当前位置:文档之家› 济钢宽厚板轧机弯辊缸国产化改造

济钢宽厚板轧机弯辊缸国产化改造

济钢宽厚板轧机弯辊缸国产化改造
济钢宽厚板轧机弯辊缸国产化改造

BD2轧机安装工艺研究技术报告概论

轨梁950技改BD2轧机安装工艺研究 一、立项背景及目的 攀钢钒轨梁厂是依靠自身技术力量建设的大型型材厂,包括万能生产线和950生产线。950生产线建设于上世纪70年代,现有950生产线装备在质量、产量方面已不能满足市场和用户的高标准要求。同时,随着国家铁路建设的发展,近年来铁路用钢需求量持续旺盛。因此有必要对950生产线进行改造,这样既可可以提高百米重轨的产能,显著缓解万能线的重轨生产压力,同时亦可将两条生产线的产品进行合理分配,灵活应对市场变化。 本改造设备采用典型跟踪式轧线布置,主轧机除950 轧机为利旧外,其余轧机新增,均为当前先进的高强度牌坊式轧机结构形式。BD2 粗轧机选用二辊可逆式闭口牌坊轧机,采用高精度滚动轴承轧辊辊系,轴向窜动小、承载能力强、轴承寿命高;上、下辊操作侧轴承座采用液压轴向锁紧,操作灵活、使用可靠;液压防轧卡装置,可快速处理轧件阻塞事故,并具有过载保护功能;轧机快速换辊可有效节省换辊时间。 本工程是攀钢以高新技术产业化,高新技术改造传统产业、优质重点产品和技术结构的技术改造工程,在充分利用轨梁厂原950轧线的厂房,公辅设施和部分设备的基础上,实施技术改造,因此,本工程具有技术难度高、施工工期短、施工场地狭窄、多专业、多单位交叉作业的特点、难点。本工程的安装工期仅为11天,同时在轧机底座安装开始与建筑及其他专业混合交叉作业。如何合理协调现场的吊车、人员、和工序组织将是本工程的一大难点。

图1BD2轧机区域布置图 针对本次改造施工的实际情况,本课题组认真研究施工工艺,提出合理的工序优化,充分利用工序之间的交叉时间,提高吊车的利用率,做到工序间无缝连接。 二、工艺难点分析 1、工序节点交叉施工 本次改造工程以元月10日950线停产开始到新设备安装只有30天时间,包括旧设备拆除,建筑基础施工、浇筑。按照施工网络要求,及完成节点在2月17日,则设备安装时间只有9天,因此,我们在设备拆除过程中按照原计划的7天提前到第6天由建筑进场,而建筑计划2月6日交基础进行设备安装施工,提前为2月5日进场。在拆除过程中的前6天集中力量将主要基础上的旧设备先拆除完成,让建筑按排进入交叉施工,这样也可以利用建筑的机械设备来拆除设备埋有混凝土的底座;同样在建筑拆除新浇灌的基础模板时,我们可以提前进行座浆基础的处理。 在对BD2轧机底座进行安装找正的过程中,同时对附属设备的底座

板料成形CAE技术与其应用

板料成形CAE技术及应用 长期以来,困扰广大模具设计人员的主要问题就是较长的模具开发设计周期,特别是对于某些特殊复杂的板料成形零件,甚至制约了整个产品的开发进度,而板料成形CAE技术及分析软件的出现,有效地缩短模具设计周期,大大减少试模时间,帮助企业改进产品质量,降低生产成本,从根本上提高了企业的市场竞争力。 一、前言 计算机辅助设计技术以其强大的冲击力,影响和改变着工业的各个方面,甚至影响着社会的各个方面。它使传统的产品技术、工程技术发生了深刻的变革,极大地提高了产品质量,缩短了从设计到生产的周期,实现了设计的自动化。 板料成形是利用模具对金属板料的冲压加工,获得质量轻、表面光滑、造型美观的冲压件,具有节省材料、效率高和低成本等优点,在汽车、航空、模具等行业中占据着重要地位。由于板料成形是利用板材的变形得到所需的形状的,长期以来,困扰广大模具设计人员的主要问题就是较长的模具开发设计周期,特别是对于复杂的板料成形零件无法准确预测成形的结果,难以预防缺陷的产生,只能通过经验或类似零件的现有工艺资料,通过不断的试模、修模,才能成功。某些特殊复杂的板料成形零件甚至制约了整个产品的开发进度。 板料成形CAE技术及分析软件,可以在产品原型设计阶段进行工件坯料形状预示、产品可成形性分析以及工艺技术方案优化,从而有效地缩短模具设计周期,大大减少试模时间,帮助企业改进产品质量,降低生产成本,从根本上提高企业的市场竞争力。 板料成形CAE技术对传统开发模式的改进作用可以通过图1 和图2进行对比。

图1 传统板料成形模具开发模式 图2 CAE 技术模具开发方式 通过比较,就可发现板料成形CAE技术的主要优点。 (1)通过对工件的可成形工艺性分析,做出工件是否可制造的早期判断;通过对模具技术方案和冲压技术方案的模拟分析,及时调整修改模具结构,减少实际试模次数,缩短开发周期。 (2)通过缺陷预测来制定缺陷预防措施,改进产品设计和模具设计,增强模具结构设计以及冲压技术方案的可靠性,从而减少生产成本。 (3)通过CAE分析可以择优选择材料,可制造复杂的零件,并对各种成形参数进行优化,提高产品质量。 (4)通过CAE分析应用不仅可以弥补工艺人员在经验和应用工艺资料方面的不足,还可通过虚拟的冲压模拟,提高提高工艺人员的经验。 二、板料成形需要解决的问题 板料成形通过模具对板料施加压力,使板料产生永久性的塑性变形,以获得预期的产品形状。在这个过程中影响板材变形的因素非常多,要控制好变形的形状也非常困难。首先,金属受外力作用会发生变形,变形可分为弹性变形和塑性变形,弹性变形是可逆的,外力去除后变形体就会恢复成原来的形状;第二,材料的成分和组织对变形影响极大;第三,塑性变形有多种方式,再结晶温度下的塑性变形有晶内滑移和孪动、位错(位错分多种形式),再结晶温度上的塑性变形有晶间滑移、多晶体扩散和相变变形等;第四,变形温度、变形速度的影响;第五,变形体内部应力状态的影响;第六,摩擦与润滑的影响;第七,材料塑性变形后,当变形体内部各部分变形不一致时,

二辊轧机力能参数计算-分享

二、轧制压力计算 根据原料尺寸、产品要求及轧制条件,轧制压力计算采用斯通公式。详细计算按如下步骤进行。 1、轧制力计算: 首先要设定如下参数作为设计计算原始数据: 1.1轧制产品计算选用SPCC ,SPCC 常温状态屈服强度MPa S 200=σ; 1.2成品最大带宽,B=1000mm ; 1.3轧制速度,m in /12m in /20m m v MAX 常轧制速度(鉴于人工喂料),正=; 1.4轧辊直径g D ; α cos 1-?≥ h D g 轧制时的单道次压下量-?h ;;数咬入角,取决于摩擦系b μα- ;取用煤油作为润滑剂,则轧制摩擦系数,轧制采06.0=-b b μμ ?=<433.3b actg μα 代入数据计算得 35.1=?h 则mm h D g 17.793cos 1=-?≥ α 05.1=?h 则mm h D g 585cos 1=-?≥ α 2.1=?h 则mm h D g 705cos 1=-?≥ α 取mm D g 860~810= 初定轧辊直径:mm D g 860= 2、根据来料厚度尺寸数据,选择最典型的一组进行轧制压力计算,初步道次分配见下表:

3、轧制压力计算 3.1、第1道次轧制压力计算 3.1.1、咬入条件校核 ?=??= ?2878.3180π R h ,即满足咬入条件 3.1.2、变形区长度l mm h R l 7945.21=??= 3.1.3、平均压下率ε 106.04.0εεε?+?= 00=ε 83.201=ε% 则,%5.126.04.010=?+?=εεε 经第1道次轧制后材料的变形阻力:MPa S 7.3799.334.2256 .01=?+=εσ 3.1.4、求解轧辊弹性压扁后的接触弧长度l ' 依次求解Y 、Z ,最后得出接触弧长度l ' a-求解诺莫图中Y m h k C Y μ σσ)2 (210+- = N mm R C /90900 3= ; MPa k S S 335)2 ( 15.11 0=+=σσ 力轧制时的前张力、后张、-10σσ,人工辅助咬入为无张力轧制,前后 张力均为零; mm h H h m 375.52 =+= 代入以上各项数据,得Y=0.0415 b-求解诺莫图总Z 2 ??? ? ??=m h l Z μ,代入各项数据,得Z=0.105

四辊与六辊轧机的比较

比较四辊和六辊轧制技术在冷轧机上的应用 Dr.mont.Dipl.Ing.Gerhard Finstermann,冷轧部和带钢加工厂的首席经理; Dipl.Ing.Alois Seilinger,轧制技术的仿真的首席专家;Dipl.Ing.Gregor Nopp,冷轧部门经理;Dipl.Ing.Gerlinde Djumlija,澳大利亚,林茨,西门子奥钢联冶金技术冷 轧的部门经理 摘要:通过西门子奥钢联模拟冷轧过程,得出四辊轧制技术和六辊轧制技术在冷连轧应用上关键轧制参数的不同。这涉及到研究不同的轧机的性能。 本文全面讨论了Smart Crown 系统,在连轧控制下通过条形过渡区的平直度表现,轧机的刚度,厚度方面及边降控制对平直度的影响。 制造出平直度完美,厚度不变的板带是每一个轧制工作者的追求。这就要求轧制设备不仅能制造出在质量和尺寸精度方面满足市场需求的带钢,而且也要满足轧制工作者对产品的灵活和产品 组合的广泛性的要求。近年来,一些 新的冷连 轧生产线已经使用了可靠的四辊和 六辊轧制技术(图一)。然而,我们 并不知道到底是四辊轧机还是六辊 轧机能够满足市场对厚度公差和平 直度公差的进一步要求,甚至要求更 宽的产品组合。 板带的强度等级越高,冷轧就越 困难。新的连续冷连轧机应该能够轧制抗拉强度达1300MPa 的钢材,因为将来需要这些设备去轧制范围更加宽广的钢种并且很大一部分是先进的高强钢包括汽车用的多相特种钢和高硅钢片。同时板带的表面质量(对所有的产品尤其是用于汽车工业的产品是一个关键的特征)和保持板带的边降在允许的公差带范围内是至关重要的。边降对于晶粒取向的电工用钢尤为重要。 为了能够更好的比较四辊和六辊轧机的性能,采用了五台相同混合型轧机,其中一号和二号轧机采用六辊配置,三到五号轧机采用四辊配置,并且要求得到以下结果:厚度变化的范围,平直度的控制和边降控制的能力。 图 1

二辊轧机说明书.

燕山大学 Inventor课程设计 二辊轧机机构装配设计 专业班级: 小组名单: 指导老师: 2012年10月 前言

计算机辅助设计普遍应用在机械行业,为了摆脱图版,使工程设计人员减轻劳动强度,应用计算机为其服务,进行设计及修改。 二辊轧机课程设计主要通过对轧机二 维图纸的分析,加深锻炼认识分析图纸的能力,通过Inventor软件对个零件的绘制,进一步熟悉该软件的各种绘图功能,掌握各种零件的绘制过程和技巧。在轧机设计中,会接触到各种各样的轧机结构件,可以使设计者充分了解轧机结构,利用项目与实体结合,把课程学到的知识应用到实物上,提高学习兴趣,为课程设计及专业课乃至今后的工作打下基础。 目录

第一章二辊轧机介绍 (1) 第二章机架结构介绍 (2) 2.1 机架结构介绍 (2) 2.2 机架绘制及组装 (3) 第三章辊系结构设计 (4) 3.1 辊系结构介绍 (5) 3.2 主要零件 (5) 3.3 辊系视图 (7) 3.4 装配图 (8) 第四章压下结构设计 (9) 4.1 压下结构介绍 (9) 4.2 压下结构视图 (9) 4.3 压下机构装配 (10) 第五章总的装配图 (13) 第六章小结 (14) 6.1组员分工 (14) 6.2 心得与体会 (15) 6.3 参考文献 (16) 第一章二辊轧机结构介绍

该设备为低碳钢、有色金属板材冷轧实验设备。具有先进的轧制工艺参数计算机采集装置,可进行轧制过程的压力、转矩、电机功率、转速等参数的测量。因此、在该设备上可进行材料轧制工艺的研究和冷轧件的开发。 结构组成 1 机架结构 2 辊系结构 3 压下结构

六辊轧机轧辊装置的设计

毕业设计 题目:六辊轧机轧辊装置的设计 学生: 学号: 院(系): 专业: 指导教师: 2011 年 6 月 3日

目录 摘要 (1) ABSTRACT (2) 1.概述 (4) 1.1国内外发展现状及特点 (4) 1.2 轧辊装置的组成和工作原理 (4) 2.方案设计 (5) 2.1轧辊传动方案的设计 (5) 2.2压下量调整机构的设计 (5) 2.3中间辊横移机构的结构设计 (6) 2.4轧件宽度调整机构的设计 (7) 3.零件结构和尺寸的设计 (9) 3.1工作辊 (9) 3.1.1工作辊的设计 (9) 3.1.2工作辊轴承的选用 (11) 3.2中间辊 (12) 3.2.1中间辊的设计 (12) 3.2.2中间辊轴承的选用 (14) 3.2.3中间辊横移机构 (14) 3.3支承辊 (16) 3.3.1支承辊的设计 (16) 3.3.2支承辊轴承的选用 (18) 3.4轧件宽度调整机构 (19) 4.校核 (20) 4.1轧制力计算 (20) 4.2轧辊强度分析 (22) 4.3支承辊弯曲强度的验算 (25) 4.4轧辊辊面接触强度的验算 (26) 4.4.1 工作辊与中间辊之间的辊面接触强度 (26) 4.4.2 中间辊与支撑辊之间的辊面接触强度 (27) 5安装与调试 (29) 5.1维护和保养 (29) 5.2液压系统维护 (29)

5.3润滑系统维护 (29) 6.总结 (30) 7.致谢 (31) 参考文献 (32)

六辊轧机轧辊装置的设计 摘要 国产六辊冷轧机从上世纪80年代起就在国内成功运行,但只是一些单机架的 中小型冷轧机。进入21世纪以来,经济快速发展,对高质量板(带)材的需求也 在迅速增长。具有国际先进水平的高速现代化冷轧机的开发和研制成为当务之急。 采用辊缝连续可变凸度控制技术的六辊冷轧机在生产实践中不断的凸显出它 的优点:由于辊缝断面可以连续调整,对规定的轧制参数具有高度适应性;由于 使用经过优选的工作辊,压下量可以很大;轧出的带材,有良好的平直度和表面 质量;轧件边部减薄明显改善;由于轧辊的库存量可以明显减少,即整个产品范 围可以用同一个辊轧制,因而降低了轧辊的成本。目前,具有板形控制功能的轧 机有日立HITACHI的HC(UC)、德国SMS公司的CVC轧机、法国CLECM公司开发 的DSR轧机、以北科大为代表的VCL以及依靠鞍钢和一重等国内力量自主开发的VCMS新一代六辊冷轧机。 为了满足对冷轧机高速、高效、高质量、低成本、低能耗、易维护等一些生 产要求,经过对比,我们发现采用辊缝连续可变凸度控制技术的六辊冷轧机可以 兼顾满足我们的生产需求。所以高速现代化的六辊冷轧机必是目前以及将来的重 点发展方向。 通过六辊轧机轧辊装置的设计,使我在结构设计和装配、制造工艺以及零件 设计计算、机械制图和编写技术文件等方面得到综合训练;并对已经学过的基本 知识、基本理论和基本技能进行综合运用。从而培养我具有结构分析和结构设计 的初步能力;使我树立正确的设计思想、理论联系实际和实事求是的工作作风。 本装置主要由五个部分组成。第一部分是工作辊;第二部分是中间辊及其横移机构;第三部分是支承辊;第四部分是压下量调整机构;第五部分是机架。 关键字:六辊冷轧机,中间辊横移,凸度控制

精轧机说明书.(DOC)

高速线材精轧机组 安装使用说明书 制造单位:哈尔滨广旺机电设备制造有限公司 设备图号: ZJF90d00 使用客户: 出厂日期:

目录 第一章、技术说明 (2) 第二章、设备安装调整 (4) 第三章、设备的使用维护与更换 (7) 第四章、常见故障及排除 (13) 第五章、附件 (14)

精轧机组是高速线材车间的重要设备,为了保证精轧机组正常运转,用户须了解机组的性能、安装、运行与日常维护等基本常识。本说明书就以上几个方面作了简单的介绍,用户在安装、使用机组前请先阅读本手册。本说明书供武安文煜高线专用。 第一章技术说明 一、设备用途 本精轧机组为摩根五代顶交45°无扭重载高速线材精轧机组,图纸由国内设计转化完成。本机组通过10机架连续微张力轧制,将上游轧机输送的轧件,轧制成φ5.5-φ20mm的成品线材。 二、设备主要性能参数 1. 工艺参数: ●来料规格:φ17—φ22mm ●来料温度:>900℃ ●成品规格: φ5.5-φ20mm ●主要钢种:碳钢、优质碳素钢、低合金钢、合金钢、焊条钢、冷镦 钢等 ●第10架出口速度:≤95m/s(轧制φ6.5规格时) 2. 设备参数: ●机组组成:?230轧机(5架)、?170轧机(5架)、 增速箱、大底座、挡水板与防水槽、缓冲 箱、保护罩、联轴器、精轧机组配管等。 ●机架数量: 10架(1-5架为?230轧机,6-10架为?170轧机同 种规格的轧辊箱可以互换)

●布置方式:顶交45°,10机架集中传动 ●辊环尺寸:?230轧机:?228.3/?205×72mm ?170轧机:?170.66/?153×57.35/70mm ●传动电机: AC同步变频电机,功率: 5500kW ●振动值:≤4.5 mm/s ●噪音:≤80dB(距轧机1.5米处) ●机组总速比(电机速度/装辊转速)见下表: ●机组润滑方式:稀油集中润滑 油压: 0.35MPa(点压力) 总耗量:1200L/min 油品: Mobil 525 清洁度:10μ

500MM四辊不可逆轧机技术规格书

Technology Proposal of 500mm 4Hi Non-reversing cold rolling mill 500mm 4辊不可逆冷轧机组 25th Dec, 2008

1.0. Summary 概述 500MM four roller irreversible cold rolling mill is used to roll hot rolled coils,which are ordinary carbon steel as material and 2mm as thickness, into cold rolled coils which are 1.5mm thick and have required surface hardness 500MM 四辊不可逆轧机组是在常温状态下,将材质为普通碳钢,厚为2MM热轧带卷,轧制成厚为1.5MM 并具有所需光洁度的冷轧带卷 2.0. Material specification 材料规格 Material: hot rolled coilds 材料: 低碳钢 Delegate steel No.: Q235B Q355B 代表钢号 2.1. Input material size 来料的尺寸 Width: 300mm - 400 mm 宽度 Thickness: 2.0 mm 厚度 Outer diamete r of steel coil: MaxΦ2000 钢卷外径 Inner diameter of steel coil: Φ610mm 钢卷内径 Max. coil weight: 8t 最大卷重 2.2. Finished product size 成品的尺寸 Width: 300mm - 400 mm 宽度

先进板料成形技术与性能

板料成形有限元分析的发展综述 摘要:在参阅和分析大量有关文献的基础上,对有限元法的产生和弹塑性有限元的发展进行了总结,特别是对当前应用广泛的板料成形有限元数值模拟在国内外的发展概况和发展趋势进行了详尽的剖析,为深入了解板料成形有限元的发展提供了有益的参考。 关键词:板料成形;数值模拟;有限元法;有限元分析;弹塑性 引言 有限单元法是工程计算领域的一种主要的数值计算方法,其基本思想就是将连续区域上的物理力学关系近似地转化为离散规则区域上的物理力学方程。它是一种将连续介质力学理论、计算数学和计算机技术相结合的一种数值分析方法。此方法由于其灵活、快捷和有效,已迅速发展成为板料冲压成形中求解数理方程的一种通用的数值计算方法。 有限元法源于40年代提出的结构力学的矩阵算法。“有限元法”这一术语是R.W.Clough于1960年在论文“The finite element method in plane stress analysis”中首次提出来的,他用这种方法首次求解了弹性力学的二维平面应力问题。1963年,Besseling证明了有限元法是基于变分原理的Ritz法的另一种形式,从而使Ritz分析的所有理论基础都适用于有限元法,确认了有限元法是处理连续介质问题的一种普遍方法。 板料成形数值模拟涉及到连续介质力学中材料非线性、几何非线性、边界条件非线性等三非线性问题的计算,难度很大。随着非线性连续介质力学理论、有限元法和计算机技术的发展,通过高精度的数值计算来模拟板料成形过程已成为可能。从70年代后期开始,经过近二十年的发展,板料成形数值模拟逐渐走向成熟,并开始在汽车、飞机等工业领域得到实际的应用。 1 弹塑性有限元分析研究发展概况 有限元法建立之初,只能处理弹性力学问题,无法应用于金属塑性成形分析。1965年Marcal提出了弹塑性小变形的有限元列式求解弹塑性变形问题,揭开了有限元在塑性加工领域应用的序幕。1968年日本东京大学的Yamada推导了弹塑性小变形本构的显式表达式,为小变形弹塑性有限元法奠定了基础。但小变形理论不适于板料冲压成形这样的大变形弹塑性成形问题,因此人们开始致力于研究大变形弹塑性有限元法。1970年美国学者Hibbitt等首次利用有限变形理论建立了基于Lagrange格式(T.L格式)的弹塑性大变形有限元列式。1973年Lee 和Kabayashi提出了刚塑性有限元法。1973年Oden等建立了热-弹粘塑性大变形有限元列式。1975年Mcmeeking建立了更新Lagrange格式(U.L格式)的弹塑性大变形有限元列式。1978年Zienkiewicz等提出了热耦合的刚塑性有限元法。1980年Owen出版了第一本塑性力学有限元的专著,全面系统地论述了材料非线性和几何非线性的问题。至此,大变形弹塑性有限元理论系统地建立起来了。 2 板料成形有限元数值模拟国内外研究发展概况

四辊可逆式冷轧机设计计算书

四辊轧机设计计算书 3.1 冷轧轧辊的组成 冷轧辊是冷轧机的主要部件。轧辊由辊身、辊颈和轴头三部分组成。辊颈安装在轴承中,并通过轴承座和压下装置把轧制力传给机架。轴头和连接轴相连,传递轧制力矩。工作辊和支撑辊的结构如图所示。 工作辊结构 支撑辊结构

3.2、 冷轧辊系尺寸的选择 冷轧过程中,轧辊表面承受很大的挤压应力和强烈的磨损,因此,冷轧工作辊应具有极高而均匀的硬度,一定深度的硬化层,以及良好的耐磨性与抗烈性。降低轧辊硬度,虽然改善抗烈性,但耐磨性降低,因此,必须正确选择轧辊表面硬度。 冷轧辊用钢均多为高碳合金钢,如29r C 、o r M C 29等,我们这里选工作辊的材质为o r M C 29。 轧件对冷轧工作辊巨大的轧制压力,大部分传递给支撑辊上。支撑辊既要能承受很大的弯曲应力,还要具有很大的刚性来限制工作辊的弹性变形,以保证钢板厚度均匀。 轧机支撑辊的表面肖氏硬度一般为HS45左右。目前为提高板厚精度与延长轧辊的寿命,支撑辊硬度有提高的趋势。 支撑辊常用钢号为o r M C 29、V C r 9、及o n r M M C 60,我们这里选支撑辊材质为 o r M C 29。 3.3、 辊系尺寸的确定 1) 辊身长度L 及直径D 的确定。 辊身长度L 应大于所轧钢板的最大宽度m ax b ,即 []2max a b L += (3.1) 当m ax b =400—1200 mm 时,a=50—100 mm ,现m ax b =500mm ,取a=50mm 所以 mm a b L 55050500max =+=+= 四辊轧机的辊身L 确定以后,根据经验数据: 8.18.02 -=D L 来确定支撑辊直径2D ,取 7.12 =D L 所以 mm L D 3207 .12== 对于支撑辊传动的四辊轧机,一般选 4312-=D D ,现取2.31 2=D D

板料成形回弹特征及其控制技术

板料成形回弹特征及其控制技术 1 前言 回弹是板材冲压成形过程的主要缺陷之一.严重影响着威形件的威形质量和尺寸精度,是实际工艺中很难有效克服的成形缺陷之一,它不仅降低了产品质量和生产效率.还制约了自动化装配生产线的实施,是我 国汽车制造工业中亟待解决的关键性问题。 从理论上说,板材冲压成形过程可以被看作是板材经过塑性变形变为想要获得的形状的过程。然而实际上.板料尺寸.材料特性和环境条件使冲压成形过程的预测性和可重复性变得困难。以韧性金属板材为主的冲压成形件从模具上取出后,必然产生一定量的回弹。回弹是板材冲压成形的3种主要缺陷(起皱.破裂和回弹)中最难控制的一种,因为它涉及到对回弹量的准确预示.不同的材料和尺寸的零件其回弹规律大不相同,单凭经验和工艺过程类比是很难进行准确的回弹补偿的.这就使得一个模具设计的周期变长.因此在板材冲压成形中回弹变形是使模具设计明显变复杂的一个基本参数。在大多数板材冲压成形中.强烈的非线性变形过程致使板料产生很大的弹性应变能.在模具与板料动态接触过程中存在于板料中的这种弹性应变能会随着接触压力的消除而自动释放掉,回弹的驱动力一般是朝着板料原始形状变形。因此,冲压成形中的最终产品形状不但依赖于凹模形状.而且依赖于成形后存储在板料中的弹性应变能。弹性应变能与许多诸如材料特性.接触载荷等参数有关,因此在成形过程中预测回弹变得很复杂.这也就给那些必须精 确评估回弹量的设计者提出了很重要的问题。 近40年来,有许多研究人员一直在对回弹行为进行着研究.并提出了很多解决方法和计算机仿真算法.发表了大量相关论文。就有限元仿真方法而言.在众多仿真算法模拟应用中,采用显式算法模拟成形过程.用隐式算法模拟回弹过程的方法最多;其次是冲压成形和卸载回弹过程都采用隐式算法。而G.Y-L.等学者提出一种新算法,冲压成形和回弹过程全部采用显式算法。U.Abdelsalam等学者还提出了采用一步成形算法模拟冲压成形过程,再用隐式算法计算卸载回弹过程.并应用该算法模拟了3个复杂冲压件的卸载回弹过程.这种算法的模拟精度虽然不高.但计算速度很快.可以为模具在设计阶段提供一个定性的参考方案。T-C.Hsu等学者采用隐式TL(Total Lagrangian)算法,引入Hill--次方屈服函数模拟了轴对称问题的冲压成形和回弹过程。M.Kawka等学者采用静态显式有限元(实际上也是隐式算法)算法软件ITAS3D模拟了轿车顶盖和轮毂的多阶段成形过程,以及卸载回弹和切边回弹过程.并与试验结果进行了比较。 以上这些对于回弹的研究只限于理论方面.其与实际试验的对比验证还鲜有涉及。对于如何补偿所产生的

森吉米尔二十辊冷轧机介绍

森吉米尔二十辊冷轧机介绍 森吉米尔冷轧机与四辊轧机或其他类型轧机的本质区别是轧制力的传递方向不同。森吉米尔冷轧机轧制力从工作辊通过中间辊传到支撑辊装置,并最终传到坚固的整体机架上。这种设计保证了工作辊在整个长度方向的支撑。这样辊系变形极小,可以在轧制的整个宽度方向获得非常精确的厚度偏差。 森吉米尔轧机在结构性能上有如下主要特点: (1)具有整体铸造(或锻造)的机架,刚度大,并且轧制力呈放射状作用在机架的各个断面上。 (2)工作辊径小,道次压下率大,最大达60%。有些材料不需中间退火,就可以轧成很薄的带材。 (3)具有轴向、径向辊形调整,辊径尺寸补偿,轧制线调整等机构,并采用液压压下及液压AGC系统,因此产品板形好,尺寸精度高。 (4)设备质量轻,轧机质量仅为同规格的四辊轧机的三分之一。轧机外形尺寸小,所需基建投资少。 森吉米尔冷轧机基本上是单机架可逆式布置,灵活性大,产品范围广。但是亦有极个别呈连续布置的森吉米尔轧机,如日本森吉米尔公司1969年为日本日新制钢公司周南厂设计制造的一套1270mm四机架全连续式二十辊森吉米尔轧机。该轧机第一架为ZR22-50"型轧机,其余三架均为,ZR21-50"型轧机,轧制规格为O.3mm×1270mm不锈钢,卷重22t,轧制速度600m/min。 森吉米尔冷轧机的形式及命名法介绍如下: 最常用的森吉米尔冷轧机形式是1-2-3-4型二十辊轧机。例如ZR33-18″,“Z"是波兰语Zimna的第一个字母,意思是“冷”;“R”表示“可逆的”;“33”表示轧机的型号;“18″”是轧制带材宽度的英寸数。森吉米尔冷轧机还有1-2-3型十二辊轧机,但是1-2-3型森吉米尔冷轧机在1964年以后就不再生产制造了。 森吉米尔冷轧机1-2型六辊轧机,由2个传动的工作辊和4个背衬轴承辊装置组成, 如ZS06型,“S”表示“板材”,用来轧制宽的板材,但是它同样可以轧制带材,并且有一些还用在连续加工线上。 森吉米尔“ZR”型冷轧机有10个基本型号,其中1-2-3-4二十辊轧机7个;1-2-3.型十二辊轧机3个;“ZS”1-2型六辊轧机只有2个基本型号。 各型号轧机的背衬轴承外径、工作辊名义直径如下: 轧机型号背衬轴承直径/mm 工作辊名义直径/mm 1-2-3-4型: ZR32 47.6 6.35 ZR34 76.2 10.00

轧辊直径计算

2.轧辕的类型和结构如何? 轧辊是轧机的重要部件,按照轧机类型可分为领带轧机轧辊、型钢轮机扎辊和钢管轧机轧辊三大类。 板带轧机轧辊的辊身呈圆柱形,热乾板带轧辊的辊身微凹,当受热膨胀时,可保持较好的扳形;冷轧板带轧辊的辊身呈微凸,当它受力弯曲时可保证良好扳形;型钢轧机轧辊的辊 身上有轧槽,根据型钢轧制工艺要求,安排孔型。钢管轧制中采用斜轧原理轧制的轧辊有圆 锥形、腰鼓形或盘形。 轧辊按辊团硬度可分为: (1)软辊;肖氏硬度约为30一40,用于开坯机、大型型钢轧机的租轧机等。 (2)半硬辊:肖氏硬度约为40一60,用于大型、中型、小型型钢轧机和钢板轮机的租轧机。 (3)硬面辊:肖氏硬度约为60一85,用于薄板、中板、中型型钢和小型型钢轧机的稿轧机 及四辊轧机的支撑辊。 (4)特硬辊le氏硬度约为85—100,用于冷轧机。 轧辊由辊身、辊颈和轴头二部分组成。辊颈安装在轴承中,并通过袖承座和压下装置把轧制力传给机架。铂头和连接轴相连接,传递轧制扭矩。轴头有三种主要形式;梅花轴头、 万向轴头、带键槽的或圆柱形轴头。实践表明,带双镀槽的轴头在使用过程中,镶槽壁容易 崩裂,目前常用易加工的带平台的袖头代替双因槽的抽头。 直径超过400mm的冷轧轧辊,在锻造后,多半在中心馒一个670一250mm的通7L。这样,一力面可以使轧辊经热处理店的内应力分朽均勾;另一方面在轧辊表面淬火时,可对轧 辊通水冷却,提高淬火效果。 3P轧辊的技术要求是什么? 不论热轧或冷轧,轧相都是实现轧制过程中金属变形的直接工具,因此,对轧辊质量要求 严格。其主要质量要求有强度、硬度、耐热性及耐用性。轧制强度是最基本的指标,在满足强 度要求的同时,还必须有一定的耐冲击韧性。要使轧辊具有足够的强度,主要从选择轧辊材质 及确定合理的轧辊结构与尺音上全面考虑。轧辊强度足够与否,可根据轧辊强度计算确定。 硬度通常是指轧辊工作表面的硬度,也是轧辊的主要质旦指标。它决定轧辊的耐磨性,在一定程度上决定轧辊的使用寿命。轧辊的硬度可通过材料选用及对轧辊表面进行某种热处理来满足要求。另外,对于热轧辊来说,它还应具有一定的耐热性,以保证轧制产品的精 度,同时也决定轧辊的使用寿命。 随着轧制技术的发展及市场的激烈竞争,对轧辊的技术要求越来越南。提高轧辊的使用寿命,可降低产品酌生产成本,对于板带轧机的轮辊来说,对轧辊表面质量提出了更高要求。 初轧机和型钥轧机的轧钢名义直径D,既是轧机的主要参数,也是轧辊尺寸的主要参数。当轧辊的直径D确定后,轧辊的其他参数受强度、刚度或结构上的限制也将随之确定。 初轧机和型钢轧机的轧辊辊身是有孔型酌,因此,轧辊的名义直径应有确切的含义。通常,型钢轧机是以齿轮机座的中心距作为轧辊名义直径;韧轧机把辊环外径作为名义直径。 因此,有孔型的轧辊其名义直径均大于其工作直径。为避免孔槽切人过深,轧辊名义直径

20辊森吉米尔轧机辊系结构分析

20辊森吉米尔轧机辊系结构分析 廿辊森吉米尔轧机是单机架可逆式冷轧机。其主要特点是:20个轧辊环形叠加式镶嵌在具有“零凸度”的整体铸钢机架内,在轧机机架受力情况下,轧机宽度方向变形均匀且有较小的接触弧长和不易变形的小直径工作辊,使该轧机可以达到大压下量,高速连续轧制薄带钢。20辊森吉米尔轧机辊系由2个工作辊、4个第一中间辊、6个第二中间辊及8个支承辊组成。其压下机构和调整机构均采用液压缸或液压马达,通过齿轮、齿条带动与偏心轮连接的齿轮来实现参数的调整。这样,液压缸或液压马达的推力只需克服轧制分力引起的滑动面间的摩擦力即可,使液压设备和轧机的尺寸大大减小。 1、辊系组成 图1 图2 图1 辊系组成图

图2 压下调整 图中,S、T——工作辊:公称辊径:63.5mm; 最小辊径:58mm,最大辊径:73.5mm; O、P、Q、R——第一中间辊:公称辊径:102mm; 最小辊径:96mm,最大辊径:105mm; I、J、K、L、M、N——第二中间辊:公称辊径:173mm; 最小辊径:170mm,最大辊径:173mm; A、B、C、D、E、F、G、H——支承辊: 公称辊径:300.02mm; 最小辊径:297mm,最大辊径:300.02mm。 该轧机仅第二中间辊为传动辊,其余辊均为自由辊,靠辊间摩擦来转动。 2 、压下调整 轧机的压下调整(见图2)是通过支承辊B、C辊来实现的。安装于轧机牌坊上的两个液压缸带动轴端的两个齿轮,齿轮、偏心轮由键与支撑轴联结,齿轮转动时,偏心轮内心绕偏心环内心转动,完成压下功能,实现辊缝的调整。图2中: 坐标1:S1=2.574,S2=2.912 A(+400.05,215.9), B(+149.225,400.05) I(+171.833,167.277),J(0,225.238) O(+52.879,98.312), S(0,34.662) T(0,-34.324), R(+53.315,-97.61) M(0,-234.353), N(+171.818,-167.347) G(+149.225,-400.05),H(+400.05,-215.9) 坐标2:S1=-3.461,S2=-3.15 A(+400.05,215.9), B(+149.225,400.05) I(+173.544,159.86), J(0,216.81) O(+54.722,90.668), S(0,28.595) T(0,-28.289), R(+55.153,-89.98) M(0,-215.934), N(+173.524,-159.941) G(+149.225,-400.05),H(+400.05,-215.9) 图2中坐标1为侧偏心在0位,轧线和压下均为最大开口,As-u辊在中位, 辊径为公称直径时辊系的相对位置关系;坐标2为侧偏心在0位,轧线和压下均为最小开口,As-u辊在中位,辊径为公称直径时辊系的相对位置关系。 从图2中可以看出偏心轮偏心量为6.35mm,当辊径为公称通径时,在压下齿条行程范围内(140mm),压下齿轮旋转74.31°,第二中间辊“J”的中心在压下方向位移量为8.425mm,第一中间辊的中心在压下方向位移量为7.644mm,上工作辊的位移量为6.607mm。 由于辊A、D在辊径不变的情况下,中心不变,在J辊压下的同时,辊I、K、O、P的辊中心在压下方向和轧制线方向都要发生位移,以保证各辊的相互接触。但由于辊之间的接触点始终在两接触辊中心的连线上,因此在辊径、侧偏心量、齿条压下行程一定的条件下,可以确定工作辊的压下量。 3 、As-u辊调整

1780立辊轧机主传动系统设计指导书

毕业设计指导书 指导教师;汪曦 一.题目名称:1780立辊轧机主传动系统设计 二.目的要求: 立辊轧机是用来热轧板坯宽度的,通过对该轧机的设计,使学生们达到综合训练的目的,并对该轧机进行消化、吸收、掌握和改进,最终对该轧机的结构组成、工作原理和主要特点等应该全面掌握,为将来走向工作岗位打好坚实的基础。 三.毕业设计的主要内容: 1.中文摘要和外文摘要 2.绪论部分 (1)立辊轧机的发展概况; (2)该轧机的主要产品、技术性能及工艺参数; (3)该轧机的类型、用途、特点、结构组成、工作原理等; 3.轧机总体方案的确定 (1)机座形式、主传动机构组成和作用、轧辊的结构特点及轴承形式等; (2)侧压机构组成和作用等。 4.轧机结构参数的确定 包括辊径、辊身长度和辊速等。 5.轧机主传动系统力能参数的计算 包括轧制力、轧制力矩和主电机功率的计算,根据轧机的工作特点选择电机容量。6.主要零件的强度计算 包括重要的轧辊、轴、齿轮、轴承等零件的计算。 7.润滑方式的选择 8.经济可行性分析 9.计算机绘图 总图1张、部件装配图2~3张、零件图3~4张,折合成A1图纸6张以上。 四.步骤和方法 1.首先根据有关资料确定总体设计方案,然后依照给定的设计参数,参考轧机设计理论进行轧机力能参数的计算并选择电机容量; 2.然后后按照机械设计理论校核主要零件的强度; 五.进度安排 第1周:总体方案设计; 第2周:轧机力能参数计算; 第3~4周:;主要零件的强度计算; 第5~9周:总图、部件装配图、零件图绘制; 第10周:翻译外文资料,写摘要并翻译成外文摘要; 第11周:整理说明书并打印; 第12周:检查图纸并打印; 第13周:准备答辩; 第14周:答辩。 六.参考资料 1.施东成。轧钢机械设计方法。北京:冶金工业出版社1991 2.徐灏。机械设计手册北京机械工业出版社1991

ZL300四辊轧机使用说明书

RZ-Φ300/Φ600×1000 四辊轧机 使用说明书 目录 一、用途

二、主要技术性能 三、设备组成及结构特点 四、工作原理及操作要点 五、轧辊缺陷的种类和产生的原因 六、润滑系统 七、电气系统 八、包装、运输及保管 九、基础与安装 十、调整与试验 十一、使用与维护 十二、易损件及轴承明细表

一、用途 本设备全称为Φ3000/Φ600×1000四辊铝管板热轧机。主要用于吹胀式蒸发器用铝管板的复合轧制,原料厚度≤4mm,宽度≤800mm,成品厚度≥1.2mm。 本设备刚度大、强度好,保证产品的精度和稳定。 本设备结构简单,维修方便,电气系统简单可靠,操作准确方便。 型号说明 RZ—Φ300□∕Φ600×1000□□ 装配形式(见附图):I(省略)、II、III…… 主电机类型:交流电机 Y(省略) 直流电机 Z 交流调速电机 T 绕线式电机 R 辊面长度 支撑辊直径 工作辊轴承型式:滚针轴承、含油轴承(省略) FC轴承A 其它B 工作辊直径 热轧机 (附图)

二、主要技术性能 ㈠外形尺寸(长×宽×高)= 8072×3074×3942mm 表㈠

表㈡ 注:上述性能参数属非基本机型配置、如有更动恕不通知!

三、设备组成及结构特点 机组由电动机、齿轮联轴器、减速机、齿轮联轴器、人字齿轮座、万向接轴托架、万向接轴、工作机座等组成。由电动机通过一系列传动机构驱动轧机工作辊进行轧制。 工作机座 由电动压下装置、平衡装置、工作辊装配、支承辊装配、机架装置、轨座等部件组成。 1 电动压下装置: 电动压下装置是调整上轧辊位置的传动机构,以保证按给定的压下量轧制出所要求的断面尺寸。该装置是由电动机带动两级蜗轮机构,传给压下螺杆移动轧辊向上或向下运动所达到的。其中低速级传动蜗杆为球面蜗杆,这种蜗杆承载能力大,体积小,传动效率高。电动压下装置由两套独立传动机构组成,这可保证在调整轧机时,两个上轧辊的轴承座可以单独运动,该装置在控制电路的配合下,可单独点动,亦可左右连动。并配有数字显示装置,分别显示左右压下螺杆的压下量。 2 平衡装置: 为了避免轧件进出轧辊时产生冲击,因此在机架窗口板上装有液压平衡装置,借此来消除轧机空载时上支撑辊轴承座与压下螺杆间的间隙以及压下螺杆螺纹间的间隙,液压平衡装置由四个液压油缸通过活塞杆对上轧辊轴承座进行平衡,油缸压力最大为130kg/cm2。平衡力大小可自动调节。 3 辊子装配: 工作辊材质为60CrMo,两端采用三列滚针轴承以承受径向载荷,并在辊子换辊侧用两只推力球轴承以承受左、右轴向载荷。支承辊材质为9Cr2Mo,采用双列圆柱滚子轴承(FC轴承),辅以四点接触球轴承承受轴向分力。每个支承辊轴承座内各装一只,其两个轴承的外侧与端盖及支承辊轴承座内孔底部留有一定的游动间隙,以免在运转过程中发热卡死。在工作辊轴承座设有槽子,用压板插入槽内作固定轴承座之用。下支承辊轴承座通过圆弧板与机架窗口底面实现圆弧接触,用以克服轧辊负载后产生变形给轴承带来的不利影响,从而延长其寿命。 工作辊出厂时加工成圆柱形辊身,使用时由用户按需要自行加工合适的辊形,工作辊辊身磨损后可重新加工再用,当辊子直径减小到图纸规定最小值时,就不能再继续使用,应以堆焊方法修复或者更换新工作辊。 4 机架装配: 由左、右两片机架组成,每片机架选用优质铸钢,具有足够的强度和刚度,经加工接合面后用三组螺栓紧固,并用圆柱销定位,确保机架整体刚性和精度稳定。机架与电动压下装置的接合面间,在装配调整好后,用平键固定,防止转动。 为了防止机架窗口内表面磨损,在其上镶有衬板,此衬板磨损后由用户更换,保证轴承座与机架窗口间配合间隙。 5 轧机轨座: 轧机轨座主要用于轧机主机的安装调整,将轧机固定在基础之上。 6 安全装置: 在不正确的轧制情况下,为了防止轧辊和机架损坏,在压下螺杆与上支辊轴承座之间装有专用的安全装置—安全臼。用户更换安全臼时应按规定的材料,并严格按图纸制造。必要时应做安全臼的压碎试验。

四辊轧机的计算

四辊轧机的计算 四辊轧机计算部分: 1.1轧辊尺寸确定 1)工作辊身长度L应大于所轧钢板的最大宽度bmax: 取bmax=200,则工作辊身长度L=1980; 支撑辊身:1780mm 2)对于四辊轧机,为减少轧制力,应尽量使工作辊直径小一些。但工作辊的最小直径受着轴颈和轴头扭转强度和咬入条件的限制。工作辊直径D1和支承辊直径D2参考轧机文献[1]表3-2 ,四辊轧机的L/D1 ,L/D2,,及D2/D1 应满足如下关系式: 1 D2 1 则得出: 根据轧辊强度及允许的咬入角α(或压下量与辊径之比)和轧辊的强度要求来确定。应满足下式: D1≥Δh/1-cosα 式中D1工作辊直径;Δh压下量;α咬入角; 由文献可知,四辊可逆轧机的最大咬入角α=15。~20。;取α=20。;得到: D1>595.2mm 为安全取取整数,工作辊直径:620mm, 支撑辊直径:1240mm; 3)轧辊辊颈尺寸d和l的确定 轴颈直径d和长度l与轧辊轴承形式及工作载荷有关。 工作辊轴径:;工作辊轴径长度:支承辊轴径:,取整500mm

支撑辊轴径长度: 1.2 轧辊材料 工作辊选择材料为:球墨铸铁支承辊选择材料为:9CrMo 1.3 轧制力的初步计算: 轧制力的理论计算根据塑性力学理论分析变形区内应力状态与变形规律,首先确定接触上单位压力分布规律及大小,求出接触弧上的平均单位压力Pm后,按下式计算: 式中 Pm为平均单位压力; F为轧件与轧辊接触面积在水平方向的投影。 l 2 式中:b0、b1为轧制前后轧件的宽度; l为轧件与轧辊接触弧的水平投影; 当两个轧辊直径相同而在不考虑轧辊弹性压扁情况下,接触弧长度的水平投影l为: 由△ABC和△ABD: ABBD BCAB 而 BD=2R 11 则:

四辊轧机安全操作规程讲解学习

四辊轧机安全操作规程 1、工作前,穿戴整齐劳保用品;做好卫生工作(先地面后设备),保证设备清洁,无附着物,传动机构无杂物;保持工作现场整洁,地面无油污、废料头、引带;检查吊具索具是否完好无损,安全可靠。 2、检查各处油位、温度、压力是否正常(液压油温度60 \气压6 公斤/ cm2,轴承温度70它),机前操作工一切准备就绪后,方可发出开机指令。 3、启动控制面板,打开准备页面,开启准备程序。启动过程中,应检查有无异响,设备运转是否正常。 4、通过调整辊缝对轧辊进行对零(辊缝对零时,最大压力不得超过450T),再调整辊缝到所需的轧制厚度。调试各部件是否运动正常灵敏,特别要注意乳液系统是否正常。确定设备正常后,把各部件位置打到第一道次轧制初始位置,选择轧制方向,准备上料开轧。 5、吊具索具上卷时,料一定要卡紧,注意人身安全。开卷时,保持物料整洁,必要时进行擦拭。开卷时须注意观察,防止铜带跑偏卡死。 6、穿带时,各操作人员注意配合。当铜带进入轧机时,调整压下,并低速转动主机,使铜带穿过主机头部,进入左大鼓轮钳口。使用适当张力,低速转动一周半后,观察铜带情况进行张力调整,在铜带张紧之后,进行稳速轧制(最大轧制速度为72米/分)。 7、稳速轧制过程中,注意观察,防止铜带跑偏,必要时及时做适当调整。在带材板型平稳后,方可以正常速度轧制。根据实际轧制情况

调节左右张力,并时刻注意电流变化,稳速情况下,一般不应超过其 额定值:主机额定电流为3480A,大鼓轮额定电流为800A,卷取机额定电流为413A。同时注意两侧轧制力的变化,禁止超过其最大值800T。 8、轧制到带尾时,要减速,根据轧制情况做适当调整。 9、轧制过程中,每道次需更换并确认轧制方向,并注意乳液开启及供应状况。 10、卸卷时,使用小车,防止铜卷的松散。捆扎铜卷时要注意安全,以免铜卷弹开伤人,同时要注意避免灼伤、划伤。 11、测厚仪只有当铜带厚度低于5mm 以下时方可投入使用,但前提是要保证带材平整。当板形变化过大时,应撤回测厚仪,以免损坏探头。要经常检查探头,保持其清洁。 12、在轧机工作时,如有人进入可运动部件区域工作时,一般要停机工作。如需在不停液压系统情况下工作,须先通知操作人员,并有人在旁看护;工作人员选择站位时,应注意可运动部件运动范围,防止因误操作而造成人身伤亡事故。新来人员,不得单独工作。 13、巡检时,严禁手脚或是其他不相关的器具触摸各种转动中的设备和高速运转的铜带。 14、轧机生产过程中,铜卷正面严禁站人。操作工操作过程中,精力保持集中,一旦发生断带,要有自我保护意识,防止被铜带打伤。人工测量铜带厚度时,必须停车。 15、废料箱应及时清理,废料切除尺寸应控制在500mm 以内 16、工作时,各工作岗位人员要统一协调,服从带班人员的安排,做好规

相关主题
文本预览
相关文档 最新文档