 9 10 11 12 U1(V) 1 1 1 1 1 1 1 1 U2(V) 0.76

0.70

0.64

0.59

0.54

0.50

0.46

0.43

F(kHz) 0.1 0.2 0.5 0.8 1 2 2.5 3 f=4 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 1

1

1

1

1

0.98

0.975

0.97

0.94

F(kHz) 5 6 7 8 9 10 11 12 U1(V) 1 1 1 1 1 1 1 1 U2(V)

0.91

0.87

0.84

0.80

0.76

0.72

0.68

0.64

幅频特性:

无源高通滤波器的测量数据:

幅频特性:

F(kHz) 0.5 0.8 0.9 1 2 3 4 5 f=6 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.001

0.002

0.003

0.004

0.015

0.032

0.053

0.076

0.1

F(kHz) 10 20 30 40 50 60 70 80 U1(V) 1 1 1 1 1 1 1 1 U2(V)

0.20

0.42

0.58

0.69

0.77

0.82

0.86

0.89

有源高通滤波器的测量数据:

幅频特性:

无源带通滤波器的测量数据:

F(kHz) 0.5 0.8 0.9 1 2 3 4 5 f=6 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.001

0.002

0.003

0.004

0.015

0.034

0.059

0.091

0.12

F(kHz) 8 10 20 30 40 50 60 70 80 U1(V) 1 1 1 1 1 1 1 1 1 U2(V)

0.2

0.28

0.61

0.78

0.86

0.90

0.92

0.94

0.96

F(kHz) 0.5 1 2 3 5 10 f1=17.27 20 25 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.03

0.06

0.12

0.17

0.24

0.32

0.33

0.33

0.32

F(kHz) 30 f2=34.8 40 50 80 100 150 200 250 U1(V) 1 1 1 1 1 1 1 1 1 U2(V)

0.30

0.29

0.27

0.24

0.17

0.15

0.10

0.08

0.06

幅频特性:

有源带通滤波器的测量数据:

幅频特性:

F(kHz) 0.5 1 2 3 5 10 f1=17.27 20 25 U1(V) 1 1 1 1 1 1 1 1 1 U2(V) 0.03

0.06

0.13

0.19

0.3

0.62

0.94

0.99

0.98

F(kHz) 30 f2=34.8 40 50 80 100 150 200 250 U1(V) 1 1 1 1 1 1 1 1 1 U2(V)

0.91

0.82

0.74

0.60

0.38

0.30

0.20

0.15

0.12

无源带阻滤波器的测量数据:

幅频特性:

有源带阻滤波器的测量数据:

F(kHz )

1

f1= 3.76 5 10 15 18 20 22 24 25 U1(V) 1 1 1 1 1 1 1 1 1 1 U2(V) 0.97

0.71

0.58

0.23

0.03

0.06

0.12

0.17

0.21

0.23

F(kHz) 26 28 30 40 50 f2=67.45 90 100 150 U1(V) 1 1 1 1 1 1 1 1 1 U2(V)

0.25

0.29

0.32

0.47

0.58

0.71

0.81

0.84

0.92

F(kHz ) 1 2 f1=3.76 5 10 15 18 20 22 24 U1(V ) 1

1

1

1

1

1

1

1

1

1

U2(V ) 1 0.97 0.88

0.80

0.40 0.034 0.15 0.25 0.33 0.40

)(kHz F 26

28 30 40 50

f2=67.45

70 100 150

U1(V) 1 1 1 1 1 1 1 1 1

U2(V) 0.47 0.52 0.57 0.73 0.81 0.88 0.89 0.93 0.95 幅频特性:

第十一章电路的频率响应 习题答案

第十一章电路的频率响应 习题 一、选择题 串联谐振电路的 Q 值越高,则 (D ) (A) 电路的选择性越差,电路的通频带越窄 (B) 电路的选择性越差,电路的通频带越宽 (C) 电路的选择性越好,电路的通频带越宽 (D ) 电路的选择性越好,电路的通频带越窄 串联电路谐振时,L 、C 储存能量的总和为 (D ) (A) W = W L + W C = 0 (B) 22 1 LI W W W C L =+= (C) 2 2 1C C L CU W W W =+= (D ) 2C C L CU W W W =+= 3.R L C 串联电路发生串联谐振时,下列说法不. 正确的是: (D ) A .端电压一定的情况下,电流为最大值 B .谐振角频率LC 10= ω C .电阻吸收有功功率最大 D .阻抗的模值为最大 4. RLC 串联电路在0f 时发生谐振。当电源频率增加到02f 时,电路性质呈 (B ) A. 电阻性 B . 电感性 C. 电容性 D. 视电路元件参数而定 5.下面关于RLC 串联谐振电路品质因数的说法中,不正确的是 (D ) A. 品质因数越高,电路的选择性越好 B. 品质因数高的电路对非谐振频率的电流具有较强的抵制能力 C. 品质因数等于谐振频率与带宽之比 D . 品质因数等于特性感抗电压有效值与特性容抗电压有效值之比 串联谐振电路品质因数Q=100,若U R =10V ,则电源电压Us 、电容两端电压U C 分别为 ( A ) 、1000V B. 1000V 、10V C. 100V 、1000V D. 1000V 、100V 二、判断题

1.图示电路,R << 0L,保持U S 一定,当发生谐振时,电流表的读数最小。 (×) 串联电路发生谐振时,电源输出的有功功率与无功功率均为最大。(×) 3.图示RLC串联电路,S闭合前的谐振频率与品质因数为f0与Q, S闭合后 的谐振频率与品质因数为f 0'与Q ',则 f f' =,Q < Q '。(×) 并联的交流电路中,当改变电路频率出现谐振时,则此时电路端口的阻抗值最小。(×) 4.若RLC串联谐振电路的电感增加至原来的4倍(R、C不变),则谐振角频率应变为原来的2倍。(×) 三填空题 1.图示电路,当发生串联谐振时,其谐振频率f 0= ( C M L L) 2 ( 2 1 2 1 + + π )。 2.电感L= 50mH与电容C= 20F并联,其谐振角频率 = ( 1000rad/s );其并联谐振时的阻抗Z = ( )。 串联电路如下图所示,则电路的谐振角频率 = ( 500rad/s ),电路的品质因数Q = ( 100 )。

频响指标以及测试方法

频响 频率响应 简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。同失真一样,这也是一个非常重要的参数指标。一个“完美”的 交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大 率,并且对于相应的负载具有同等的驱动能力。显然这在目前技术水平下是完全不可能的,那么 针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大 器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围 内的频率的信号。这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz, 也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。实际上,根据研究表明, 高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影 响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放 大器甚至会达到0.1~数百KHz。 但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们 连这样的要求也不可能达到。于是,就有了“频响”这个指标。(附言:指标本身就代表着“不 完美”,如果一切都“完美”了,指标也就没有存在的理由了。) 放大器有两种失真:线性失真和非线性失真。我们通常把后者叫做“失真”,而把前者用其它方 式表达出来。非线性失真我们已经知道了是一种什么情况了。而线性失真就是指频率和相位方面 的“误差”,即频率失真和相位失真。 频率失真及其产生原因 频率失真是一种“线性失真”,意思是说,发生这种失真时放大器的输出信号波形和输入波形仍 然是“相似形”,它不会使放大器对要处理的信号产生“形变”。一个单纯的频率失真可以看成 放大器对于不同频率的信号放大倍数不同,例如,1个十倍放大器,对1KHz的信号的放大倍数是10 倍,而对于10KHz的交流信号可能放大倍数就变成了9.99倍,于是,我们就可以说这台放大器有频

扬声器单元频响曲线的测量

扬声器单元频响曲线的测量 Gate 法测量 所谓 Gate 法,就是对测量信号设置一个时间窗,软件的只在时间窗限定的时间段进行信号的采集, 也就是说,如果我们正确的设置了时间窗,在反射声到达 MIC 之前截至测量,那么,软件接受的就只有测量信号的直达声,并能够绘制正确的频响曲线。请看下图。 图一 图中 A 为直达声, B 为反射声,只要在 A 到达而 B 还未到达的这段时间进行测量,就能够正确测量出频响曲线,时间窗就是软件屏蔽掉反射声的一个手段,也就是Gate 法。看下图

图二 图二就是时间窗设定的对话框,在菜单/Options/Preferences… 中, Time 框中“ Visible ”为时间窗可见,第一个时间是时间窗的起始点,第二个时间是时间窗的终结。请看下图

图三 图二的时间窗的设定就是根据图三的这张脉冲信号进行设定的。图中第一个红线之前的不是直达声, 所以被屏蔽掉了, 4—5毫秒之间的那个很大的脉冲就是直达声,接下来看第二根红线后面紧跟一个较小的脉冲但很明显,那就是反射声,这样在图三两根红线之间就只剩下直达声了,软件中一些用到 Gate 法测量的曲线如:On Axis, 30 Degrees, 60 Degrees等,都是在时间窗限定的时间段内完成测量并绘制曲线的。所以,如何正确的设定时间窗是 Gate 法的关键。 首先,对所测单元或箱体进行一个脉冲信号的测量,将硬件按照频响曲线测量的连接方式进行连接, 软件方面,先调出所测资源 (单元或箱体 ,选择菜单的 Measure/Pulse response,这样,软件对应所测资源生成一个脉冲信号,因为本例使用的是 f5单元,所以图三信号的名称为 f5.Pulse 。调出刚测出的脉冲信号,由于脉冲的幅度相当小,刚调出时可能看不到,先 zoom out,然后用鼠标在 0附近画框,不断的放大, 直到看到较明显的脉冲信号为止, 调整到像图三一样容易分析为止。按照上面的设

控制系统的校正研究——频率响应法

论文题目:控制系统的校正研究——频率响应法 专业: 电子信息工程专业 姓名:签名:________ 指导老师:签名: ________ 摘要 摘要:近年来,自动控制系统在如今的工业和生活中,起着越来越重要的作用。所以,据用户要求的性能指标进行自动控制系统的串联校正设计有很重要的现实意义。对于给定的线性定常系统,通常通过加入串联超前、滞后或超前滞后综合校正装置,以达到提高系统的精度和稳定性的目的。该文分别给出基于频率特性法串联校正的具体设计方法,应用MATLAB对系统进行通用程序设计,并对实例进行仿真。仿真实例结果表明了此设计方法的有效性和实用性。 【关键词】:自动控制系统;频率响应法;MATLAB;伯德图 【论文类型】:理论研究型

Title:Correction of control system——Frequency response method Major: Electronic & Information Engineering Name:Signature: Supervisor:Signature: In recent years, automatic control systems play an increasingly important role in today's industrial and domestic.Therefore, the performance according to user requirements for the automatic control system series correcting design has a very important practical significance. For a given linear time-invariant systems, usually by joining the series ahead of lag or lead and lag correction device, in order to achieve the purpose to improve the accuracy and stability of the system. This paper gives specific design series based on the frequency characteristics correction, MATLAB system for generic programming, and simulation instance. The simulation results show the effectiveness and practicality of this design method. 【key word】:Automatic control system;Frequency response method,MATLAB;Bode diagram 【Type of Thesis】:Theory research

邱关源《电路》第五版第11章-电路的频率响应

重点 1. 网络函数 2. 串、并联谐振的概念; 11.1 网络函数 当电路中激励源的频率变化时,电路中的感抗、容抗将跟随频率变化,从而导致电路的工作状态亦跟随频率变化。因此,分析研究电路和系统的频率特性就显得格外重要。 ● 频率特性:电路和系统的工作状态跟随频率而变化的现象,称为电路和系统的频率特性,又称频率响应。 1. 网络函数H (j ω)的定义 在线性正弦稳态网络中,当只有一个独立激励源作用时,网络中某一处的响应(电压或电流)与网络输入之比,称为该响应的网络函数。 ) ()()(ωωωj E j R j H def ??= 2. 网络函数H (j ω)的物理意义 ● 驱动点函数(同一点处的电压电流的函数关系) 激励是电流源,响应是电压 ) j ()j ()j (ωωωI U H &&= 策动点阻抗 激励是电压源,响应是电流 ) j ()j ()j (ωωωU I H &&= 策动点导纳 ● 转移函数(传递函数,不同点处的电流电压关系) a. 激励是电压源 )j ()j ()j (1 2ωωωU I H &&= (转移导纳) ) j ()j ()j (12ωωωU U H &&= (转移电压比) b. 激励是电流源

)j ()j ()j (12ωωωI U H &&= (转移阻抗) ) j ()j ()j (12ωωωI I H &&= (转移电流比) 注意: 1. H(j ω)与网络的结构、参数值有关,与输入、输出变量的类型以及端口对的相互位置有关,与输入、输出幅值无关。因此网络函数是网络性质的一种体现。 2. H(j ω) 是一个复数,它的频率特性分为两个部分: 幅频特性:模与频率的关系 ωω|~)(j |H 相频特性:幅角与频率的关系 ωω?~)(j 3. 网络函数可以用相量法中任一分析求解方法获得。 注意: ● 以网络函数中j ω的最高次方的次数定义网络函数的阶数。 ● 由网络函数能求得网络在任意正弦输入时的端口正弦响应,即有 ) j ()j ()j (ωωωE R H &&= → )j ()j ()j (ωωωE H R &&=

频响特性

5.1 选择题(每小题可能有一个或几个正确答案,将正确的题号填入( )内) 1.若一因果系统的系统函数为011 10111)(b s b s b s b a s a s a s a s H n n n n m m m m ++++++=---- ,则有如下结论—————————— ( 2 ) (1) 若)2,,1,0(0>=>n n i b i 且 ,则系统稳定。 (2) 若H (s )的所有极点均在左半s 平面,则系统稳定。 (3) 若H (s )的所有极点均在s 平面的单位圆内,则系统稳定。 2.一线性时不变因果系统的系统函数为H (s ),系统稳定的条件是—— (3、4 ) (1) H (s )的极点在s 平面的单位圆内; (2) H (s )的极点的模值小于1; (3) H (s )的极点全部在s 平面的左半平面; (4) H (s )为有理多项式。 3.根据图示系统信号流图,可以写出其转移函数H (s )= ) () (s X s Y ————( 2 ) X (s Y (s ) (1) c s a s b +-/1/ (2)a s b cs -+ (3)??? ??-ab c s 11 (4)?? ? ??-+a c b s 11 4.线性系统响应的分解特性满足以下规律————( 2、3 ) (1) 若系统的起始状态为零,则系统的自由响应为零; (2) 若系统的起始状态为零,则系统的零输入响应为零; (3) 若系统的零状态响应为零,则强迫响应亦为零; (4) 一般情况下,零状态响应与系统特性无关。 5.系统函数H (s )与激励信号X (s )之间——( 2 ) (1)是反比关系; (2)无关系; (3)线性关系; (4)不确定。 6.线性时不变系统输出中的自由响应的形式由——————( 1 )决定 (1)系统函数极点的位置; (2)激励信号的形式; (3)系统起始状态; (4)以上均不对。 5.2 是非题(下述结论若正确,则在括号内填入√,若错误则填入×) 1.若已知系统函数) 1(1 )(+=s s s H ,激励信号为)()(2t u e t x t -=,则系统的自由响

线性控制系统的频率响应分析

一.实验目的 1.了解和掌握对数幅频曲线和相频曲线(波德图)、幅相曲线(奈奎斯特图)的构造及绘制方法。 2.二阶开环系统中的相位裕度和幅值穿越频率的计算。 二.实验内容及要求 1.一阶惯性环节的频率特性曲线测试。 2.二阶开环系统的频率特性测试,研究表征系统稳定程度的相位裕度和 幅值穿越频率对系统的影响。 三、实验主要仪器设备和材料 1.labACT自控/计控原理实验机一台 2.数字存储示波器一台 四、实验方法、步骤及结果测试 1.一阶惯性环节的频率特性曲线 惯性环节的频率特性测试模拟电路见图4-1。 图4-1 惯性环节的频率特性测试模拟电路 实验步骤:注:‘S ST'不能用“短路套”短接! (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)按图4-1安置短路套及测孔联线。 (3)运行、观察、记录: ①运行LABACT程序,选择自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择一阶系统,再选择开始实验,点击开始,实验机将自动产生0.5Hz~64Hz多个频率信号,测试被测系统的频率特性,等待将近十分钟,测试结束。 ②测试结束后,可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈 奎斯特图),同时在界面上方将显示点取的频率点的L、、Im、Re等相关数

据。如点击停止,将停止示波器运行,不能再测量数据。 ③分别改变惯性环节开环增益与时间常数,观察被测系统的开环对数幅频曲线、相频曲线及幅相曲线,在幅频曲线或相频曲线上点取相同的频率点,测量、记录数据于实验数据表中。 实验数据表1:改变惯性环节开环增益,(T=0.05,C=1u,R2=50K) 实验数据表2: 改变惯性环节时间常数, K=1(R1=50K、R2=50K) 2.二阶开环系统的频率特性曲线 二阶系统模拟电路图的构成如图4-2所示。

频响曲线实例

浅谈耳机频响曲线及其作用 对于非耳机行业的朋友来说频响曲线大家觉得比较陌生且较神秘。大家也喜欢说的一句话,管它什么曲线,耳朵收货即可。其实对于不是从事此行业的朋友,没兴趣的话其实没必要学浪费时间去了解自己不喜欢的东西,有兴趣的话多了解一些也没什么坏处。 一、认识频响曲线: 频率响应简称频响,英文名称是Frequency Response。频响曲线简单说就是通过电声测试仪内的信号发生器的输出稳定的电压及产生连续变化的频率(即扫频),通过耳机发出声音由L、R传声器输入回到电声测试仪处理,然后通过显示器显示出各频点的声压(或电平)形成的曲线。(如图一、二、三、六) 图一

图二

图三 国际电工委员会IEC581-10标准中高保真耳机频率响应不小于50Hz--12500Hz。目前市场上的耳机基本上频率响应范围20-20KHZ,有些优秀的耳机甚至达到6-51KHZ(Sennheiser HD800)。人耳能听到的频率范围20-20KHZ,低于20HZ次声波,高于20KHZ超声波,超出20-20KHZ人耳不易察觉。我们常说耳机低、中、高三频,根据国际电工协会IEC581-10标准,和我国的GB/T14277-93国家标准, 频段划分为: 30-150Hz为低频段, 150-500Hz为中低频段, 500-5KHz为中高频段, 5K-16KHz高频段。在20-20kHZ中如果细分可为7个频段,分别:极低频、低频、中低频、中频、中高频、高频、极高频。耳机各乐器和人声对应频率范围见如下图(图四),从下图可看出,低频比较典型的乐器大鼓,延伸到高频乐器如钢琴、管风琴、小提琴等等,还有乐器的泛音也是落在高频。中频范围

教你看懂音箱测频响曲线

教你看懂音箱测频响曲线

————————————————————————————————作者:————————————————————————————————日期:

前言: 声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。那么曲线与最终的回放听感有什么联系呢?我们立刻进入正题,为大家揭示其中的奥秘。 声卡的频响曲线: 在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。 Frequency response(频率响应) [url=https://www.doczj.com/doc/773412319.html,/images/html/viewpic_pconline.htm?http://img3.pconlin https://www.doczj.com/doc/773412319.html,/pcon ... iy&subnamecode=home] [/url] General performance: Excellent Frequency range Response From 20 Hz to 20 kHz, dB -0.00, +0.01 From 40 Hz to 15 kHz, dB -0.00, +0.00 上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。

第四章控制系统的频率特性

第四章控制系统的频率特性 本章要点 本章主要介绍自动控制系统频域性能分析方法。内容包括频率特性的基本概念,典型环节及控制系统Bode图的绘制,用频域法对控制系统性能的分析。 用时域分析法分析系统的性能比较直观,便于人们理解和接受。但它必须直接或间接地求解控制系统的微分方程,这对高阶系统来说是相当复杂的。特别是当需要分析某个参数改变对系统性能的影响时,需反复重新计算,而且还无法确切了解参数变化量对系统性能影响的程度。而频率特性不但可以用图解的方法分析系统的各种性能, 而且还能分析有关参数对系统性能的影响,工程上具有很大的实用意义。 第一节频率特性的基本概念 一、频率特性的定义 频率特性是控制系统的又一种数学模型,它是系统(或元件)对不同频率正弦输入信号的响应特性。对线性系统,若输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但是输出信号的幅值和相位一般不同于输入量,如图4-1。 若设输入量为r(t)=A「sin( 3 t+ u r) 其输出量为c(t)=A c sin@ t+ u c) 若保持输入信号的幅值A r不变,改变输入信号的角频率3,则输出信号的角频率 也变化,并且输出信号的幅值和相位也随之变化。 图4-1控制系统的频率响应

我们定义系统(或环节)输出量与输入量幅值之比为幅值频率 特性,简称幅频 M( 3 )表示。输出量与输入量的相位差为相位频率特 3变化,常用U (3 )表示。其数学定义为 M "A U ( 3 )= U c - U 幅频特性和相频特性统称为频率特性,用 G(j 3 )表示。由此,幅频特性 M( 3 )又可 表示为|G(j ;i ),相频特性u (3 )又可表示为Z G(j ■),三者可表示成下面的形式: G(j a )=|G(j m )|Z G(j s ) M (co ) = G(jco) 「()二/G( j ?) 二、频率特性与传递函数的关系 频率特性和传递函数之间存在密切关系:若系统(或元件)的传递函数为 G(s), 则其频率特性为 G(j 3 )。这就是说,只要将传递函数中的复变量 s 用纯虚数j 3代替, 就可以 得到频率特性。即 G(s) > G(j ■) 三、频率特性的表示方法 1 .数学式表示法 频率特性是一个复数,所以它和其他复数一 | 样,可以表示为极坐标式、直角坐标和指数坐标 三种形式。见图 4-2所示。 G(j ?)二 G(j J- G(j ) 二U (■) jVC ) -M ( )e j () 显然, M =|G( j ⑷)| 2 (co )+V 2?) w G(j "arcta 说 例4-1写出惯性环节的幅频特性、相频特性和频率特性。 特性,它随角频率 3变化,常用 性,简称相频特性,它也随角频率 其中 图4-2频率特性的表示方法

(完整版)第十一章电路的频率响应

第十一章 电路的频率响应 11-1 网络函数 11-2 RLC 串联电路的谐振 11-3 RLC 串联电路的频率响应 11-4 RLC 并联谐振电路 11-5 波特图 11-6 滤波器简介 重点 1. 网络函数 2. 串、并联谐振的概念 11-1 网络函数 当电路中激励源的频率变化时,电路中的感抗、容抗将跟随频率变化,从而导致电路的工作状态亦跟随频率变化。因此,分析研究电路和系统的频率特性就显得格外重要。 频率特性 电路和系统的工作状态跟随频率而变化的现象,称为电路和系统的频率特性,又称频率响应。 1. 网络函数H (j ω)的定义 在线性正弦稳态网络中,当只有一个独立激励源作用时,网络中某一处的响应(电压或电流)与网络输入之比,称为该响应的网络函数。 def (j )(j )(j ) R H E ωωω=

2. 网络函数H(j ω)的物理意义 ⑴ 驱动点函数 激励是电流源,响应是电压 策动点阻抗 激励是电压源,响应是电流 策动点导纳 ⑵ 转移函数(传递函数) 激励是电压源 转移导纳 转移电压比 (j ) I ω(j U 1(U 1(j )I ω(j )(j )(j ) U H I ωωω= (j )(j )(j ) I H U ωωω= 21(j )(j )(j )I H U ωωω= 21(j ) (j )(j ) U H U ωωω=

激励是电流源 转移阻抗 转移电流比 注意 ①H(j ω)与网络的结构、参数值有关,与输入、输出变量的类型以及端口对的相互位置有关,与输入、输出幅值无关。因此网络函数是网络性质的一种体现。 ②H(j ω) 是一个复数,它的频率特性分为两个部分: 幅频特性 :模与频率的关系 ()H j ωω - 相频特性:幅角与频率的关系 ()j ?ωω - ③网络函数可以用相量法中任一分析求解方法获得。 例1-1 求图示电路的网络函数 2 S I U ? ? 和 L S U U ? ? 解:列网孔方程解电流 _ 2 I 1 I 21(j ) (j )(j ) U H I ωωω= 21(j ) (j )(j ) I H I ωωω= 12s 12(2j )22(4j )0 I I U I I ωω?+-=??-++=??s 2224(j )j6U I ωω = ++

第三章 系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

频率响应的波特图分析

《模拟集成电路基础》课程研究性学习报告频率响应的波特图分析

目录 一.频率响应的基本概念 (2) 1. 概念 (2) 2. 研究频率响应的意义 (2) 3. 幅频特性和相频特性 (2) 4. 放大器产生截频的主要原因 (3) 二.频率响应的分析方法 (3) 1. 电路的传输函数 (3) 2. 频率响应的波特图绘制 (4) (1)概念 (4) (2)图形特点 (4) (3)四种零、极点情况 (4) (4)具体步骤 (6) (5)举例 (7) 三.单级放大电路频率响应 (7) 1.共射放大电路的频率响应 (7) 2.共基放大电路的频率响应 (9) 四.多级放大电路频响 (10) 1.共射一共基电路的频率响应 (10) (1)低频响应 (11) (2)高频响应 (12) 2.共集一共基电路的频率响应 (13) 3.共射—共集电路级联 (14) 五.结束语 (14)

一.频率响应的基本概念 1.概念 我们在讨论放大电路的增益时,往往只考虑到它的中频特性,却忽略了放大电路中电抗元件的影响,所求指标并没有涉及输入信号的频率。但实际上,放大电路中总是含有电抗元件,因而,它的增益和相移都与频率有关。即它能正常工作的频率范围是有限的,一旦超出这个范围,输出信号将不能按原有增益放大,从而导致失真。我们把增益和相移随频率的变化特性分别称为幅频特性和相频特性,统称为频率响应特性。 2.研究频率响应的意义 通常研究的输入信号是以正弦信号为典型信号分析其放大情况的,实际的输入信号中有高频噪声,或者是一个非正弦周期信号。例如输入信号i u 为方波,s U 为方波的幅度,T 是周期, 0/2ωπ=T ,用傅里叶级数展开,得...)5sin 5 1 3sin 31(sin 22000++++= t t t U U u s s i ωωωπ 各次谐波单独作用时电压增益仍然是由交流通路求得,总的输出信号为各次谐波单独作用时产生的输出值的叠加。但是交流通路和其线性化等效电路对低频、中频、高频是有差别的,这是因为放大电路中耦合电容、旁路电容和三极管结电容对不同频率的信号的复阻抗是不同的。电容C 对K 次谐波的复阻抗是C jK 0/1ω,那么,放大电路对各次谐波的放大倍数相同吗?放大电路总的输出信号能够再现输入信号的变化规律吗?也就是放大电路能够不失真地放大输入信号吗?为此,我们要研究频率响应。 3.幅频特性和相频特性 幅频特性:放大电路的幅值|A|和频率f(或角频率ω)之间的关系曲线,称为幅频特性曲线。由于增益是频率的函数,因此增益用A (jf )或A (ωj )来表示。在中频段增益根本不随频率而变化,我们称中频段的增益为中频增益。在中频增益段的左、右两边,随着频率的减小或增加,增益都要下降,分别称为低频增益段和高频增益段。通常把增益下降到中频增益的0.707倍(即3dB )处所对应的频率称为放大电路的低频截频(也称下限频率)L f 和高频截频(也称上限频率)H f ,把L H f f BW -=称为放大器的带宽。 相频特性:放大电路的相移?和频率f(或角频率ω)之间的关系曲线,称为相频特性曲线。

邱关源《电路》第五版第11章-电路的频率响应复习过程

邱关源《电路》第五版第11章-电路的频 率响应

仅供学习与交流,如有侵权请联系网站删除 谢谢2 重点 1. 网络函数 2. 串、并联谐振的概念; 11.1 网络函数 当电路中激励源的频率变化时,电路中的感抗、容抗将跟随频率变化,从而导致电路的工作状态亦跟随频率变化。因此,分析研究电路和系统的频率特性就显得格外重要。 ● 频率特性:电路和系统的工作状态跟随频率而变化的现象,称为电路和系统的频率特性,又称频率响应。 1. 网络函数H (j ω)的定义 在线性正弦稳态网络中,当只有一个独立激励源作用时,网络中某一处的响应(电压或电流)与网络输入之比,称为该响应的网络函数。 )() ()(ωωωj E j R j H def ??= 2. 网络函数H (j ω)的物理意义 ● 驱动点函数(同一点处的电压电流的函数关系) 激励是电流源,响应是电压 )j ()j ()j (ωωωI U H = 策动点阻抗 激励是电压源,响应是电流

仅供学习与交流,如有侵权请联系网站删除 谢谢 3 ) j ()j ()j (ωωωU I H = 策动点导纳 转移函数(传递函数,不同点处的电流电压关系) a. 激励是电压源 ) j ()j ()j (12ωωωU I H = (转移导纳) )j ()j ()j (1 2ωωωU U H = (转移电压比) b. 激励是电流源 ) j ()j ()j (12ωωωI U H = (转移阻抗) )j ()j ()j (1 2ωωωI I H = (转移电流比) 注意: 1. H(j ω)与网络的结构、参数值有关,与输入、输出变量的类型以及端口对的相互位置有关,与输入、输出幅值无关。因此网络函数是网络性质的一种体现。 2. H(j ω) 是一个复数,它的频率特性分为两个部分: 幅频特性:模与频率的关系 ωω|~)(j |H 相频特性:幅角与频率的关系 ωω?~)(j 3. 网络函数可以用相量法中任一分析求解方法获得。

频率响应介绍_频率响应概念

频率响应介绍_频率响应概念 频率响应是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系称为频率响应。也是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应,也叫频率特性。在额定的频率范围内,输出电压幅度的最大值与最小值之比,以分贝数(dB)来表示其不均匀度。频率响应在电能质量概念中通常是指系统或计量传感器的阻抗随频率的变化。 频率响应确定方法分析法基于物理机理的理论计算方法,只适用于系统结构组成易于确定的情况。在系统的结构组成给定后,运用相应的物理定律,通过推导和计算即可定出系统的频率响应。分析的正确程度取决于对系统结构了解的精确程度。对于复杂系统,分析法的计算工作量很大。 实验法频率响应图册采用仪表直接量测的方法,可用于系统结构难以确定的情况。常用的实验方式是以正弦信号作为试验信号,在所考察的频率范围内选择若干个频率值,分别测量各个频率下输入和稳态输出正弦信号的振幅和相角值。输出与输入的振幅比值随频率的变化特性是幅频特性,输出与输入的相角差值随频率的变化特性是相频特性。 频率响应性能系统的过渡过程与频率响应有着确定的关系,可用数学方法来求出。但是除一阶和二阶系统外,这样做常需要很多时间,而且在很多情况下实际意义不大。常用的方法是根据频率响应的特征量来直接估计系统过渡过程的性能。频率响应的主要特征量有:增益裕量和相角裕量、谐振峰值和谐振频率、带宽和截止频率。 增益裕量和相角裕量它可提供控制系统是否稳定和具有多大稳定裕量的信息。 谐振峰值Mr和谐振频率rMr和r规定为幅频特性|G(j)|的最大值和相应的频率值。对于具有一对共轭复数主导极点(见根轨迹法)的高阶线性定常系统,当Mr值在(1.0~1.4)M0范围内时,可获得比较满意的过渡过程性能。其中M0是=0时频率响应的幅值。r的大小表征过渡过程的快速性:r值越大,系统在单位阶跃作用下输出响应的快速性越好。带宽和截止频率截止频率c规定为幅频特性|G(j)|达到0.7M0并继续下降时的临界频率。

频响曲线

扬声器的频率特性 扬声器的锥盆具有一定的刚性,它在低频段可以看做一个刚体,但当扬声器的工作频率增高时,扬声器的锥盆就不再是一个刚体,锥盆将出现分割运动。此外扬声器的锥盆和折环在振动叶还会出现相互干扰的现象。由于这些原因,当我们将不同频率的音频信号输给扬声器单元时,虽然音频信号电压保持不变,扬声器单元辐射出的声压却随着信号频率的不同而变化。扬声器的频率特性揭示了扬声器单元对不同频率的声波的辐射能力,因此,它是扬声器的重要参数之一,扬声器的频率特性可以通过频响曲线,有效频率范畴,不均匀度这三个方面综合表示。 扬声器的频响曲线 频响曲线是一条记录在频宽为5CM或10CM纸上的连续不规则的曲线,记录纸上的X轴表示输入扬声器单元的电信号频率,Y轴表示被测扬声器单元在不同频率范围的电信号时所产生的声压级,我们人耳可以听到的声压级范围相当大,从耳朵刚能听到的到耳朵感到疼痛时的声压级上下相差一百万倍,如此宽大的声压级变化范围直接用声压进行测量和比较是十分的不利的。人们在试验中发现,人耳的听觉特性具有指数特性能,用指数形式来表示声压级大小,从客观上也能符合人的听觉分辨力。声压级的单位是分贝(DB)它在音响技术中是一个相当有用的度量单位。某一发声体的声压级可用该发声体所产生的有效的声压P 与基准声压PR的比值常用对数乘以20来表示。这里的基准声压是大多数听力正常的人刚能听到频率为1000HZ的声音时该声音的声压,我们通常将人耳刚能听到的声压定为0DB,那么我们感觉到震耳欲聋时的声压级只有140DB,由此可见对数形式表示打印机的大小可以使声压级测量的比较变得十分的简单。扬声器的频响曲线大多都在消声室测得的,被测扬声器放在固定的消声室的障板上测量话筒放置在被测扬声器的同轴上,目前大多数的扬声器的频响曲线上在1M1W 的条件下测得的,信号发生器的输出信号经功率放大器放大反馈送到被测扬声器,被测扬声器辐射出的声信号被测量话筒接收后转变成为电信号经测量放大器处理后送至点评记录仪。当信号发生器的输出信号频率发生变化时,扬声器声压发生的相应的变化就同步的记录在电平记录仪上,这就是测扬声器的频响曲线。

教你看懂音箱测试的频响曲线

前言: 声音信号是由不同频率的声波叠加而成的,因此人们在分析声音时就很难避开频率问题。发烧友们常说“有好曲线未必有好声”,但是更多的情况是“没有好曲线的产品声音肯定好不到哪里去”。那么曲线与最终的回放听感有什么联系呢我们立刻进入正题,为大家揭示其中的奥秘。 声卡的频响曲线: 在声卡评测中,我们常用到回路测试法对声卡的输入输出回路进行音质测试,得出的曲线就是DAC到ADC的回路频响。 Frequency response(频率响应) [url= ... iy&subnamecode=home] [/url] General performance: Excellent Frequency range Response From 20 Hz to 20 kHz, dB, + From 40 Hz to 15 kHz, dB, + 上图和上表就是频率响应曲线图和曲线品质,要知道什么是好曲线就应该知道理想的频响曲线是什么样的。理想的频率响应曲线应该是与输入信号完全一样的曲线,一般我们会用

等响信号(各频段的声压相同)作为输入信号,因此理想的频响曲线就应该是尽可能平直平滑的曲线。 对于声卡来说,采样规格有两个参数,一是采样频率,另一个是采样精度,采样频率表示一秒钟内在收到的信号上取几次参数,单位为Hz;而采样精度则表示每次采样的精密程度,单位为bit。目前有很多不同的采样方式,而影响采样品质的还是由这两个基本参数决定的。不过根据采样以及编码方式的不同,两者间的侧重要求也不一样,目前采用的PCM 方式最高规格为192kHz/24bit,它表示单位时间内会采样192000次,每次采样的精度为24bit。 上图即是采用PCM编码方式192kHz/24bit的采样结果。一般的,随着采样规格的提高,即便不提高硬件水准,曲线也会变得相对更理想。我们可以看到,从20Hz~30kHz的范围内,曲线都是相当平直的。下面的成绩表也列出了测试参数,20 Hz to 20 kHz的曲线变化仅为, +(dB);而40 Hz to 15 kHz则更为理想,精度范围内没有侦测出任何变形,是一条相当理想的频响曲线。 2回顶部 音箱的频响曲线: 一般音箱的频响曲线是通过LMS电声测试系统进行声音信号的收集以及描绘出图。由于音箱是由电信号转换为声波信号然后再由LMS收集后转变为电信号的,并且由于扬声器以及放大器的非线性,因此曲线很难做到与声卡一样的频响曲线。但是他们的要求还是类似的,频响曲线应该尽可能的平滑平直。

信号与系统连续时间系统的频率响应

实验报告 实验名称:连续时间系统的频率响应

一、实验目的: 1 加深对连续时间系统频率响应理解; 2 掌握借助计算机计算任意连续时间系统频率响应的方法。 二、实验原理: 连续时间系统的频率响应可以直接通过所得表达式计算,也可以通过零极点 图通过用几何的方法来计算,而且通过零极点图可以迅速地判断系统的滤波特 性。 根据系统函数H(s)在s平面的零、极点分布可以绘制频响特性曲线,包括幅 频特性 H(jw) 曲线和相频特性?(w)曲线。这种方法的原理如下: 假定,系统函数H(s)的表达式为 当收敛域含虚轴时,取s = jw,也即在s平面中,s沿虚轴从- j∞移动到+ j∞时, 得到 容易看出,频率特性取决于零、极点的分布,即取决于Zj 、Pi 的位置,而式中K 是系数,对于频率特性的研究无关紧要。分母中任一因子(jw- Pi )相当于由极点 p 引向虚轴上某点 jw的一个矢量;分子中任一因子(jw-Zj)相当于由零点Zj引至虚轴上某点 jw的一个矢量。 在右图示意画出由零点Zj和极点 Pi 与 jw点连接构成的两个矢量,图中Nj、Mi 分别表示矢量的模,ψj、θi 表示矢量的辐角(矢量与正实轴的夹角,逆时针为正)。对于任意零点Zj 、极点Pi ,相应的复数因子(矢量)都可表示为: 于是,系统函数可以改写为

当ω延虚轴移动时,各复数因子(矢量)的模和辐角都随之改变,于是得出幅频特性曲线和相频特性曲线。这种方法称为s 平面几何分析。通过零极点图进行计算的方法是: 1 在S 平面上标出系统的零、极点位置; 2 选择S 平面的坐标原点为起始点,沿虚轴向上移动,计算此时各极点和零点与该点的膜模和夹角; 3 将所有零点的模相乘,再除以各极点的模,得到对应频率处的幅频特性的值; 4 将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。 三、实验内容 用 C 语言编制相应的计算程序进行计算,要求程序具有零极点输入模块, 可以手工输入不同数目的零极点。 计算频率从0~5频段的频谱,计算步长为0.1,分别计算上面两个系统的幅频特性和相频特性,将所得结果用表格列出,并画出相应的幅频特性曲线和相频特性曲线。 判断所给系统的滤波特性,对于带通滤波器,计算出 3dB 带宽的起始频点和结束频点;对于低通或高通滤波器,计算出3dB 带宽的截止或开始的频率。 四、画出系统一和系统二的零极点图 系统一 系统二 五、程序流程图和程序代码 程序流程图如下:

看懂频响曲线图

看懂频响曲线图 要了解频响曲线,首先我们要知道什么是频响。频响是频率响应的简称,英文名称是Frequency Response,一般是用来描诉仪器对于不同频率信号处理能力的差异。“频”指“频率”,频率震动越高,音调越高,就如声音表现中的“音调”;“响”则可以看作是扬声器系统对输入电信号中“频”转换成声能的响应。 “频响曲线”就是这种由麦克风接收、并经过测试仪器运算后以dB SP L数值的形式呈现出来的响应,当很多个“频”的响应值连在一起,就成了有峰有谷的“曲线”。这种曲线称作为频率特性响应曲线,简称频响曲线,许多烧友形象的称其为“瀑布图”。 频响曲线的波动,是表示耳机或者音频设备在这个凸起或者凹陷的区域的表现能力。曲线过于突出,就说明这个频段的表现力很强,播放音乐的时候,就会增强本来表现很弱的声音;如果过于凹陷,就

说明这个频段表现很弱,对输入进来的信号输出的声压降低了,表现本来强的会变弱,最后的导致失真。 对于频响曲线,一直存在好听的不一定平直,平直的不一定好听的说法。因为频响曲线并不能决定耳机的整体素质和音质的表现能力,频现曲线的波动只能代表耳机系统对于不同频段的声音信号的增益量差异。 频响曲线越平直,耳机系统各个频段的增益量就越接近相同,也就是对于各个频段声音的音量表现就大致相同,与音质无关。毕竟音质是个理想化的东西,不是频现曲线能够决定的。音质的好坏涉及到音质还原度和声场的还原度,而且音质的高低,跟耳机的物料,工艺,设计师的技术和艺术修养也有很大的关系。 至于好不好听,首先耳机要在各个频段上对于输入信号的增益量要大致相同,也就是曲线尽量平直,这样才能把原始信号中的各个频段的声音大小的比例放大后再还原出来。就是该强的地方强,不该强的的地方就弱,能够真实反应声音的强弱,是“好不好听”的基础。 比如,在曲线很平直的情况下,我们听一首高中低音音量比例都很和谐的歌曲,通过频响曲线高度还原出来后,各频段的量感合适,

相关主题
文本预览
相关文档 最新文档