当前位置:文档之家› 三相晶闸管可控整流电源设计

三相晶闸管可控整流电源设计

三相晶闸管可控整流电源设计
三相晶闸管可控整流电源设计

电力电子技术基础课程设计报告

题目:三相晶闸管可控整流电源设计

单位:电子信息工程学院自动化系

河南科技大学电子信息工程学院

自动化2006级《电力电子技术基础》课程设计任务书

课程设计时间:1周

一、设计题目及要求

设计题目1:三相晶闸管可控整流电源设计

1)技术要求

?三相交流电源,线电压380V。

?整流输出电压U d在0~210V连续可调。

?最大整流输出电流20A。

?负载为阻感负载,且电感值较大(工作时可认为负载电流是连续平滑的直流)。2)主要设计内容

?整流变压器额定参数的计算(选择变压器次级额定电压和变比,初、次级绕组的导线直径。计算时取导线电流密度为5A/mm2);

?晶闸管器件的电流、电压定额等参数的计算;

?集成触发电路的设计。(包括:触发电路的定向【参教材】;触发电路采用集成触发电路)。

二、课程设计报告的主要内容

1)选题背景及意义简单介绍。

2)设计方案的确定。(确定主电路拓扑结构,确定控制方案等)。

3)主电路工作原理及过程的分析。给出详细的电路工作原理和过程分析。

4)功率器件定额参数的计算。主要包括:【1】电力电子器件电压、电流等定额计算(注意留余量:电压2-3倍,电流1.5-2倍);【2】变压器的参数计算等;【3】电容器,电抗器等参数的计算等。

5)控制系统(电路)的设计等。

6)结束语。(课程设计的结论概括,设计体会等)。

7)附录(包括:电路图和元器件明细表等)。8)参考文献。

注:在报告的最后给出完整的主电路原理图和控制电路原理图等;并列出所用元器件明细表。

要求插图及图表规范,文字通顺,逻辑性强;

提交的毕业设计报告字数不得少于4000字。

2

电力电子技术课程设计

3

3

目录

一、选题背景及意义 (1)

二、设计方案.................................................................. 2 1 方案分析...................................................................3 2 方案选择. (4)

三、电路工作原理及过程的分析 (5)

1 0

0α=电路工作原理及过程的分析 (5)

2 0

30α=电路工作原理及过程的分析 (6)

3 0

60α≥电路工作原理及过程的分析 (7)

四、功率器件定额参数的计算..................................................8 5 变压器额定参数计算............................................................................9 6 晶闸管额定参数计算..........................................................................10 6 平波电抗参数计算..........................................................................11 6 滤波电容参数计算..........................................................................11 五、保护电路设计........................................................12 六、控制系统(电路)设计.. (12)

七、结束语..................................................................16 八、附录...............................................................17 九、参考文献 (13)

一、选题背景及意义

目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。

电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。

而电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。

二、方案选择

1.方案分析

单相可控电路与三相可控电路相比,有结构简单,输出脉动大,脉动频率低的特点,其不适于容量要求高的情况,而三相可控整流电路有与之基本相反的特点,对于相当于反电动势负载的电动机来说,它能满足其电流容量较大,电流脉动小且连续不断的要求。

2.方案选择

课设题目中给出的正是要求为220V、20A的直流电动机供电,它的容量为S= kw,属于高容量,所以应选用三相可控整流电路整流。另外三相桥式整流电压的脉动频率比三相半波高一倍,因而所需平波电抗器的电感量也减小约一半。三相半波虽具有接线简单的特点,但由于其只采用三个晶闸管,所以晶闸管承受的反向峰值电压较高,并且电流是单方向的,存在直流磁化问题。基于以上原因,最终我选择三相桥式全控电路为电机整流。

三相可控整流电路的控制量可以很大,输出电压脉动较小,易滤波,控制滞后时间短,因此在工业中几乎都是采用三相可控整流电路。在电子设备中有时也会遇到功率较大的电源,例如几百瓦甚至超过1—2kw的电源,这时为了提高变压器的利用率,减小波纹系数,也常采用三相整流电路。另外由于三相半波可控整流电路的主要缺点在于其变压器二次侧电流中含有直流分量,为此在应用中较少。而采用三相桥式全控整流电路,可以有效的避免直流磁化作用。虽然三相桥式全控整流电路的晶闸管的数目比三相半波可控整流电路的少,但是三相桥式全控整流电路的输出电流波形便得平直,当电感足够大时,负载电流波形可以近似为一条水平线。在实际应用中,特别是小功率场合,较多采用单相可控整流电路。当功率超过4KW时,考虑到三相负载的平4

电力电子技术课程设计

5

5

衡,因而采用三相桥式全控整流电路。

三. 主电路原理分析

目前在各种整流电路中,应用最为广泛的是三相桥式全控整流电路,其原理图如图书(1),习惯将其中阴极连接在一起的3个晶闸管135()VT VT VT 、、称为共阴极组,阳极连接在一起的3个晶闸管462()VT VT VT 、、称为共阳极组。此外,习惯上希望晶闸管按从至的顺序导通,为此将按图示的顺序编号,即共阴极组中与三相电源相接的3个晶闸管按图示的顺序编号,即共阴极组中与a,b,c 三相电源相接的3个晶闸管

分别为135VT

VT VT ,,,共阳极组中与a,b,c 三相电源相接的3个晶闸管分别为462VT VT VT ,,。按此编号,晶闸管的导通顺序为123456VT VT VT VT VT VT -----。

1)下面对其带阻感负载时工作情况进行分析:

先假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角

00α=时的情况。此时,对于共极组的3个晶闸管,阴极所接交流电压值最高的一

个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低的一个导通。

这样,任意时刻共阳极组和共阴组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。

(1)0

0α=时,各晶闸管均在自然换相点处换相。由图中变压器二次绕组相电压与线电压波形的对应关系,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析d u 的波形时,既可以从相电压波形分析,也可以从线电压波形分析。直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的是最大的相电压,而共阳极组中处于通态的晶闸管对应的是最小的相电压,输出整流电压波形为线电压在正半周期的包络线。

图3为?=0α时,即在自然换相点触发换相时,把一个周期等份6段。在第1段期间,a 相电位高,因而共阴极组的晶闸管1VT 被触发导通,b 相电位最低。所以共阳极组的晶闸管6VT 被触发导通,这时电流由a 相经1VT 流向负载,再经6VT 流入b 相,变压器a,b 两相工作。经过.60角后,进入第2段工作时期。此时a 相电位仍然最高,晶闸管1VT 继续导通,但是c 相电位却变成最低。当经过自然换相点时,触发c 相晶闸管2VT ,电流从b 相换到c 相,承受反向电压而关断。这时电流由a 相流出经1VT 、负载R,L 、2VT 流回电源c 相,变压器a,c 两相工作,再经过.60后,进入第3段时期。此时b 相电位最高,共阴极组经过自然换相点时触发导通晶闸管3VT ,电流即从a 相换到b 相,c 相晶闸管2VT 电位仍然最低而继续导通,这时变压器b,c 两相工作。在第3段期间,b 相电位最高,晶闸管3VT 仍然继续导通,这时a 相电位却变成最低,所以晶闸管4VT 导通,这时电流由b 相流出经3VT 、负载R,L 、晶闸管4VT 流回b 相电源,变压器b,a 两相工作。在第4段期间,c 相电位最高,晶闸管5VT 导通,b 相电位最低,晶闸管6VT 导通,电流由c 相流出经5VT 、负载R,L 、晶闸管6VT 流回电源b 相,变压器c,b 两相工作。

图3:

6

(2)030α=,下面给出其波,与00α=相比,一周期中d u 波形仍由段线电

压构成,每一段导通晶闸管等仍符合表的规律。区别在于,晶闸管起始导通时刻推迟了030,组成d u 的每一段线电压因此推迟030,d u 平均值降低。阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流的波形可近似为一条水平线。

图4为?=30α时,把一个周期同样等份6段。在第1段期间,a 相电位高,因而晶闸管1VT 被触发导通,b 相电位最低。这时晶闸管6VT 被触发导通,这时电流由a 相经1VT 流出而流向负载R,L ,再经6VT 流入b 相,变压器a,b 两相工作。在第2段工作时期,此时a 相电位仍然最高,晶闸管1VT 继续导通,a 相电位最低。因而晶闸管2VT 被触发导通,电流由a 相流出经晶闸管1VT 流入负载,经过2VT 流入c 相,变压器c,a 两相工作,在第3段工作时期,b 相电位最高,因而晶闸管3VT 被触发导通,a 相电位最低,晶闸管4VT 被触发导通,电流由b 相经3VT 流出,经过负载,经过4VT 流入a 相,这时变压器b,a 两相工作。在第4段期间,c 相电位最高,晶闸管5VT 被触发导通,a 相电位最低,晶闸管4VT 导通,这时电流由c 相经5VT 流出、经过负载、再经4VT 流入a 相,a 电位最低,变压器c,a 两相工作。在第5段工作期间,c 相电位最高,晶闸管5VT 导通,b 相电位最低,晶闸管6VT 导通,电流由c 相经5VT 流出、负载、再经6VT 流入b 相,变压器c,b 两相工作。

图4:

电力电子技术课程设计

7

7

(3)0

60α>时,由于电感L 的作用,d u 波形会出现负的部分。090α=,若电感L 足够大,d u 中正负面积将基本相等,d u 平均值近似为零。这表明,带阻感负载时,三相桥式全控整流电路α角移相范围为090。三相桥式全控整

流电路大多用于向阻感负载和反电动势阻感负载供电,当.60<α时,d U 波形连续,由于电感L 的作用,使得负载电流波形变得平直,当电感足够大时,负载电流的波形可以近似为一条水平线。由波形可见,在晶闸管1VT 导通段,1VT 波形由负载电流d I 波形决定,和d U 波形不同。当.60>α时,阻感负载时的工作情况与电阻负载时不同,电阻负载时波形不会出现负的部分。而阻感负载时,由于电感L 的作用,d U 波形会出现负的部分。如图2?=90α时所示,若电感L 足够大,d U 中正负面积基本相等,d U 平均值近似为零。这表明带阻感负载时,三相桥式全控整流电路的α角移相范围为.90。

三相桥式全控整流电路是通过六个晶闸管和足够大的电感把电网的交流电转化为直流电而供给电机使用的,它可以通过调节触发电路的控制电压Uco改变晶闸管的控制角α,从而改变输出电压Ud和输出电流Id来对电动机进行控制。

整流电路在接入电网时由于变压器一次侧电压为380V,大于电动机的额定电压,所以选用降压变压器,为得到零线,变压器二次侧必须接成星型,而一次侧接成三角形,这样可以避免三次谐波电流流入电网,减少对电源的干扰。

图(1) 主电路原理图

2)电路的工作特点:

(1)三相桥式全控整流电路每个时刻均需2个晶闸管导通,而且这两个晶闸管一个是共阴极组,一个是共阳极组,只有它们能同时导通,才能形成导电回路。

8

电力电子技术课程设计

9

9

(2) 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整

流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管531,,VT VT VT 依次导通,因此它们的触发脉冲之间的相位差为?120。对于共阳极组触发脉冲的要求是保证晶闸管264,,VT VT VT 依次导通,因此它们的触发脉冲之间的相位差为

?120。在电感负载情况下,每个晶闸管导通?120.

(3) 由于共阴极组晶闸管是在正半周触发,共阳极组晶闸管是在负半周触发,因此

接在同一相的两个晶闸管的触发脉冲的相位差为?180。

(4) 三相桥式全控整流电路每隔60度有触发换流到下一号晶闸管。例如由21,VT VT 换

流到32,VT VT ,因此每隔60度要触发一个晶闸管,触发脉冲的顺序是

654321VT VT VT VT VT VT -----,依次下去。相邻两脉冲的相位差是60度。

(5) 整流输出的电压,也就是负载上的电压,它属于变压器次级的线电压。 (6) 晶闸管所承受的电压波形如图一所示。三相桥式全控整流电路在任何瞬间仅有

二臂的元件导通,其余四臂的元件均承受变化着的反向电压。

(7) 由于该电路的负载为阻感负载,且WL>>R ,所以整流输出电流为一条直线。每

个晶闸管导电?120,电流波形为长方形波。

四、主电路元件计算及选择

1、变压器参数计数

根据地已知的技术要求:

一次侧线电压U1=380V ,整流输出电压加在阻感负载上,且电感值较大(工作时可认为负载电流是连续平滑的直流),

由输出电压可由控制触发角来调节,且整流输出电压U d 在0~210V 内连续可调。

可取0

0α=时,210d U V =,由上面的分析

'

22.34cos d U U α=

'2

2.34cos d U U α

=

得出'2

89.74U V = 考虑到变压器有漏感,会造成d U 减小,但漏电感又在设计中无给出,由于其为小型变

压器,电压损失较小,故可取'2

90U V =。

三相交流电源,线电压380V ,知其相电压1220U V = 由上结果计算变比N

10 1

2U N U =

计算得:

380

4.290N =

=

下面计算初、次级绕组的导线直径。计算时取导线电流密度为5A/mm 2;

22

21222

[*()*]0.816233

3d d d d I I I I I πππ=

+-==

计算得:

20.816*2016.32I A ==

再由变比与电流的关系得一次侧电波有效值

12/16.32/4.2 3.89I I N A ===

max 22/1.57 3.0446I I A ==

根据经济电流密度法来选择导线,

c

ec ec I S j =

2

ec

S D π=。

变压器一次侧:

2

1 3.0446

0.60895ec S mm =

=

2

0.88ec

S D mm

π

==

变压器二次侧:

2220

4.05ec S mm =

=

2.26D mm ≈

可根据计算选取变压器一次侧导线直径0.50mm,二次侧导线直径1.02mm 。

2、电力电子器件电压、电流等定额计算 1)晶闸管电压定额(一般取额定电压为正常工作时晶闸管所承受峰值电压的2~3倍):

'

2

(2~3)(2~3)6N p U u U ==

(440.91~661.36)N U V =

2)晶闸管电流定额(一般取其平均电流为按此原则所得计算结果的1.5~2倍):

3d

VT I I = 1.57VT

dVT I I =

(1.5~2)N dVT I I =

电力电子技术课程设计

11

11

已知max 20d I A = 计算得:

11.547VT I A ≈

11.547/1.577.35478dVT I A == (11.03217~14.70956)N I A = 3、平波电抗器电感值的计算

一般只要主电路电感足够大,可以只考虑电流连续段,完全按线性处理.当带电机时在低速轻载时,断续作用显著,对于三相桥式全控整流电路带电动机负载的系统,有

2

min

0.693d U

L I =

L 中包括整流变压器的漏电感、电枢电感和平波电抗器和电感。前者数值都较小,所以上式求的近似为平波电抗电感。而min d I 一般取电动机额定电流的5%~10%。可取max 20d I A =为其额定值。min (5%~10%)(1~2)d dN I I A ==

2min 210

0.6930.693*72.7652d U L mH

I ===

因为三相桥式全控整流电压的脉动频率比三相半波的高一倍,因而所需平波电抗器的电感量也可相应减少约一半,这也是三相桥式整流电路的一大优点。

4、电容滤波的电容计算

根据“电压下降速度相等”原则,三相桥式结构时

而负载电阻为

d

d U R I =

21010.520d d d U R I ===Ω

容量:W I U P 420020*21022===

33

3

3.3010RC C F R ωω-==

=?

加此电容可以滤去电压中高频成分。 五、保护电路

12 我采取缓冲电路,它的作用是抑制电力电子器件的内因过电压\du dt 或者过电流和di

dt ,减少器件的开关损耗.在有缓冲电路的情况下,晶闸管开通时缓冲电容1C 向先通过2R 向晶闸管放电,使电流c i 先上一个台阶,以后因为有di

dt 抑制电路的1L ,c i 的上速度减慢。1R 、2D 是在V 关断时为1L 中的磁场能量提供放电回路而设置的。在V 关断时,负载电流通过3D 分流,减轻了的负担,抑制了du

dt 和过电压。

六、相控电路的驱动控制

晶闸管可控整流电路是通过控制触发角的α大小,即控制触发脉冲起始相位来控制电压大小。为保证相控电路的正常工作,很重要的一点是应保证触发角α的大小在正确的时刻向电路中的晶闸管施加有效的触发脉冲。

1、集成触发器

集成电路可靠性高,技术性能好,体积小,功耗低,调试方便。随着集成电路制作技术的提高,晶闸管触发电路的集成化已逐渐普及,现已逐步取代分立式

电路。目前国内常用的有KJ 系列和KC 系列,两者生产厂家不同,但很相似。我根据我们的教材选了KJ 系列

下图为KJ004电路原理图。其中点划线内为集成电路部分。从图中可以看出,它与分立元件的锯齿波移相触发电路相似。可以分为同步、锯齿波形成、移相、脉冲形成、脉冲分选及脉冲放大几个环节。由1个KJ004构成的触发单元可输出个相位间隔的触发脉冲。

只需用3个KJ004集成块和1个KJ041集成块,即可形成六路双脉冲,再由六个晶体管脉冲放大即构成完整的三相全控桥触发电路,如图下所示:

电力电子技术课程设计

13

13

u sa

1

23456711109141312816

151

23456711109141312816

15K J004

K J004

-15V

+15V

1

23456711109141312816

15K J004

RP 6RP 3(1~ 6脚为6路单脉冲输入)

1

2

3

4

5

6

7

11

10

9

14

13

12

8

16

15

KJ041

(15~10脚为6路双脉冲输出)

至VT 1u sb

u sc

u p

u co

R 19R 13R 20

R 14R 21

R 15R 9

R 3R 6R 18

R 8

R 2R 5

R 17

R 7

R 1R 4

R 16

R 10R 11R 12

C 7

C 4

C 1C 8C 5

C 2

C 9

C 6

C 3

RP 4

RP 1RP 5RP 2至VT 2至VT 3至VT 4至VT 5至VT 6

其中,KJ041内部实际是由12个二极管构成的6个或门,其作用是将6路单脉冲输入转换为6路双脉冲输出。

以上触发电路均为模拟量的,其优点是结构简单、可靠,但缺点中易受电网电压影响,触发脉冲的不对称度较高,可达03~04,精度你。在对精度要求高的大容量变流装置中,越来越多地采用了数字触发电路,可获得很多的触发脉冲对称度。

而在送触发脉冲时,又加了一脉冲变压器,起电气隔离作用,对于是晶闸管起保护作用,电路图如下:

1

4

2、触发电路的定相

向晶闸管整流电路供电的交流电源通常来自电网,电网电压的频率不是固定不变的,而是会在允许范围内有一定的波动。触发电路除了变当保证工作频率与主电路交流电源的频率一致外,还应保证每个晶闸管的触发脉冲与施加于晶闸管的交流电压保持固定、正确的相位关系,这就是触发电路的定相。

为保证触发电路和主电路频率一致,利用一个同步变压器,将其一次侧接入为主电路供电的电网,由其二次侧提供同步电压信号,这样,由同步电压决定的触发脉冲频率与主电路晶闸管电压频率始终是一致的。接下来的问题是触发电路的定相,即选择同步电压的相位,以保证触发脉冲相位正确,触发电路的定相由多方面的因素确定,主要包括相控电路的主电路结构、触发电路结构等。

触发电路定相的关键是确定同步信号与晶闸管阳极电压的关系。 如下给出了主电路电压与同步电压的关系示意图。

O ωt

ωt 1

ωt 2

u a u b u c

u 2

u a

-

对于晶闸管1VT ,其阳极与交流侧电压a u 相接,可简单表示为1VT 所接主电路电压为a u +,1VT 的触发脉冲从到的范围为1wt ~1wt 。 采用锯齿波同步的触发电路时,同步信号负半周的对应于锯齿波起点,通常使锯齿波

的上升段的为0240,上升段起始的0

30和终了的线性度不好,舍去不用,使去中间的

电力电子技术课程设计

15

15

0180。锯齿波的中点与同步信号的0300位置对应。 三相整流电路器大量用于直流电动机调速系统,且通常要求可实现再生制动,使0

d U =的触发角α为0180。当090α<时为整流工作,090α>时为逆变工作。将0

90α=确定

为锯齿波的中点,锯齿波向前向后各有090的移相范围。于是090α=与同步电压的0

300

对应,也就00α=与同步电压的0210对应。00α=对应于1VT 阳极电压0

30的位置对应,则其同步信号的0180应与a u 的00对应,说明1VT 的同步电压应滞后于a u 0

180。

对于其他5个晶闸管,也存在同样的对应关系,即同步电压应滞后于主电路电压0

180。对于共阴极组的4VT 、6VT 和2VT ,他们的阴极分别与a u -、b u -和c u 。

以上分析了同步电压与主电路的关系,一旦确定了整流变压器和同步变压器的接法,即

下图给出了变压器接法的一种情况及相应的矢量图,其中主电路整流变压器为,11D y -联结,同步变压器为,11,5D y -联结。这时,同步电压选取的结果见表

D ,y 11

D ,y 5-11

TR TS u A

u B

u C

u a

u b

u c - u sa - u sb - u sc - u sa - u sb

- u sc

U c

U sc -U

sa

U b

U sb

-U sc

-U sb

U a U sa

U AB

晶闸管 1VT 2VT 3VT 4VT 5VT 6VT 主电路电压

a u + c u -

b u + b u -

c u + b u - 同步电压

sa u -

sc u +

sb u -

sa u +

sc u -

sb u +

16

七、总结

经过几天的努力,我的课程设计完成。一路走过来,感觉比较充实还有一点

成就感,因为这是通过自己的努力完成的。

在这次课程设计中,我到校图书馆查阅了大量的资料,学到了很多有用的但

课本上没有的东西,并且有不懂的地方积极的请教老师和同学,进一步巩固了课堂上学的东西。

通过本次课设,自己的动手能力得到进一步加强,深刻的体会到了理论联系实

际的重要性,锻炼了自己独立思考完成实际问题的能力,使自己的水平得到进一步的提高,更好的掌握了自己所学的知识。最后对老师们表示感谢,谢谢他们在百忙之中抽出时间为我解答问题。

八、附录

1、所选元器件清单

整流变压器 1个 同步压器 1个 KP30型晶闸管 6个 KJ004集成块 3个 KJ041集成块 1个 晶体管放大器 6个

图2-56 KJ004电路原理图

111216

1

15

14139

43

5

7

8R 23

+15V

+15V

+15V

RP 1

R 24

R 2

R 20RP 4R 5

R 1R 3

R 4

R 6R 7R 8R 12

R 10R 11R 14R 19

R 13

R 25R 26R 27

R 28

R 20R 22

R 16

R 17

R 21

R 18R 15

V 3

V 2V 1

V 18V 19

V 20V 4

V 5V 6V 12V 13V 14

V 15

V 16V 9V 10

V 11

V 8V 7

V 17VS 5

VS 1VS 2VS 3

VS 4

VS 6VS 7VS 8VS 9VD 1

VD 2

V D 3

V D 4

V D 5V D 6

VD 7C 1

C 2

u b

u co

u s

电力电子技术课程设计

二极管 21个

电感器 1个

电容器若干

电阻若干

九、参考资料

[1] 王兆安.电力电子技术.第四版.北京:机械工业出版社,2003

[2] 潘再平.电力电子技术与电机控制实验教程,浙江大学出版社,2001

[3] 王兆安,黄俊.电力电子变流技术(第四版)机械工业出版社,2001

[4] 马建国,孟宪元.电子设计自动化技术基础.清华大学出版社,2004

[5] 马建国.电子系统设计.高等教育出版社,2004

[6] 王锁萍.电子设计自动化教程.电子科技大学出版社2002

17 17

6脉冲12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 2007-2-8 10:36:00文/厂商稿出处:https://www.doczj.com/doc/7716873918.html, 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:

(1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移

相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流

(1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。

晶闸管的触发电路

晶闸管TSC的触发电路 1. 介绍晶闸管投切电容器的原理和快速过零触发要求 晶闸管投切电容器组的关键技术是必须做到电流无冲击。晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网 当电路的谐振次数n为2、3时,其值很大。 式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。 触发电路的功能是:电流无冲击触发;快速投切,20ms的动作。这个20ms不是得到投切命令到产生动作的时间,而是从停止到再投入动作的时间为20ms。快速反应时,在平衡补偿电路,不能出现不平衡动作,即有的相有电流,有的没有。

1. 两类晶闸管的触发电路的特点和存在的问题 从同步信号的采集上,有两类晶闸管触发电路。一类为从电网电压取得同步信号,一类为从晶闸管两端取得同步信号。 从电网电压取得同步信号的电路框图如图二:信息来源:https://www.doczj.com/doc/7716873918.html, 电路中包括同步变压器、同步信号处理电路和功率驱动电路、脉冲变压器隔离电路等。当得到触发命令后,在投切点产生触发脉冲列,经过脉冲变压器的隔离,推动晶闸管。同步信号处理电路有滤波处理功能,可以是CMOS等的电子电路组成,也可以是单片机、GAL电路等。电路中包括相序错判断功能。信息来自:输配电设备网 从电网电压取得同步信号的优点为在主回路没有送电时,给触发命令,可以测量晶闸管的触发脉冲幅度和相位,在主回路得电后,给触发命令,可以放心, TSC为正确的投入工作。对于TSC电路中的两只晶闸管+一只二极管的“2+1”电路、两只晶闸管+两只二极管的“2+2”电路、三只晶闸管+三只二极管的“3+3”电路,电容器有二极管预充电, 电容器上一直存在直流电压,晶闸管的交直流电压不变,电网电压取得同步信号触发适合。缺点为电路复杂,对于400V小容量的TSC电路造价高。如果TSC全部采用晶闸管不用二极管,由于晶闸管两端的电压随着电容器放电电压的减少逐渐小,意味着触发点在变动,上述电路不能跟随变化触发点,所以不适应了。信 图二: 电网电压取得同步信号的触发电路 从晶闸管两端取得过零信号比较困难,过零触发要求电压高时截止,电压最低低时导通触发。几乎找不出什么元件是这种特性.如稳压管,电压低截止,电压高维持电压不变.不满足要求。 目前,从晶闸管两端取得过零信号的典型触发电路是MOC3083,它的框图如图三:信 图三:MOC3083电路图 MOC3083芯片内部有过零触发判断电路,它是为220V电网电压设计的,芯片的双向可控硅耐压800V,在4、6两端电压低于12V时如果有输入触发电流,内部的双向可控硅就导通。 用在380V电网的TSC电路上要串联几只3083。在2控3的TSC电路应用如图四:

三相桥式全控整流电路

1主电路的原理 1.1主电路 其原理图如图1所示。 图1 三相桥式全控整理电路原理图 习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。 1.2主电路原理说明 整流电路的负载为带反电动势的阻感负载。假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。此时电路工作波形如图2所示。

图2 反电动势α=0o时波形 α=0o时,各晶闸管均在自然换相点处换相。由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。

可控硅整流电路中的波形系数

可控硅整流电路中的波形系数 某一电压(或电流)的有效值与其平均值之比,我们称之为波形系数。在可控硅整流电路中波形系数是个值得注意的问题。为说明这个问题,我们先按图1所示的可控硅半波整流电路做个实验,各元件的型号和参数仅供参考。 先将R值调至最大,接通电源,此时直流电压表指示为零,灯泡不亮。然后慢慢减小R值,电压表读数逐渐增大,灯泡逐渐增亮。我们会发现当直流电压表指示为10伏时,灯泡便达到正常亮度了,这就是说灯泡的功耗已达额定功率了,若再继续增高电压,灯泡就可能烧毁。为什么电压表的读数还远没有达到灯泡的额定电压36伏,而灯泡的功耗却已达到额定功率了呢? 灯光中流过的电流是单向脉动电流,灯泡两端的电压为单向脉动电压,其波形如图2中实线所示。直流电压表的读数是这种脉动电压的平均值,而刁;是它的有效值。其有效值却要比平均值大得多。 根据电工学知识,这种周期性的单向脉动电压的有效值U。乃是瞬时值的平方在一个周期内平均值的算术平方根(均方根值),即

将不同的Q值代入式(3),就得到相应的K值,如表一所示。由表一可以看出,当可控硅的移相角由零变到n时,波形系数K值逐渐增大,而且增大的速度越来越快,当。接近,I时,K值将急聚增加(而U和Uo都急聚下降。) 现在再来看看实验结果。据式(2)可算出,当直流电压表指示10伏即U。=10伏时,CO$n=-0.7979,波形系数K~3.57, Uo~35.7伏。Uo己相当接近灯泡的额定电压了,所以灯泡达到正常亮度。

根据同样的道理可算出,当G相同时,在电阻性负载的全波可控整流电路中,输出脉动电压(波形见图3中的实线)系数的1//2倍。在上述计算中,均忽略了可控硅导通时的正向压降。对其他形式的整流电路以及负载呈电感性时输出电压的波形系数,本文不再赘述。 由上面的分析可知,在用可控硅进一行整流时,直流电压表(或电流表)上L的读数是输出电压(或电流)的平均1K值,不能将读数直接代入公式卜U2 L来计算负载上的功耗,这是因为式中U为负载R,上的电压有效值,即U=Uo。 如欲减小波形系数,使输出出电压有效值接近于平均值,有三条措施可取: (1)尽量减小可控硅的移相角,如Q:o时,则K=I.57(单相半波): (2)当 负载额定电压比输入交流电压的有效值低得多时,先用变压器降压再进行整 流; (3)尽量采用单向可控整流或三相可控整流电路。如忽视波形系数的影 响,尽管电压表的读数还远未达到负载的额定电压,但仍有可能烧毁电器, 以致造成不应有的损失。这是必须注意的。

晶闸管触发驱动电路设计-张晋远要点

宁波广播电视大学 机械设计制造及其自动化专业 《机电接口技术》 课程设计 题目晶闸管触发驱动电路设计 姓名张晋远学号1533101200119 指导教师李亚峰 学校宁波广播电视大学 日期2017 年 4 月20 摘要 晶闸管是一种开关元件,能在高电压、大电流条件下工作,为了控制晶闸管的导通,必须在控制级至阴极之间加上适当的触发信号(电压及电流),完成此任务的就是触发电路。本课题针对晶闸管的触发电路进行设计,其电路的主要组成部分由触发电路,交流电路,同步电路等电路环节组成。有阻容移相桥触发电路、正弦波同步触发电路、单结晶体触发电路、集成

UAA4002、KJ006触发电路。包括电路的工作原理和电路工作过程以及针对相关参数的计算。 关键词:晶闸管;触发电路;脉冲;KJ006; abstract Thyristor is a kind of switch components, can work under high voltage, high current conditions, in order to control thyristor conduction, must be between control level to the cathode with appropriate trigger signal (voltage and current), complete the task is to trigger circuit. This topic in view of the thyristor trigger circuit design, the main part of the circuit by the trigger circuit, communication circuit, synchronous circuit and other circuit link. There is a blocking phase bridge trigger circuit, the sine wave synchronous trigger circuit, the single crystal trigger circuit, the integrated UAA4002, the KJ006 trigger circuit. This includes the working principle of the circuit and the circuit working procedure and the calculation of the relevant parameters. Keywords: thyristor; Trigger circuit; Pulse; KJ006; 目录 第一章绪论 1.1设计背景与意义…………………………………… 1.2 晶闸管的现实应用……………………………………

三相桥式全控整流

1绪论 1.1课题背景 高频率、大容量、低损耗、小体积、易驱动、模块化是现在电力电子器件发展的目标。高效、节能、小型化和智能化是目前电力电子应用系统的方向发展。整流电路是电力电子电路中出现最早的一种,它是一种将交流电变为直流电的电路,在工业技术上应用十分广泛。主要用在直流电动机调速,发电机励磁调节,电镀,电解等各种工业生产领域。 1.2课题研究的目的和意义 (1)培养综合分析问题、发现问题和解决问题的能力。 (2)通过对不可逆直流电力拖动系统中三相桥式全控整流电路的设计,掌握三相桥式全控整流电路的工作原理,综合运用所学知识,三相桥式全控整流电路和系统设计的能力 (3)培养运用知识的能力和工程设计的能力。 1.3国内外概况 目前,各类电力电子变换器的输入整流电路输入功率级一般采用不可控整流或相控整流电路。这类整流电路结构简单,控制技术成熟,但交流侧输入功率因数低,并向电网注入大量的谐波电流。据估计,在发达国家有60%的电能经过变换后才使用,而这个数字在本世纪初达到95%。 电力电子技术在电力系统中有着非常广泛的应用。据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。电力系统在通向现代化的进程中,电力电子技术是关键技术之一。可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。 而电能的传输中,直流输电在长距离、大容量输电时有很大的优势,其送电端的整流阀和受电端的逆变阀都采用晶闸管变各种电子装置一般都需要不同电压等级的直流电源供电。通信设备中的程控交换机所用的直流电源以前用晶闸管整流电源,现在已改为采用全控型器件的高频开关电源。大型计算机所需的工作电源、微型计算机内部的电源现在也都采用高频开关电源。在各种电子装置中,以前大量采用线性稳压电源供电,由于高频开关电源体积小、重量轻、效率高,现在已逐渐取代了线性电源。因为各种信息技术装置都需要电力电子装置提供电源,所以可以说信息电子技术离不开电力电子技术。近年发展起来的柔性交流输电(FACTS)也是依靠电力电子装置才得以实现的。

晶闸管触发电路设计

摘要 为了控制晶闸管的导通,必须在控制级至阴极之间加上适当的触发信号(电压及电

流),完成此任务的就是触发电路。 本课题针对晶闸管的触发电路进行设计,其电路的主要组成部分由触发电路,交流电路,同步电路等电路环节组成。有阻容移相桥触发电路、正弦波同步触发电路、单结晶体触发电路、集成UAA4002、KJ004触发电路。包括电路的工作原理和电路工作过程以及针对相关参数的计算。 关键词:晶闸管;触发电路;脉冲;KJ004

目录 第1章绪论 (1) 第2章课程设计的方案 (1) 2.1 概述 (1) 2.2 系统组成整体结构 (2) 2.3 设计方案 (2) 第3章电路设计 (4) 3.1 UAA4002集成芯片构成的触发器 (4) 3.2 阻容移相桥触发电路 (5) 3.3正弦波同步触发电路 (6) 3.4单结晶体管触发电路 (8) 3.5集成KJ004触发电路 (9) 第4章课程设计总结 (12) 参考文献 (14)

绪论晶闸管是晶体闸流管的简称,又称为可控硅整流器,以前被简称为可控硅。在电力二极管开始得到应用后不久,1956年美国贝尔实验室发明了晶闸管,到1957年美国通用电气公司开发出世界上第一只晶闸管产品,并在1958年达到商业化。由于其开通时刻可以控制,而且各方面性能均明显胜过以前的汞弧整流器,因而立即受到普遍欢迎,从此开辟了电力电子技术迅速发展和广泛应用的崭新时代,其标志就是以晶闸管为代表的电力半导体器件的广泛应用,有人称之为继晶体管发明和应用之后的又一次电子技术革命。自20世纪80年代以来,晶闸管的地位开始被各种性能更好的全控型器件取代,但是由于其所能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。 20世纪80年代以来,信息电子技术与电力电子技术在各自发展的基础上相结合而产生了一代高频化、全控型、采用集成电路制造工艺的电力电子器件,从而将电力电子技术又带入一个崭新时代。门极可关断晶闸管、电力晶体管、电力场效应晶体管和绝缘栅双极晶体管就是全控型电力电子器件的典型代表。晶闸管的种类较多,有单向晶闸管、双向晶闸管、光控晶闸管、直流开关晶闸管(即门级可关断晶闸管)、寄生晶闸管(即功率场效应管IGBT)、无控制极晶闸管等。 晶闸管在电力电子技术上有很广泛的应用,整流电路(交流变直流)、逆变电路(直流变交流)、交频电路(交流变交流)、斩波电路(直流变直流),此外,还可用作无触点开关。 又晶闸管是半控型器件,因此在控制极和阴极间的触发信号是必不可少的。而触发电路的作用是产生符合要求的门级触发脉冲,保证在需要是晶闸管立即由阻断状态变为导通状态。广义上讲,触发电路包括对其触发时刻进行控制的相位控制环节、放大和输出环节。而触发电路的形成又有许多种形式。 本课程设计研究的是基于螺旋式晶闸管KP50的触发电路。 课程设计的方案 概述要使晶闸管开始导通,必须施加触发脉冲,在晶闸管触发电路中必须有触 发电路,触发电路性能的好坏直接影响晶闸管电路工作的可靠性,也影响系统的控制精度,正确设计触发电路是晶闸管电路应用的重要环节。

可控硅及其整流电路

上次课内容 1、集成功放及应用。(了解) 2、变压器耦合功放的分析。(理解) 3、功放管的散热。(了解) 4、功率放大器一章习题课。 本次课内容(2学时)(可视学时情况选择讲授或不讲) 第七章 直流电源 §7-1 可控硅及其伏安特性 7-1-1 可控硅的结构和符号 图1 可控硅的结构 全称是硅可控整流元件,又名晶闸管。外形有平面型、螺栓型,还有小型塑封型等几种。图1(a)是常见的螺栓型外形,有三个电极:阳极a、阴极k 和控制极g。图1(b)是可控硅的符号。图1(c)是内部结构示意图。 图1(c):可控硅由、、、四层 半导体组成。从引出的是阳极a、从引出的 是阴极k、从引出的是控制极g;内部有三个结,分别用、和表示。 7-1-2 可控硅的工作原理 1P 122N P N 1P 2N 2P PN 1J 2J 3J 图2 可控硅工作特点的实验 演示电路如图2(a),阳极a 接电源正极、阴极k 接电源负极;开关S 断开,H 不亮,可控硅不导通。S 闭合,即控制极g 加正向电压,如图2(b),灯H 亮,可控硅导通。可控硅导通后,将S 断开,灯仍亮,如 图2(c),表明可 控硅仍导通,说明 可控硅一旦导通 后,控制极就失去 了控制作用。要关 断可控硅,可去掉正向电压或减小正向电流到可控硅难以维持导通,则可控硅关断。

如可控硅加反向电压,则无论是否加控制极电压,可控硅均不会导通。若控制极加反向电压,则无论可控硅阳极与阴极之间加正向还是反向电压,可控硅均不会导通。 可控硅的工作特点: 1、可控硅导通必须具备两个条件:一是可控硅阳极与阴极间必须接正向电压,二是控制极与阴极之间也要接正向电压; 2、可控硅一旦导通后,控制极即失去控制作用; 3、导通后的可控硅要关断,必须减小其阳极电流使其小于可控硅的维持电流。 H I 图3 可控硅工作原理分析 图3为可控硅的内部结构示意图: 可控硅可以看成由一只NPN 型三极管 与一只PNP 型三极管组成。如仅在阳 极a 和阴极k 之间加上正向电压,由 于三极管发射结无正偏电压而无 法导通。若a、k 间加上正向电压,并 在管的基极g 加上正向电压,使产生基极电流,此电流经管放 大以后,在集电极上产生2T 1T 1 T G I 1T 1T G I 1β的电流,又因为的集电极电流就是的基极电流,所以经过再次放大,在管的集电极电流就达到1T 2T 2T 2T G I 21ββ,而此电流又重新反馈到管作为的基极电流又一次被放大,如此反复下去,与两管之间因为有如此强烈的正反馈,使两只三极管迅速饱和导通,即可控硅阳极a 与阴极k 之间完全导通。以后由于基极上自动维持的正反馈电流,所以即使去掉基极g 上的正向电压,和仍能继续保持饱和导通状态。可控硅导通时,、饱和导通总压降约1V 左右,如果阳、阴极之间正向电压太低,使流过阳极的电流难以维持导通,、就截止,从而可控硅关断。 1T 1T 1T 1T 2T 1T 1T 1T 2T 1T 2T 1T 2T 可控硅控制极的电压、电流比较低(电压只有几伏,电流只有几十至几百毫安),但被控制的器件可以承担很大的电压和通过很大的电流(电压可达几千伏,电流可大到几百安以上)。可控硅是一种可控的单向导电开关,常用于以弱电控制强电的各类电路中。 7-1-3可控硅的主要参数 1、额定正向平均电流 在规定的环境温度和散热条件下,允许通过阳极和阴极之

晶闸管过零触发电路

精心整理 TSC 的触发电路 1.介绍晶闸管投切电容器的原理和快速过零触发要求 晶闸管投切电容器组的关键技术是必须做到电流无冲击。晶闸管投切电容器组的机理如图一所示,信息请登陆:输配电设备网 当电路的谐振次数n 为2、3时,其值很大。 式(2)的第三项给出当触发角偏离最佳点时的振荡电流的幅值;式(2)中的第二项给出当偏离最佳予充电值时振荡电流的幅值。若使电容器电流ic=C*du/dt=0,则du/dt=0,即晶闸管必须在电源电压的正或负峰值触发导通投切电容器组,电容器预充电到峰值电压。 1. 当得到TSC 电管+高。如果 MOC3083芯片内部有过零触发判断电路,它是为220V 电网电压设计的,芯片的双向可控硅耐压800V ,在4、6两端电压低于12V 时如果有输入触发电流,内部的双向可控硅就导通。 用在380V 电网的TSC 电路上要串联几只3083。在2控3的TSC 电路应用如图四: 图四2控3的TSC 电路 用2对晶闸管开关控制3相电路,电路简单了,控制机理复杂了。这种触发电路随机给触发命令要出现下面的许多麻烦问题。 快速动作时,有触发命令,一对晶闸管导通另一对晶闸管不通电压反而升高了,限于篇幅和重点,本文不分析为什么电压反而高了,只是从测量的2控3电路中看到了确实存在电压升高的现象和危险,这种现象如同倍压整流电路直流电压升高了一样。图五测量不正常工作的两对晶闸管的电压波形。此试验晶闸管存在高压击穿的可能,所以用调压器将电网电压调低。晶闸管导通时两端电压

为零,不导通,晶闸管有电容器的直流电压和电网的交流电压。测量C相停止时峰峰值电压为540V,其有效值=,图中C相升高的电压峰值为810V,升高电压约为电网电压有效值的倍数:。推算,400V 电压下工作,晶闸管有可能承受的电压,400V电网的TSC电路多数是采用模块式的晶闸管,模块的耐压不高,常规为1800V,升高的管压降很容易击穿晶闸管元件。信息请登陆:输配电设备网图五不正常的两对晶闸管的电压波形信息来自:输配电设备网*在晶闸管电压波形过零点,串联的MOC3083由于分压不均匀,使得3083有的导通有的停止。电网电压升高时,原先导通的依然导通,不同的要承受更高的电压,3083有可能击穿。信息请登陆:输配电设备网 *在初次投切时有一定的冲击。下面是国外着名产品的首次投切的电流波形。 图六:国外公司产品的第一次触发冲击波形 记录C相晶闸管两端电压,A相电流。电流投切冲击很大,使得电网电压都产生了变形。信息来自: * * * * 3. 努力, 源: 切停止后,电容器上有电网峰值电压,晶闸管在电网电压和电容器直流电压的合成下,存在着过零电压,在过零点触发晶闸管是理想状态,应该没有冲击电流。 新触发电路达到了快速20ms动作,两路晶闸管都动作,无电流冲击,晶闸管在停止时的承受电压低,最大为3倍的有效值电压。 用双踪示波器测试波形.一只表笔测量晶闸管两端的电压和另一只测量晶闸管的电流波形,这样,可以看出晶闸管是否在过零点投入,又可以看出投入时的电流冲击。由于使用两个开关控制三相电路,用双踪示波器分别测量两路的电压电流,就可以完整的观察到触发器运行的效果。A探头为电压,B探头为电流。 图十二为:连续投切的A相晶闸管电压和C相电流的动作波形。 横轴为时间200ms/格,纵轴电压500V/格,电流20A/格。可控硅工作时两端的电压零,线路中有电流,停止时可控硅两端有电压,电流为零。在连续动作中,电流没有冲击。

三相桥式全控整流电路的性能研究.

三相桥式全控整流电路的性能研究 一、原理及方案 三相桥式全控整流电路系统通过变压器与电网连接,经过变压器的耦合,晶闸管主电路得到一个合适的输入电压,使晶闸管在较大的功率因数下运行。变流主电路和电网之间用变压器隔离,还可以抑制由变流器进入电网的谐波成分。保护电路采用RC过电压抑制电路进行过电压保护,利用快速熔断器进行过电流保护。采用锯齿波同步KJ004集成触发电路,利用一个同步变压器对触发电路定相,保证触发电路和主电路频率一致,触发晶闸管,使三相全控桥将交流整流成直流,带动直流电动机运转。 结构框图如图1-1所示。整个设计主要分为主电路、触发电路、保护电路三个部分。框图中没有表明保护电路。当接通电源时,三相桥式全控整流电路主电路通电,同时通过同步电路连接的集成触发电路也通电工作,形成触发脉冲,使主电路中晶闸管触发导通工作,经过整流后的直流电通给直流电动机,使之工作。 图1-1 三相桥式全控整流电路结构图

二、主电路的设计及器件选择 实验参数设定负载为220V、305A的直流电机,采用三相整流电路,交流测由三相电源供电,设计要求选用三相桥式全控整流电路供电,主电路采用三相全控桥。 1.三相全控桥的工作原理 如图2-1所示,为三相桥式全控带阻感负载,根据要求要考虑电动机的电枢电感与电枢电阻,故为阻感负载。习惯将其中阴极连接在一起的3个晶闸管称为共阴极组;阳极连接在一起的3个晶闸管称为共阳极组。共阴极组中与a、b、c 三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。晶闸管的导通顺序为 VT1-VT2-VT3-VT4-VT5-VT6。变压器为Y ?-型接法。变压器二次侧接成星形得到零线,而一次侧接成三角形避免3次谐波流入电网 KP1KP3KP5 图1 三相桥式全控整流电路 图2-1 三相桥式全控整流电路带(阻感)负载原理图 2. 三相全控桥的工作特点 ⑴2个晶闸管同时通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同1相器件。 ⑵对触发脉冲的要求: 按VT1-VT2-VT3-VT4-VT5-VT6的顺序,相位依次差。 共阴极组VT1、VT3、VT5的脉冲依次差。 共阳极组VT4、VT6、VT2也依次差。 同一相的上下两个桥臂,即VT1与VT4,VT3与VT6,VT5与VT2,脉冲相差180。

可控硅整流电路计算题

例8.1有一电阻性负载要求0~24V连续可调的直流电压,其最大负载电流,若由交流电网220V供电与用整流变压器降至60V供电,都采用单相 半波可控整流电路,是否都能满足要求?并比较两种方案所选晶闸管的导通角、额定电压、额定电流值以及电源和变压器二次侧的功率因数和对电源的容量要求等有何不同、两种方案哪种更合理(考虑2倍裕量)? 解(1)采用220V电源直接供电,当时 采用整流变压器降至60V供电,当时 所以只要适当调节角,上述两种方案都能满足输出0~24V直流电压的要求。 (2)采用220V电源直接供电,因为,其中在输出最大 时,,,则计算得, 晶闸管承受的最大电压为 考虑2倍裕量,晶闸管额定电压 由式(8.20)知流过晶闸管的电流有效值是 ,其中,, 则 考虑2倍裕量,则晶闸管额定电流应为

因此,所选晶闸管的额定电压要大于622V,额定电流要大于107A。 电源提供的有功功率 电源的视在功率 电源侧功率因数 (3)采用整流变压器降至60V供电,已知,,由公式可解得 晶闸管承受的最大电压为 考虑2倍裕量,则晶闸管额定电压 流过晶闸管的最大电流有效值是 考虑2倍裕量,则晶闸管额定电流应为

因此,所选晶闸管的额定电压要大于169.8V,额定电流要大于65.5A。 电源提供的有功功率 电源的视在功率 则变压器侧的功率因数 例8.2单相桥式全控整流电路带大电感负载,,,计算当时,输出电压、电流的平均值以及流过晶闸管的电流平均值和有效值 以及流过晶闸管的电流平均值和有效值。若负载两端并接续流二极管,如图8.15所示,则输出电压、电流的平均值又是多少?流过晶闸管和续流二极管的平均值和有效值又是多少?并画出这两种情况下的电压、电流波形。 解(1)不接续流二极管时的电压、电流波形如图8.16(a)所示,由于是大电感负载,故由式(8.36)和式(8.27)可得 因负载电流是由两组晶闸管轮流导通提供的,故由式(8.38)知,流过晶闸管的电流平均值和有效值为

(完整版)晶闸管可控整流技术直流电机调速系统设计

目录 1 绪论 (1) 1.1 课题背景 (1) 1.2 直流电动机调压调速可控整流电源设计简介 (1) 1.3 课题设计要求 (1) 1.4 课题主要内容 (2) 2 主电路设计 (3) 2.1 总体设计思路 (3) 2.2 系统结构框图 (3) 2.3 系统工作原理 (4) 2.4 对触发脉冲的要求 (5) 3 主电路元件选择 (6) 3.1 晶闸管的选型 (6) 4 整流变压器额定参数计算 (8) 4.1 二次相电压U2 (9) 4.2 一次与二次额定电流及容量计算 (13) 5 触发电路的设计 (15) 6 保护电路的设计 (18) 6.1 过电压的产生及过电压保护 (18) 6.2 过电流保护 (19) 7 缓冲电路的设计 (20) 8 总结 (23)

1 绪论 1.1 课题背景 当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是 自动控制系统的主要形式。 由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大 提高,而且在技术性能上也显示出较大的优越性。 可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运 行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在 变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联 电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可 控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过 流保护作用。 随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电 能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环 节。 1.2 直流电动机调压调速可控整流电源设计简介 该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、 移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了 保护电路和缓冲电路,通过参数计算对晶闸管进行了选型。 1.3 课题设计要求 1、输入交流电源: 2、三相140V f=50Hz 3、直流输出电压:50~150V 5、直流输出电流额定值50A 6、直流输出电流连续的最小值为5A

三相桥式全控整流电路分析

一、三相桥式全控整流电路分析 三相桥式全控整流电路原理图如图所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。 其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。

在第(1)段期间,a相电压最高,而共阴极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a相经VT1流向负载,再经VT6流入b 相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为ud=ua-ub=uab 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管VTl继续导通,但是c 相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。这时电流由a相流出经VTl、负载、VT2流回电源c相。变压器a、c 两相工作。这时a相电流为正,c相电流为负。在负载上的电压为ud=ua-uc=uac 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管VT3,电流即从a相换到b相,c相晶闸管VT2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为ud=ub-uc=ubc 余相依此类推。 仿真实验 “alpha_deg”是移相控制角信号输入端,通过设置输入信号给它的常数模块参数便可以得到不同的触发角α,从而产生给出间隔60度的双脉冲。 二、MATLAB仿真 (1)MATLAB simulink模型如图 (2)参数设置 电源参数设置:电压设置为380V,频率设为50Hz。注意初相角的设置,a相电压设为0,b相电压设为-120,a相电压设为-240。

变频器主电路中的可控整流电路

变频器主电路中的可控整流电路 可控硅,又称为晶闸管。可控硅的意思:可控的硅整流器,与常规整流二极管相比,其整流输出电压是受控的,常与移相或过零触发电路配合,应用于交、直流调压电路。可控硅是在晶体管基础上发展起来的一种集成式半导体器件。单向可控硅的等效原理及测量电路见下图2-13: A K G P N P N K G G K G A 可控硅器件等效及测量电路 可控硅为具有三个PN 结的四层结构,由最外层的P 层、N 层引出两个电极——阳极A 和阴极K ,由中间的P 层引出控制极G 。电路符号好像为一只二极管,但好多一个引出电极——控制极或触发极G 。SCR 或MCR 为英文缩写名称。 从控制原理上可等效为一只PNP 三极管与一只NPN 三极管的连接电路,两管的基极电流和集电极电流互为通路,VT2的Ic 恰为VT1的Ib ,反之,VT1的Ic 也恰为VT2的Ib ,两管的Ic 、Ib 互为作用,具有强烈的正反反馈作用。一旦从G 、K 回路输入NPN 管子的基极电流,由于正反馈作用,两管将迅即进入饱合导通状态。可控硅导通之后,它的导通状态完全依靠管子本身的正反馈作用来维持,即使控制电流(电压)消失,可控硅仍处于导通状态。控制信号U GK 的作用仅仅是触发可控硅使其导通,导通之后,控制信号便失去控制作用了。控制信号在这里只起到一个“触发”作用,一旦可控硅的导通电流形成,则形成自维持导通条件。 单向可控硅的导通需要两个条件:1、A 、K 之间加正向电压;2、G 、K 之间输入一个正向触发电流信号,无论是直流或脉冲信号。若欲使可控硅关断,也有两个关断条件:1、使正向导通电流值小于其工作维持电流值;2、使A 、K 之间电压反向。 可见,可控硅器件若用于直流电路,一旦为触发信号开通,并保持一定幅度的流通电流的话,则可控硅会一直保持开通状态。除非将电源开断一次,才能使其关断。若用于交流电路,则在其承受正向电压期间,若接受一个触发信号,则一直保持导通,直到电压过零点到来,因无流通电流而自行关断。在承受反向电压期间,即使送入触发信号,可控硅也因A 、K 间电压反向,而处于截止状态。 可控硅器件因工艺上的离散性,其触发电压、触发电流值与导通压降,很难有统一的标

晶闸管触发电路课程设计

晶闸管集成触发电路设计

1.晶闸管对触发脉冲的要求………………………… 2 . 锯齿波移相触发电路原理……………………… 3. KJ006集成触发电路…………………………… 3.1 内部结构…………………………………… 3.2 KJ006集成触发电路的工作原理………… 3.3 分析各管脚波…………………………… 3.4 KJ006典型接线图………………………… 4. 总结:…………………………………………… 4.1 接线………………………………………… 4.2 KJ006各管脚波形………………………… 4.3 触发双向晶闸管电路……………………… 5.设计体会………………………………………… 6. 参考文献…………………………………………

前言 电力电子技术是20世纪后半叶诞生和发展的一门崭新的技术。可以预见,在21世纪电力电子技术仍将以迅猛的速度发展。电力电子器件的发展对电力电子技术的发展起着决定性的作用。 用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化结构,降低成本。交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。交流调压器的输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低 这些毕业生走进企业、公司、政府机构或研究单位之后,往往深刻地感觉到缺乏实际开发设计项目的经验,不善于综合运用所学理论,对知识的把握缺乏融会贯通的能力。 通过这种设计课程,我们一方面可以结合课程的教学内容循序渐进地进行设计方面的实践训练,另一方面,在参与一系列子项目的实践过程中,还能提高如何综合运用所学知识解决实际问题的能力,以及获得有关项目管理和团队合作等等众多方面的具体经验,增强对相关课程具体内容的理解和掌握能力,培养对整体课程知识综合运用和融会贯通能力。 最后,向此次课程设计的指导老师以及在课程设计中帮助、支持我的同学表示衷心的感谢。

三相桥式全控整流电路

图1 三相桥式全控整流电路 实验六:三相桥式全控整流电路 (一)实验目的 1.掌握实验电路的工作原理和关键波形; 2.分析不同参数设置对仿真结果的影响 (二)实验原理 在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。 为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a 相,晶闸管KP3和KP6接b 相,晶管KP5和KP2接c 相。 晶闸管KP1、KP3、KP5组成共阴 极组,而晶闸管KP2、KP4、KP6组成 共阳极组。 为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的变化规 则,下面研究几个特殊控制角,先分 析α=0的情况,也就是在自然换相点 触发换相时的情况。图1是电路接线 图。 为了分析方便起见,把一个周期 等分6段(见图2)。 在第(1)段期间,a 相电压最高,而共阴极组的晶闸管KP1被触发导通,b 相电位最低,所以供阳极组的晶闸管KP6

被触发导通。这时电流由a相经KP1流向负载,再经KP6流入b相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为 =-= 经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。这时电流由a相流出经KPl、负载、KP2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为 =-= 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为 =-= 余相依此类推。 由上述三相桥式全控整流电路的工作过程可以看出: 1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。 2. 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。 3.由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。 4. 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。相邻两脉冲的相位差是60°。

可控硅整流器的原理、结构及用途

可控硅整流器的原理、结构及用途 发布日期:2012-06-08 浏览次数:459 核心提示:可控硅整流器,是一种以晶闸管(电力电子功率器件)为基础,以智能数字控 制电路为核心的电源功率控制电器。具有效率高、无机械 可控硅整流器,是一种以晶闸管(电力电子功率器件)为基础,以智能数字控制电路为核心的电源功率控制电器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 晶闸管(Thyristor)是晶体闸流管的简称,又称作可控硅整流器(Silicon Controll ed Rectifier——SCR),以前被简称为可控硅。由于其能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。 自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。 可控硅整流器的工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic 2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G 的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 可控硅整流器的结构 ◆从外形上来看,可控硅整流器也主要有螺栓型和平板型两种封装结构。

相关主题
文本预览
相关文档 最新文档